A Magnetar Engine for Short GRBs and Kilonovae

Mösta, Philipp and Radice, David and Haas, Roland and Schnetter, Erik and Bernuzzi, Sebastiano (2020) A Magnetar Engine for Short GRBs and Kilonovae. The Astrophysical Journal, 901 (2). L37. ISSN 2041-8213

[thumbnail of Mösta_2020_ApJL_901_L37.pdf] Text
Mösta_2020_ApJL_901_L37.pdf - Published Version

Download (3MB)

Abstract

We investigate the influence of magnetic fields on the evolution of binary neutron star (BNS) merger remnants via three-dimensional (3D) dynamical-spacetime general-relativistic magnetohydrodynamic (MHD) simulations. We evolve a post-merger remnant with an initial poloidal magnetic field, resolve the magnetoturbulence driven by shear flows, and include a microphysical finite-temperature equation of state. A neutrino leakage scheme that captures the overall energetics and lepton number exchange is also included. We find that turbulence induced by the magnetorotational instability in the hypermassive neutron star (HMNS) amplifies magnetic field to beyond magnetar strength (1015 G). The ultra-strong toroidal field is able to launch a relativistic jet from the HMNS. We also find a magnetized wind that ejects neutron-rich material with a rate of ${\dot{M}}_{\mathrm{ej}}\simeq 1\times {10}^{-1}\,{M}_{\odot }\,{{\rm{s}}}^{-1}$. The total ejecta mass in our simulation is 5 × 10−3 M⊙. This makes the ejecta from the HMNS an important component in BNS mergers and a promising source of r-process elements that can power a kilonova. The jet from the HMNS reaches a terminal Lorentz factor of ∼5 in our highest-resolution simulation. The formation of this jet is aided by neutrino cooling preventing the accretion disk from protruding into the polar region. As neutrino pair-annihilation and radiative processes in the jet (which were not included in the simulations) will boost the Lorentz factor in the jet further, our simulations demonstrate that magnetars formed in BNS mergers are a viable engine for short gamma-ray bursts.

Item Type: Article
Subjects: Eprints AP open Archive > Physics and Astronomy
Depositing User: Unnamed user with email admin@eprints.apopenarchive.com
Date Deposited: 29 May 2023 07:04
Last Modified: 02 Jan 2024 13:13
URI: http://asian.go4sending.com/id/eprint/455

Actions (login required)

View Item
View Item