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Abstract: Oxidative stress results from an imbalance between the production of reactive oxygen
species and the body’s antioxidant defense system. It plays an important role in the regulation of the
immune response and can be a pathogenic factor in various diseases. Chronic rhinosinusitis (CRS) is a
complex and heterogeneous disease with various phenotypes and endotypes. Recently, an increasing
number of studies have proposed that oxidative stress (caused by both environmental and intrinsic
stimuli) plays an important role in the pathogenesis and persistence of CRS. This has attracted the
attention of several researchers. The relationship between the presence of reactive oxygen species
composed of free radicals and nasal polyp pathology is a key topic receiving attention. This article
reviews the role of oxidative stress in respiratory diseases, particularly CRS, and introduces potential
therapeutic antioxidants that may offer targeted treatment for CRS.
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1. Introduction

Oxidative stress can be defined as an imbalance between the production and degra-
dation of reactive oxygen species (ROS) [1]. In the process of generating energy through
aerobic respiration, humans and other mammals produce a variety of ROS [2], such as
hydrogen peroxide and superoxide anions. Excess ROS can be eliminated through the
action of various enzymes, including that of superoxide dismutase (SOD), catalase, and
other components, to be maintained within the normal range. However, under oxidative
stress, excessive ROS levels cause cell damage through interactions with proteins, lipids,
and nucleic acids, thereby negatively affecting the function and structure of tissues [3].
Various physiological and pathological conditions have been related to oxidative stress; the
failure of the antioxidant system and an increased production of ROS have been linked
with obesity, aging, and some mucosal diseases [4]. Recently, the impact of oxidative
stress on the human mucosal system has received increasing attention from researchers,
especially with regard to respiratory mucosa. Studies have shown that the house dust mite
can induce ROS production while inhibiting antioxidant responses in bronchial epithelial
cells [5]. In asthma cases, ROS play a key role in the persistence and amplification of
airway inflammation and promote mucus hypersecretion, increased vascular permeability,
and airway remodeling [6]. In addition to their impact on the lower airway, ROS also
have a variety of effects on the nasal mucosa of the upper airway. The nasal submucosal
gland is a source of multiple molecules that are important for mucosal host defense [7].
Oxidative stress may play a crucial role in causing the dysfunction or impairment of the
nasal epithelial barrier [8]. Chronic sinusitis (CRS) is a disease that stems from a variety of
pathogenic factors. Among its common causes are environmental stimuli (such as pollu-
tion); viral, fungal, or bacterial infection; smoking; or physiological factors, such as genetic
predisposition and immunodeficiency [9]. Patients with CRSwNP suffer from a variety
of distressing symptoms, including nasal congestion, decreased or lost sense of smell,
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rhinorrhea, posterior rhinorrhea, and facial pressure or pain [10]. As a result of the shared
type 2 inflammatory pathway, patients with CRSwNP often have comorbid asthma and/or
nonsteroidal anti-inflammatory drug-exacerbated respiratory disease, which lead to the
need for repeated treatment with corticosteroids and/or sinonasal surgeries to alleviate
their uncontrolled symptoms [11,12]. However, the treatment often fails to achieve satisfac-
tory results, which means that it is urgent to find new causes and treatments for CRSwNP.
The treatment options of CRSwNP include medical or surgical therapy, and biological
agents have been approved or subject to recent clinical trials, but no antioxidant has been
approved to treat CRSwNP yet [13]. The antioxidant capacity of the human respiratory
mucosa plays an important role in the etiology of CRS, especially CRS with nasal polyps
(CRSwNP) [14]. Key factors in the innate defense mechanism of the upper respiratory tract
include SOD, peroxiredoxin-2 [15], bactericidal/permeability-increasing fold-containing
family A member 1 (BPIFA1) [16], and adenylate-cyclase-activating polypeptide receptor 1
(ADCYAP1) [17,18].

With the implications of ROS being known to the public, people have very high expec-
tations for the provision of antioxidants that can prevent ROS generation. Antioxidant-rich
nutrients are generally used as supplements to reduce the damage caused by ROS [19].
Recent studies regarding the role of antioxidants in CRS, especially CRSwNP, have con-
firmed acceptable results in this regard. For example, a study involving 32 patients with
CRS established that local treatment with antioxidants had a better effect on accelerating
the recovery of patients’ nasal sinus mucosa after surgery than other conventional topical
treatments [20]. This review discusses the role of oxidative stress in respiratory diseases,
especially CRS. We also highlight potential antioxidants that may be used to treat CRS as
indicated by the latest research.

The study searched PubMed, Web of Science, and Scopus, using a combination of
the following search terms (in Title/Abstract): “chronic rhinosinusitis”, “oxidative stress”,
and “antioxidant”. This review did not limit the types of research included. Basic research
and clinical research are both included. The inclusion criteria include articles exploring
the relationship between CRSwNP, oxidative stress, and antioxidants through basic or
clinical research published in English between 1992 and 2022. Moreover, there are no
restrictions on the types of articles. Article types, such as review, original research, letters,
communications, and editorials, are all included in this review, and only some articles for
which full text was unavailable were excluded. All selected articles have been imported
into EndNote, which will intelligently delete duplicate articles.

2. Oxidative Stress in Respiratory Diseases

The respiratory system is vulnerable to oxidative stress owing to its complex con-
ductive airways and large alveolar surface area [21,22]. Airway oxidative stress is widely
defined as an imbalance between the pro-oxidant and antioxidant processes in the air-
ways [23]. The main pathogenic factors causing diseases comprise infection and inflam-
mation, protease and antiprotease imbalances, and oxidative stress overwhelming the
body’s antioxidant defenses [24]. Increased lung oxidative stress in respiratory diseases
may occur due to heightened levels of exogenous or endogenous oxidants, or due to a
reduction in endogenous antioxidants (Table 1). Exogenous oxidants include air pollution,
tobacco smoke, biomass smoke, allergens, particulate matter, and fine particulate matter
(<10 µ, <2.5 µ, <0.1 µ in diameter) [25,26]. Endogenous oxidants include hydrogen per-
oxide, peroxynitrite, xanthine oxidase, superoxide anions, mitochondrial oxidants, and
myeloperoxidase [27,28]. Antioxidants that may experience reduced levels in the body
include thioredoxin, nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione, fork-
head box protein, vitamins, and SOD [29,30]. Oxidative stress drives respiratory diseases
through several mechanisms, including activation of the proinflammatory transcription
factor nuclear factor-κB (NF-κB) pathway, generation of autoantibodies to carbonylated
proteins, reduced expression of sirtuin-1, DNA damage, reduced activity of antiproteases,
and increased release of transforming growth factor-beta [31].
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Table 1. Sources of oxidative stress in respiratory diseases.

Exogenous Oxidants Endogenous Oxidants Reduced Antioxidants

Air pollution Hydrogen peroxide Thioredoxin
Tobacco smoke Peroxynitrite Nrf2
Biomass smoke Xanthine oxidase Glutathione

Allergens Superoxide anions Forkhead box protein
Particulate matter Mitochondrial oxidants Vitamins

PM2.5 (<10 µ, <2.5 µ, <0.1 µ) Myeloperoxidase SOD

The respiratory tract is a direct window of contact with the external environment.
Pollutants or toxic substances, such as nitrogen dioxide, sulfur dioxide, and particulate
matter in the air, may cause asthma symptoms [32], and these substances are more or less
related to oxidative stress. There is evidence that oxidative stress is a prevalent factor in
asthma [33,34]. An antioxidative–prooxidative imbalance may lead to pathological changes
in the respiratory epithelial cells, and other disease states (such as airway hyperresponsive-
ness) and defects in the intracellular antioxidant defense system may contribute to asthma
development [35]. Methods for detecting oxidative stress-related biomarkers in asthma
comprise tests of the exhaled condensate, bronchoalveolar fluid, systemic circulation, and
urine as well as experimental detection (Table 2).

Table 2. Biological targets and biomarkers of oxidative stress in asthma.

Targets Biomarkers

Exhaled breath condensate

Hydrogen ions
Hydrogen peroxide

Nitric oxide
Oxides of nitrogen

8-Isoprostanes
Glutathione

Bronchoalveolar fluid
3-Bromotyrosine

Catalase

Systemic circulation

Reduced glutathione
Ascorbic acid
α-Tocopherol

Lycopene
β-Carotene

Urine
Bromotyrosine
F2-isoprostane

Experimental detection Copper-zinc SOD
Manganese SOD

Exhaled breath condensates and bronchial fluid detection are airway-related methods
for detecting several biomarkers related to oxidative stress [36,37]. It was found that the
concentrations of hydrogen ions, hydrogen peroxide, nitric oxide, and 8-isoprostane in
the breath of patients with asthma were generally higher than those in healthy controls,
and these results were easily detected in patients with severe asthma [38]. A review of
46 studies also revealed that changes in the concentrations of hydrogen ions, hydrogen
peroxide, and nitric oxide in exhaled air were related to the deterioration of allergic asthma
in children [39]. The level of glutathione determines whether the T helper type-1 (Th1)
or type-2 (Th2) immune response mode is dominant, with glutathione depletion being
conducive to Th2-related reactions [40]. Acute asthma attacks lead to a decrease in the
glutathione levels in children’s exhaled breath condensates, and these levels increase after
steroid treatment [41]. A study that analyzed the role of oxidants in human lung injury
found that the baseline levels of 3-bromotyrosine in bronchoalveolar fluid proteins from
individuals with mild allergic asthma were slightly higher than those in a control group;
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after exposure to the segmental allergen challenge, the 3-bromotyrosine content in the
bronchoalveolar fluid of these individuals increased by more than 10-fold [42]. Catalase
enzyme is another key antioxidant. Its activity in the bronchoalveolar lavage fluid of
asthmatic patients is lower than that in healthy controls, with a similar observation having
been made in animal experiments [43].

One study evaluated the various components of enzymatic and non-enzymatic antiox-
idants using ELISA to evaluate the levels of glutathione peroxidase and SOD enzymes in
patients’ blood and using high-performance liquid chromatography to measure reductions
in the levels of glutathione [44]; the glutathione peroxidase and SOD levels were signifi-
cantly low in children with asthma. Another study involving 57 asthmatic and 38 healthy
participants investigated asthma-related markers via noninvasive methods. Urinary levels
of bromotyrosine and F2-isoprostane increased in asthmatic patients, indicating that these
compounds may be associated with asthma [45]. As for experimental detection, researchers
found that a redox thiol/dithiol imbalance alters copper-zinc SOD levels in the cells of
asthmatic patients and that copper-zinc SOD was easily inactivated by hydrogen perox-
ide [46]. In a mouse model of asthma, copper-zinc SOD transgenic mice exhibited less
airway inflammation and hyper-reactivity [47].

The inhalation of pollutants increases the oxidative load in individuals with asthma,
and oxidative damage of the airway epithelium along with activation of innate immune
mechanisms lead to allergic sensitization and inflammation. In addition, the intracellular
redox imbalance causes a disruption of signaling cascades and cellular responses, thus
increasing the airway inflammation and promoting airway remodeling and hyperrespon-
siveness [48]. Researchers have used N-acetylcysteine to remove excess ROS and promote
endogenous antioxidant mechanisms. It successfully reduced airway inflammation and
hyperresponsiveness in animal models of asthma, similarly reducing airway hyperrespon-
siveness in healthy human subjects and patients exposed to diesel exhaust particles [49,50].
In other studies, however, antioxidant treatments had no effect on asthmatic symptoms.
Sulforaphane plays a key role in preventing oxidative stress and inflammation [51]. A
double-blind, randomized trial involving 40 adults compared the effects of sulforaphane
on airway inflammation and oxidative stress [52]. In contrast to what was expected, the
sulforaphane intake did not improve any clinical features of pulmonary inflammation,
oxidative stress biomarkers, or asthma atopy. Studying the interaction between currently
available asthma and antioxidant treatments (focusing, for example, on the interaction
between corticosteroids and ROS) may help in developing novel therapeutic interventions.
Corticosteroid treatment is related to a reduction in airway oxidative stress in patients
with asthma [53]. However, long-term corticosteroid treatment can lead to mitochondrial
dysfunction, which leads to ROS-mediated cardiovascular, metabolic, and other compli-
cations [54,55]. Although the treatment of oxidative stress has great potential in assisting
with asthma therapy, only a few studies have achieved success in this regard, with most
research failing to uncover obvious benefits.

We previously reviewed the effects of oxidative stress and antioxidants on allergic
rhinitis, which, similar to asthma, is regarded as a united airways disease. We introduced
transcription factors, such as Nrf2 and NF-κB, in a mouse model of allergic rhinitis and in
nasal mucosa epithelial cells of patients with allergic rhinitis. Several possible therapeutic
antioxidants, such as sulforaphane, resveratrol, and taurine, were also tested, with the
latter showing promising results through inhibiting oxidative stress markers [56]. In the
following section, we will introduce the role of oxidative stress and antioxidants in CRS,
another united airway disease [57].

3. CRS and Oxidative Stress
3.1. Endotype and Phenotype of CRS

CRS can be classified into type 2 and non-type 2 CRS, based on the differences in
immune responses between Th1/Th17 and Th2 cells [58]. Previous studies have concluded
that CRS without nasal polyps (CRSsNP) shows neutrophilic predominance, whereas
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CRSwNP exhibits eosinophilic predominance [59]. However, contrary to these findings for
European and American patients, most Asian patients with CRSwNP possessed neutrophil
predominance, and CRSsNP showed an immune response favoring type 2 CRS and type 1 or
3 inflammation [60]. As illustrated in Figure 1, type 2 CRS is characterized by epithelial cell
disorder and elevated levels of Th2 cells (which produce interleukin (IL)-4, IL-5, and IL-13
cytokines), B cells, dendritic cells, and eosinophils [61,62]. The nasal sinus epithelium is the
main source of thymic stromal lymphopoietin, which plays a key role in type 2 inflammation
by activating Th2 cells and group 2 innate lymphoid cells [63]. IL-5 promotes eosinophil
inflammation, whereas IL-4 and IL-13 activate homotypic transformation and mucus
production in CRSwNP [61]; B cells produce IgE and other immunoglobulins [62]. It
has also been reported that the levels of type 2 inflammatory cytokines IL-25 and IL-
33 originating from other epithelial sources are increased in type 2 CRS [64]. Unlike
type 2 CRS, non-type 2 CRS is associated with a significant increase in Th1/Th17 cells,
corresponding with elevated levels of interferon (IFN)-γ, IL-8, and IL-17 cytokines [65].
IL-6, IL-8, and tumor necrosis factor stimulate the production of IFN- γ and further IL-8 by
T cells to strengthen the immune response; IL-8 recruits neutrophils into this region, which
release more cytokines, and the epithelial response to environmental stimuli leads to the
activation of dendritic cells, thereby inducing the differentiation of Th1 and Th17 cells [66].
According to its phenotype, CRS is currently classified as either expressing or lacking
nasal polyps (NPs) [67]. Of the two, CRSwNP is usually accompanied by a dysfunction
of the nasal mucosal fibers responsible for mucus transportation and self-cleaning, which
leads to the inability of ciliated cells to lubricate the epithelium and remove impurities [68].
This change in the innate defense mechanism of the upper respiratory tract relates to the
etiology of CRSwNP, with the antibacterial and antioxidant capacity of the tract showing a
gradual decline as CRSwNP progresses [69]. Along with the decline in antioxidant capacity,
oxidative stress plays a crucial role in the pathogenesis of CRSwNP [70,71].
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Figure 1. The type 2 and non-type 2 endotypes of CRS.

3.2. Oxidative Stress in Chronic Sinusitis with NPs

Exogenous factors that induce oxidative stress in CRS (as they do in other respiratory
diseases) include tobacco smoke, allergens, and fine particulate matter [72,73]. These ex-
ogenous oxidants can reduce the permeability of airway epithelial cells and destroy the
nasal sinus epithelial barrier [74], ultimately inducing oxidative stress (Figure 2). Inflam-
matory chemokines play a key role in coordinating inflammation [75] and are regulated by
redox reactions [76]. Eotaxin-1, a member of the CC chemokine family, induces eosinophil
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recruitment and activation. One study observed eotaxin immunoreactivity in epithelial
and endothelial cells of NPs [77]. Another study showed that eotaxin-1 plays a key role in
the selective recruitment of eosinophils in NPs [78]. Nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase produces ROS that are involved in oxidative stress and signal
transduction [79]. A recent study evaluated the expression of the NADPH oxidase subunit
p67phox and the oxidative stress marker 4-hydroxy-2-nonenal (4-HNE) in NP tissues of
13 patients with CRSwNP and the nasal mucosae of nine healthy controls. The expression
levels of both were significantly higher in NP tissues than those in healthy mucosae [80],
confirming that lipid peroxidation occurred in NP tissues. Thioredoxin-interacting protein
(TXNIP) is a multifunctional protein that can also increase ROS production and induce
oxidative stress by inhibiting the activity of thioredoxin, an antioxidant [81]. One study
confirmed that TXNIP expression is upregulated in patients with CRSwNP, indicating the
protein’s key role in the pathogenesis of CRSwNP [82]. Heme oxygenase (HO)-1 has been
proposed to be a cytoprotective enzyme against oxidative stress in CRSwNP [23]. In a study
involving 40 patients with CRSwNP and 20 healthy controls, the expression levels of HO-1
mRNA and proteins were significantly higher in the NPs of the patients than those in the
nasal mucosae of controls [83]. Scavenger receptors recognize various wastes and foreign
materials invading the human body and usually counteract the generation of ROS induced
by environmental toxins [84]. Lectin-like oxidized LDL receptor-1 (LOX-1) is one such
scavenger receptor, and its expression is induced by oxidative stress [85]. LOX-1 mRNA
expression was significantly higher in patients with CRSwNP than that in healthy controls
of one study [86], emphasizing its crucial role in the redox regulation of CRSwNP.
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ROS cause neutrophil activation, which can upregulate the expression of genes to
release their corresponding proteins. Many of these genes depend on the activation of
transcription factors, such as NF-κB, to induce expression. NF-κB activation may be the
basis for the effect of pro-inflammatory stimulation of human neutrophil gene expres-
sion [87]. The growth of NPs is also closely related to the effects of various cytokines [88],
and NF-κB is one of the most important factors related to the production of cytokines dur-
ing inflammation. One study analyzed the expression of NF-κB, associated inflammatory
cytokines, and adhesion molecules in patients with CRSwNP [89]. NPs of a CRSwNP
group possessed a significantly higher number of NF-κB p65-positive cells and higher
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mRNA expression levels of IL-6, IL-8, and eotaxin than uncinate tissues of the control
and CRSsNP groups. Nrf2 acts as the key regulator of oxidation and environmental stress
by translocating to the cell nucleus and promoting the expression of genes that produce
a cell protective response [90]. Nasal sinus mucosal barrier function and tight junctions
that had been destroyed by particulate matter could be restored via Nrf2 administration,
indicating that activation of the Nrf2 pathway may be a potential therapeutic target for
CRS [91]. Another study also showed that the barrier dysfunction of nasal sinus epithelial
cells induced by cigarette smoke can be reversed through Nrf2 activation [92].

In addition to the above oxidative stress reactions related to CRSwNP, the following
have been noted. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multi-
polymer serine-threonine kinase [93]. The normal activation of CaMKII triggers the ex-
change of subunits between these holoenzymes, but the increased activation of CaMKII via
ROS [94,95] may lead to inflammation and other diseases. The kynurenine/AhR axis medi-
ates mast cell activation through oxidative CaMKII in the pathogenesis of CRSwNP [96].
More in-depth research is needed to clarify the correlation between the kynurenine/AhR
axis and CRSwNP-related oxidative stress.

The mucosal surface is protected by many antibacterial factors, such as lactoperoxi-
dase, which creates an inhibitory action on bacteria through the production of ROS [97].
Lactoperoxidase requires H2O2 to oxidize thiocyanate, thus producing hypothiocyanite [98].
Another key process in epithelial defense is the regulation of dual oxygenase (DUOX) ex-
pression and function [99]. A study exploring the correlation between DUOX1 expression
and inflammatory mediators in CRS [100] found that DUOX1 mRNA levels were signif-
icantly increased in patients with CRSwNP compared to those in healthy individuals or
patients with CRSsNP. In fact, both the CRSwNP and CRSsNP groups exhibited higher
DUOX2 mRNA levels than the control group. The H2O2 content was significantly high in
patients with CRSwNP, with H2O2 levels in their nasal secretions being closely related to the
expression level of DUOX. These nasal secretions similarly exhibited relatively high levels
of cytokines, such as eotaxin, tumor necrosis factor-α, and IL-8. This study demonstrated
that ROS generate an overexpression of DUOX1 and DUOX2 in patients with CRSwNP, and
the authors postulated that DUOX1 and DUOX2 are key factors in innate defense signal
transduction and nasal mucosal inflammation in the human nasal airway epithelium.

Edema is an important histological process in the pathogenesis of CRSwNP. Activated
inflammatory cells and their secreted mediators cause tissue inflammation and edema
and the waste of this chronic inflammatory process comprises free radicals that cause
oxidative stress [101]. However, their exact role and impact on CRSwNP progression
remain unclear. A study involving 24 patients with CRSwNP and 20 healthy controls
investigated the impact of oxidative status on the severity of CRSwNP and associated
quality of life parameters [102]. Oxidative stress level (measured as the total antioxidant
status and nitric level) was significantly related to the degree of nasal congestion and
disease severity. Another study compared the concentrations of malondialdehyde, SOD,
and nitric oxide in healthy and NP tissue samples [70]. Compared to the control tissues, NP
samples contained a significantly higher level of malondialdehyde and lower levels of SOD
and nitric oxide. Malondialdehyde is the main end product of lipid peroxidation [103],
while SOD and nitric oxide are key antioxidants [104]. This demonstrated a close correlation
between oxidative stress and the pathogenesis of NPs.

In terms of antioxidant enzymes, the genetic expression of peroxiredoxin-2 (PRDX2),
BPIFA1, and ADCYAP1 is crucial to the innate defense mechanism of the upper respiratory
tract, in addition to that of SOD [69]. In a study performed in 2006, the levels of ADCAP1,
BPIFA1, and SOD proteins were found to be differentially expressed in NPs of Chinese
patients with CRSwNP and refractory CRSwNP, suggesting that the reduced expression
levels of their genes may be related to the pathogenesis of CRSwNP [105]. In addition, a
recent study reported that ADCYAP1, BPIFA1, and PRDX2 were differentially expressed in
the nasal mucosa of Caucasian patients with CRSwNP [69], confirming that the differential
expression of these genes reduced the antioxidant capacity in patients with CRSwNP.
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And it has been reported that PRDX2 is related to the severity of asthma, which is the
one of the main clinical problems of CRSwNP [106]. Although the same study found that
surgery and long-term local corticosteroid treatment can reverse the expression of the above
target genes, these procedures can only partially alleviate the decline in the antioxidant
capacity of the nasal mucosa, and there are still shortcomings in re-establishing normal
SOD homeostasis. Moreover, several surgeries also represent one of the main clinical
problems faced by patients with CRSwNP, and surgical treatment should not be a routine
choice. It is necessary to determine the specific mechanisms underlying transcriptional
and steroid-induced changes that affect the antioxidant capacity of nasal mucosa. There is
evidence that the phosphatase and tensin homolog gene (PTEN) can inhibit the activation
of phosphoinositide 3-kinase (PI3K), which in turn affects the phosphorylation of protein
kinase B (Akt) [107]. The PI3K/PTEN/Akt signaling pathway regulates cell growth,
apoptosis, proliferation, and metabolism [108] and is associated with various chronic
inflammatory and autoimmune diseases [109]. An in vitro study investigated the role of
PTEN in nasal epithelial cells under oxidative stress and the correlation between PTEN
and the PI3K/Akt pathway [110]. Mouse nasal epithelial cells were treated with H2O2
to induce oxidative stress and create a cell damage model. In the cells injured by H2O2,
oxidative stress was induced due to an increase in ROS levels and corresponding apoptosis,
and, notably, this damage was aggravated by PTEN. The studies of oxidative stress and
antioxidants related to CRSwNP are summarized in Table 3, and the biomarkers of oxidative
stress and antioxidants related to CRSwNP are summarized in Table 4.

Table 3. Summary of studies of oxidative stress and antioxidants related to CRSwNP.

Research Type Key Findings of Basic Research Study and General
Information of Clinical Trial Reference

Basic research studies

Eotaxin immunoreactivity in endothelial cells of NPs Yao et al. [77]
Eotaxin-1 plays a key role in the selective recruitment of

eosinophils in NPs Yoshifuku et al. [78]

Expression of p67phox and 4-HNE were higher in NP
tissues than healthy mucosae Zheng et al. [80]

TXNIP expression is upregulated in CRSwNP Lin et al. [82]
Expression of HO-1 mRNA and proteins was higher in the

NPs than that in control Yu et al. [83]

LOX-1 mRNA expression was higher in CRSwNP than
that in healthy controls Nishida et al. [86]

CRSwNP group possessed a higher number of NF-κB
p65-positive cells and higher mRNA expression levels of

IL-6, IL-8, and eotaxin than control group
Jung et al. [89]

The barrier dysfunction of nasal sinus epithelial cells can
be reversed through Nrf2 activation Tharakan et al. [92]

DUOX1 mRNA levels were increased in CRSwNP
compared to those in control Cho et al. [100]

Oxidative stress level was related to the nasal congestion
and disease severity Topal et al. [102]

Compared to the control tis-sues, NP samples contained a
higher level of malondialde-hyde and lower levels of SOD

and nitric oxide
Cekin et al. [70]

Clinical trial

25 Caucasian patients (10 females and 15 males, aged
51–62 years). Moderate to high preoperative Malm

endoscopy and Lund–Mackay CT scores. The treatment
lasted for 6 months

Mihalj et al. [69]
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Table 4. Biomarkers of oxidative stress and antioxidants in the CRSwNP.

Biomarkers of Oxidative Stress Biomarkers of Antioxidants

Eotaxin-1 [77,78] HO-1 [23,83]
NADPH [79,80] LOX-1 [85,86]
TXNIP [81,82] Nrf2 [90–92]
NF-κB [87–89] SOD [70,102,104]
Lactoperoxidase [97,98] PRDX2 [69,111]
DUOX1, DUOX2 [99,100] BPIFA1 [69,111]

Malondialdehyde [70,102,103] ADCYAP1 [69,111]
PTEN, PI3K, Akt [107–110]

3.3. Therapeutic Antioxidants in Chronic Rhinosinusitis with NPs

Oxidative stress plays an important role in the pathogenesis of NPs. High levels of free
radical-mediated lipid peroxidation metabolites have been observed in and is related to
the severity of NPs [112,113]. Based on the impact of oxidative stress in the occurrence and
development of CRSwNP, researchers have explored the feasibility of various antioxidants
in the treatment of this disease, including flavones, resveratrol, and terpenoids (Table 5).

Table 5. Potential antioxidants for use in the treatment of CRS.

Antioxidants Roles in the Nasal Mucosa and NPs Reference

Several representative
flavones (apigenin, wogonin,

chrysin, tangeritin)

Inhibits the upregulation of Muc5AC
and inducible nitric oxide synthase,
as well as the release of cytokines

(e.g., IL-8)

Hariri et al. [114]

Resveratrol

Decreases the degree of eosinophilic
infiltration and subepithelial fibrosis,

as well as levels of IL-4, IL-5,
prostaglandin D synthase, and

leukotriene C4 synthase

Kim et al. [115]

Terpenoids

Monoterpene oxide 1,8-cineol
decreases the excessive eNOS

phosphorylation typically found
in NPs

Koennecke et al. [116]

Quercetin

Increases transepithelial Cl−

transport and ciliary beat frequency
in culture models of
sinonasal epithelium

Zhang et al. [117]

Erdosteine

This study compared patients with
CRSwNP treated with Erdosteine

alone or Erdosteine in combination
with nasal corticosteroid spray and

found that the response was
significantly better in the

Erdosteine-only group

Hoza et al. [118]

Flavones have proven antioxidant and anti-inflammatory effects [119,120]. Hariri
et al. [110] found that several flavones such as apigenin inhibit the upregulation of Muc5AC
and inducible nitric oxide synthase while also inhibiting the release of cytokines, such as
IL-8. These effects resulted in an increase in the ciliary beating and mucociliary clearance of
airway cells, supporting the clinical potential of flavones as therapeutic options for CRSwNP.
Another candidate is resveratrol, which is a natural product extracted from a Peruvian
legume plant that strongly inhibits cyclooxygenase, contributes to cancer prevention, and
provides cardiovascular protection, among other beneficial effects [121,122]. Kim et al.
used an eosinophilic CRSwNP mouse model to test the therapeutic effect of resveratrol,
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comparing it to that of triamcinolone acetonide; resveratrol significantly reduced eosinophil
infiltration and the degree of subepithelial fibrosis in the nasal mucosa of mice, similar
to the effect of triamcinolone acetonide [111]. Moreover, the expression levels of IL-4,
IL-5, prostaglandin D synthase, and leukotriene C4 synthase were significantly reduced by
resveratrol treatment, and high doses of resveratrol strongly inhibited the production of 5-
lipoxygenase. These results demonstrate that resveratrol can prevent and treat eosinophilic
CRSwNP through its antioxidant and anti-inflammatory effects. Nitric oxide is released in
the nose and sinuses and is related to upper respiratory tract diseases. In allergic rhinitis,
CRSsNP, and CRSwNP, the concentration of nitric oxide changes and is considered an
indicator of disease severity [123]. Endothelial nitric oxide synthase (eNOS) plays an
important role in vascular permeability, edema, and inflammation, and CRSwNP has
been shown to increase eNOS phosphorylation [116]. 1,8-Cineol is a natural monoterpene
with anti-inflammatory and antioxidant properties [124]. Researchers have found that 1,8-
cineol significantly affects eNOS phosphorylation (and thereby, its subsequent activation),
indicating that terpenoid antioxidation may have an effect on the treatment of CRSwNP.
Quercetin is another bioactive compound with strong antioxidant activity that has been
extensively studied [125]. It significantly increases trans-epithelial Cl− transport and ciliary
beat frequency in mouse and human nasal airway cells, demonstrating the feasibility
of using quercetin for local administration to nasal sinuses [117]. Another treatment
option is erdosteine, a drug that has already been approved for the treatment of acute and
chronic lung diseases and was originally developed as a mucus-dissolving agent. It has
antioxidant, anti-inflammatory, and antibacterial properties and can prevent or reduce the
lung tissue damage caused by oxidative stress by regulating ROS production [126]. One
study evaluated the efficacy of erdosteine in the treatment of CRSwNP and found that
both the endoscopic results and questionnaire survey values of patients with CRSwNP
improved after erdosteine treatment, relative to those of a control group. This confirms the
feasibility of using erdosteine as an effective substitute for current drugs [118].

4. Conclusions

We reviewed the literature describing the effect of oxidative stress on CRSwNP and
summarized several promising antioxidants for the treatment of CRSwNP. However, the
current use of antioxidants in patients with CRSwNP is still limited, and there is a lack
of evidence. In addition, there are obstacles and limitations in terms of research into
antioxidant treatments, such as the small number of clinical cases and short research time.
Now, there are many antioxidants for researchers to assess efficacy. The key is that this
needs to be carried out in a multi-center, multi-population, and multi-stage study. In
a word, further in-depth research is required to prove and support the development of
antioxidants for CRS treatment.
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