COMPARATIVE ANALYSIS OF FLOW SHOP SCHEDULING FOR N-JOBS AND M-MACHINES

BEHERA, DHIREN KUMAR and SARANGI, SITAL KUMAR and OHID, S. A. (2018) COMPARATIVE ANALYSIS OF FLOW SHOP SCHEDULING FOR N-JOBS AND M-MACHINES. Asian Journal of Mathematics and Computer Research, 24 (1). pp. 13-21.

Full text not available from this repository.

Abstract

Flow shop scheduling problem (FSSP) is one of the most observed scheduling problems in literature. Scheduling to increase in capacity utilization efficiency and thus reducing the time required to complete jobs and subsequently increasing the profitability of an organization in contemporaneous competitive environment across the globe. Scheduling is the plan done to balance the load on the system and ensure equivalent distribution of resources and give some prioritization according to set rules prevailed in our day to day activities. There are varieties systems of production scheduling including flow shop in which jobs are to be processed through series of machines for optimizing number of prerequisite measures. The aim of FSSP is to find best sequence which minimizes the different objectives like makespan, idle time, tardiness, flow time and work in process. Orthodox methods of solving scheduling problems based on priority rules still results in schedules, sometimes with significant idle times. To optimize these, this paper models the problem of a flowshop scheduling with the Scheduling is done to balance the load on the system and ensure equal distribution of resources and give some prioritization according to set rules with a motive of minimizing the makespan. The processing times and the job weightage are known and identical. Two test case studies are done using 16 jobs, 6 machines problem and 17 jobs, 5 machines problem from literature. Metaheuristic approach is taken to solve the two test cases using MATLAB 2014. Some metaheuristic algorithms were taken and tested against the problem separately. They were compared to find out the best optimum makespan. The results show that one of the offered algorithms is efficient in producing optimal or near optimal solution.

Item Type: Article
Subjects: Eprints AP open Archive > Mathematical Science
Depositing User: Unnamed user with email admin@eprints.apopenarchive.com
Date Deposited: 09 Jan 2024 05:21
Last Modified: 09 Jan 2024 05:21
URI: http://asian.go4sending.com/id/eprint/1814

Actions (login required)

View Item
View Item