Shi, Zhongshan and Zhu, Lihui and Li, Tingting and Tang, Xiaoya and Xiang, Yonghui and Han, Xinjia and Xia, Luoxing and Zeng, Ling and Nie, Junhua and Huang, Yongxia and Tsang, Chi Kwan and Wang, Ying and Lei, Zhigang and Xu, Zaocheng and So, Kwok-fai and Ruan, Yiwen (2017) Neuroprotective Mechanisms of Lycium barbarum Polysaccharides Against Ischemic Insults by Regulating NR2B and NR2A Containing NMDA Receptor Signaling Pathways. Frontiers in Cellular Neuroscience, 11. ISSN 1662-5102
pubmed-zip/versions/1/package-entries/fncel-11-00288/fncel-11-00288.pdf - Published Version
Download (4MB)
Abstract
Glutamate excitotoxicity plays an important role in neuronal death after ischemia. However, all clinical trials using glutamate receptor inhibitors have failed. This may be related to the evidence that activation of different subunit of NMDA receptor will induce different effects. Many studies have shown that activation of the intrasynaptic NR2A subunit will stimulate survival signaling pathways, whereas upregulation of extrasynaptic NR2B will trigger apoptotic pathways. A Lycium barbarum polysaccharide (LBP) is a mixed compound extracted from Lycium barbarum fruit. Recent studies have shown that LBP protects neurons against ischemic injury by anti-oxidative effects. Here we first reported that the effect of LBP against ischemic injury can be achieved by regulating NR2B and NR2A signaling pathways. By in vivo study, we found LBP substantially reduced CA1 neurons from death after transient global ischemia and ameliorated memory deficit in ischemic rats. By in vitro study, we further confirmed that LBP increased the viability of primary cultured cortical neurons when exposed to oxygen-glucose deprivation (OGD) for 4 h. Importantly, we found that LBP antagonized increase in expression of major proteins in the NR2B signal pathway including NR2B, nNOS, Bcl-2-associated death promoter (BAD), cytochrome C (cytC) and cleaved caspase-3, and also reduced ROS level, calcium influx and mitochondrial permeability after 4 h OGD. In addition, LBP prevented the downregulation in the expression of NR2A, pAkt and pCREB, which are important cell survival pathway components. Furthermore, LBP attenuated the effects of a NR2B co-agonist and NR2A inhibitor on cell mortality under OGD conditions. Taken together, our results demonstrated that LBP is neuroprotective against ischemic injury by its dual roles in activation of NR2A and inhibition of NR2B signaling pathways, which suggests that LBP may be a superior therapeutic candidate for targeting glutamate excitotoxicity for the treatment of ischemic stroke.
Item Type: | Article |
---|---|
Subjects: | Eprints AP open Archive > Medical Science |
Depositing User: | Unnamed user with email admin@eprints.apopenarchive.com |
Date Deposited: | 06 Jun 2023 08:55 |
Last Modified: | 25 Jan 2024 04:19 |
URI: | http://asian.go4sending.com/id/eprint/586 |