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Within the coastal zone, oceanographic features, such as fronts, can have major
effects on the abundance and distribution of larval fish. We investigated the effects of
fronts on larval fish assemblages by jointly collecting physical (ADCP and CTD) and
biological (larvae) data in the nearshore waters of the south coast of South Africa,
on four separate neap-tide occasions. Accumulation of fish larvae at predominantly
internal wave-associated fronts was observed, with higher larval densities inshore of
and within the front than farther offshore. On each occasion, larvae of coastal species
with pelagic eggs (Mugillidae and Sparidae) were numerically dominant at the front itself,
while inshore of the front, larvae of coastal species with benthic eggs (Gobiesocidae
and Gobiidae) were more abundant. Offshore catches mainly comprised Engraulidae
(pelagic species with pelagic eggs) larvae, which were generally restricted to the bottom,
where current velocities were onshore on each occasion. On the occasion when fast
(>100 cm/s) currents prevailed, however, accumulation of the larvae of coastal species
occurred offshore of the front, and larvae were mixed throughout the water column.
Thus, larval occurrence at these coastal frontal systems was strongly affected by the
degree of mixing by currents, which on most occasions resulted in onshore retention.
The results underline the importance of frontal systems in determining the nearshore
distributions of fish larvae, particularly by retaining coastal fish species in the inshore
region. The environmental variability observed at these frontal systems has potential
implications for larval connectivity of fish populations.

Keywords: ichthyoplankton, transport, retention, accumulation, larval behaviour, coastal fronts, internal wave

INTRODUCTION

The early life history of coastal marine fishes is complex, and most species have a dispersive pelagic
larval stage that is followed by a settlement phase when juveniles seek suitable habitats (Moser et al.,
1984; Leis, 1991a; Lecchini et al., 2005). A dispersal phase has major implications for population
dynamics as it is during the pelagic larval stage that the spatial scales for adult connectivity and the
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geographic sizes of populations are set (Cowen, 2002; Sale, 2004).
Understanding the mechanisms that influence the distribution
and transport of pre-settlement larvae remains, however, a major
challenge given the dynamic coastal environment in which
dispersal takes place.

It has long been believed that ocean currents can transport
propagules over extensive distances, and indeed large-scale
circulation can extensively disperse fish larvae (>100 km)
(Leis, 1984), though small-scale processes have been found
to play an important role in local larval advection, retention
and concentration (Black et al., 1990; Limouzy-Paris et al.,
1997; Reiss et al., 2000). Recent studies have indicated that
dispersal among marine populations frequently occurs at much
smaller geographic scales than previously perceived (Sponaugle
et al., 2012; Hameed et al., 2016), and a high degree of self-
recruitment sustains some fish populations (Swearer et al., 1999;
Almany et al., 2007). In fact, a very reduced exchange of
individuals between subpopulations is thought to be enough
to keep a minimum genetic structure at the level of the
metapopulation (Slatkin, 1993). Limited dispersal may be driven
by oceanographic circulation and/or active larval behaviour,
which can potentially serve to reduce spatial displacement
(Kingsford, 1990; Cowen and Castro, 1994).

In the ocean, frontal regions are vertical boundaries between
water masses of different physical, chemical and hydrodynamic
properties (Wolanski and Hamner, 1988). Such hydrographical
features, which can be up to hundreds of kilometres long,
can have a positive or negative impact on larval fish survival
and dispersal (Parrish et al., 1981; Norcross and Shaw, 1984;
Bakun, 2006; Pineda et al., 2007). Fronts often visually manifest
at the surface as lines or slicks (Moser and Smith, 1993). In
essence, fronts are regions where horizontal currents converge
separating different water types. The convergence of water leads
to the accumulation of material and organisms with positive
buoyancy and/or active vertical swimming capability (Franks,
1992b; Genin et al., 2005). Fronts can act as barriers for currents
resulting in transport to potential coastal nurseries, increase
in connectivity via wider dispersal, or advect aberrant larvae
to unsuitable offshore regions where mortality can be high
(Rodríguez et al., 2004; Pineda et al., 2007; Bolle et al., 2009;
Mullaney and Suthers, 2013). In the same geographic region as
the present study, the larvae of invertebrates caught up in offshore
meanderings are mostly lost (Jackson et al., 2012; Porri et al.,
2014; Weidberg et al., 2015).

The inshore region (<30 m deep) serves as an important
habitat for the early developmental stages of many coastal as well
as some pelagic fish species (Lasker, 1978, 1975; Myers and Pepin,
1994; Laprise and Pepin, 1995), providing ample food availability,
refuge from large pelagic predators and suitable physico-
chemical conditions for optimal growth and development
(Brewer and Kleppel, 1986; Laprise and Dodson, 1993).Within
the coastal zone, fronts that occur at scales of less than several
kilometres, scales that are relevant for fish larvae, are not well
studied even though they are believed to act as mechanisms
of aggregation, onshore transport, and retention for fish
larvae (Shanks, 1983; Kingsford and Choat, 1986; Bakun, 1997;

Pineda, 1999, 1994; Woodson et al., 2012; Greer et al.,
2014; Liévana MacTavish et al., 2016). The accumulation of
larvae at fronts suggests that pre-settlement larval fishes may
aggregate at these convergent oceanographic features during
their pelagic phase (Shanks, 1983; Kingsford and Choat, 1986;
Kingsford et al., 1991) or respond to fronts by seeking
out high food abundance there due to particle aggregation
(Kingsford, 1990).

We investigated the role of coastal fronts as potential transport
and accumulation mechanisms for fish larvae in nearshore
habitats of the eastern Agulhas Bank along the temperate south
coast of South Africa, a region that is influenced by both the large-
scale effects of the Agulhas Current, a major ocean current, and
the more local effects of winds and tides (Schumann, 1998, 1987).
The occurrence of coastal fronts, parallel to the coastline, within
this area has been described, and shown to affect the distribution
of nearshore invertebrate larvae (Weidberg et al., 2019). The
larvae of coastal fishes on the south coast of South Africa
comprise a broad phylogenetic grouping, including a range of
taxa influenced by various oceanographic conditions (Pattrick
and Strydom, 2014, 2008). Due to this variability in early life
history, larval fishes within the area could respond differently
to their surrounding dynamic environment and may or may
not use different physical features, including coastal fronts, as
a means of transport to the nearshore, as suggested for the
larvae of tropical reef fish (Graber and Limouzy-Paris, 1997).
As an example, in a river plume system which forms a distinct
frontal boundary, complex patterns of larval fish occurred,
compared to offshore locations, with further investigation of
species-specific fine-scale interactions suggested by the authors
(Swieca et al., 2020).

The ichthyoplankton of the temperate south coast of
South Africa can be divided into three coarse categories
based on the distribution of the adults and the types of eggs
they produce (Beckley, 1986). These categories include larvae
of: (1) pelagic species with pelagic eggs (PEP), (2) coastal
species with benthic eggs (COB), and (3) coastal species with
pelagic eggs (COP). Seasonality also plays a clear role in
determining larval fish abundances and composition in the area
(Beckley, 1986; Pattrick and Strydom, 2008). In addition, larger
(flexion and postflexion) larvae, with mechanisms to actively
control their retention, could select preferential vertical and
horizontal zones within the front. We therefore hypothesised
that coastal fronts can influence the structure, including both
composition and abundance, of ichthyoplankton assemblages,
with the larvae of COB and COP remaining onshore of
the front, while the larvae of PEP would mostly be found
offshore of fronts. We examined the bio-physical interactions
of larvae by concurrently measuring physical parameters of the
water column and the structure of larval fish assemblages. We
used a horizontally and vertically stratified sampling design
within a restricted area where coastal fronts occur frequently
to allow three-dimensional mapping of cross-frontal variability
in both larval fish assemblages and the physical structure
of the water column over multiple independent occasions of
front formation.
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MATERIALS AND METHODS

Study Site
The study was carried out on the southeast coast of South Africa,
off the southern shoreline of Cape Recife, Algoa Bay (Figure 1).
Four frontal events located by observing foam lines or oily
slicks (width 4–10 m) parallel to the shoreline (Event 1:
11/12/2014; Event 2: 17/12/2014; Event 3: 11/05/2015; and Event
4: 12/05/2015) were sampled from 500 to 2500 m offshore of
Sardinia Bay (34◦2′11.41′′S; 25◦29′55.0′′E) between December
2014 and May 2015. For each sampling event, environmental data
and ichthyoplankton samples were collected from three zones

identified visually as foam lines or oily slicks (Figure 2): within
the front itself (hereafter, front), >400 m offshore of the front
(offshore) and >400 m inshore, between the front and the coast
(onshore). All events occurred when wind speed was <5.14 m/s
and swell <1.5 m.

Field Sampling and Fish Identification
Each frontal event was sampled during the morning (sampling
each event taking <5 h) and coincided with neap tides, with
predicted tidal ranges varying from 0.6 to 1 m. The sampled
fronts appeared at the coast during falling tides, thus all
sampling occurred during the falling tide. During each frontal

FIGURE 1 | Map of the study site, Sardinia Bay, in a high resolution Google Earth map, the nearshore location of the three sampling zones (onshore, front, and
offshore) for each frontal event are shown.
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FIGURE 2 | Image of coastal front with indicative surface slick observed by the naked eye (image Paula Pattrick).

event, biological sampling from the 13 m research vessel,
uKwabelana, in each zone (i.e., onshore, front, or offshore), was
preceded by a hydrographic cast using a Seabird SBE 19 Plus
conductivity-temperature-depth (CTD) profiler. Sea temperature
(◦C), salinity, fluorescence (mg/m3), oxygen (ml/l), and turbidity
(NTU) data were fully processed using the Seabird Seasoft
software and binned to 0.5 m depth intervals. Following the
CTD cast, a 600 kHz acoustic Doppler current profiler (ADCP,
Teledyne RD Instruments R©) was lowered alongside from the
stationary vessel and used to measure zonal (Avg E/W cm/s),
meridional (Avg N/S cm/s), and vertical (Avg V cm/s) current
speed and direction in 1 m depth intervals for up to 45 min
but never less than 30 min. For each sampling station, the
raw binary data downloaded from the ADCP were processed
by Teledyne RD Instrument’s BBLIST programme, and then
processed further by vector averaging the currents at each depth
over the period of the deployment. Ichthyoplankton samples
were collected during two horizontal tows (serving as replicates)
collected at the surface (1 m) and thereafter two horizontal
tows near the bottom (onshore 10–13 m; front 13–20 m; and
offshore 28–35 m) (Figure 1) in each zone using a bongo-
net. Replicated tows always had the same steaming direction,
but different starting points. The bongo-net was designed and
fabricated, by the authors for this study, with a specific closing
mechanism which closed off the mouth of the net during hauling
from depth when the vessel remained stationary. The bongo-
net had two nets with contents from each net pooled after each
horizontal tow (two horizontal tows serving as two replicates for
the surface and two for the bottom). A Lowrance HDS-10 Base
Multifunction GPS Chartplotter was used to monitor the depth
of the bongo-net. The total number of tows per frontal event
were 12. The nets were 57 cm in diameter with a mesh size of
500 µm. The bongo-net was hauled along a line parallel to the
front at a speed of 3.7 km/h (2 knots) and each transect ran for
3 min excluding deployment time. A General Oceanics flowmeter
attached to the centre of each net was used to quantify the volume

of water sampled. The density of larval fishes caught per haul was
expressed as the number of larvae/100 m3. The plankton samples
were preserved on site using 99% ethanol.

In the laboratory, larval fishes were isolated from the rest
of the sample, counted, measured, and identified to the lowest
possible taxon (Supplementary Table 1) (Smith and Heemstra,
1995; Neira et al., 1998; Leis and Carson-Ewart, 2000). Notochord
length in preflexion and flexion larvae and standard length in
postflexion larvae were measured to the nearest 0.1 mm and
are referred to as body length (LB) (Supplementary Table 2).
All general guidelines of the ethical use of animals in research,
the legal requirements of South Africa and the guidelines of the
South African Institute for Aquatic Biodiversity (SAIAB) were
adhered to. This study was granted ethic clearance by the SAIAB
(reference number: 2014/07).

Sources of Accumulation
To determine whether fish larvae accumulating at the front came
from the onshore or the offshore regions, we followed the method
of Weidberg et al. (2014), a modification of Pineda (1999).
Water movement toward the front from either the offshore or
the onshore zone was calculated for both the surface and the
near bottom of the water column using the current data from
the ADCP. Absolute current velocities (µ) were calculated for
the horizontal direction perpendicular to the front for the front
(µYf ), onshore (µYon), and offshore (µYoff ) waters.

1µYon = µYf − µYon

1µYoff = µYoff − µYf

From absolute current velocities, the relative velocities of
offshore (1µYoff ) and the onshore (1µYon) waters toward the
front were calculated for both the surface (1 m) and near bottom
(onshore 10–13 m; front 13–20 m; and offshore 28–35 m) waters.
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Larval supply rates (no. larvae/100 m3/s) to the front from either
the onshore (Son) or from the offshore (Soff ) were calculated as:

Son = 1µYon × Lon

Soff = 1µYoff × Loff

where Lon and Loff are larval densities at the onshore and offshore
zones, respectively (Weidberg et al., 2014).

Larval Fish Temporal Variability and Life
History Traits
Non-parametric tests were used for the larval fish data due to
the non-normality of the data. Seasonality in the abundances of
fish larvae between summer (Event 1 and Event 2) and winter
(Events 3 and 4) was tested using the non-parametric Wilcoxon
(W) rank-sum test performed using base functions in R software
v3.6.1 (R Development Core Team, 2019) for each of the three
fish categories (COB, COP, and PEP) based on the distribution
of the adults and the types of eggs they produce and for the total
larval fish density.

A non-parametric Kruskal–Wallis (H) ANOVA was used
to determine if there were any significant differences in the
lengths of the larvae of the dominant fish families (Blenniidae,
Cynoglossidae, Gobiesocidae, Mugilidae, and Soleidae) among
the onshore, front and offshore zones.

Due to multiple testing, the false discovery rate (FDR) method
of Benjamini and Hochberg (1995) was applied to control for
Type I errors or false positives (Benjamini and Hochberg, 1995).
Significant (based on a Q FDR of 0.05) main effects on larval
density patterns were further evaluated through post hoc pairwise
comparisons (Siegel-Tukey Test).

Larval Fish Spatial Variability
For each of the four frontal events, a permutational multivariate
analysis of variance (PERMANOVA) was used to test the
null hypothesis that there were no differences in the relative
abundances of fish larvae among zones (three levels: onshore,
front, and offshore) or depths (two levels: surface and bottom),
using a two-factor design (zone – fixed and depth – fixed) on the
Bray–Curtis distance resemblance matrix. Analyses were based
on 9,999 permutation of residuals within a reduced model and
Type III sums of squares (Anderson and Braak, 2003).

Differences in larval densities amongst the zones, during each
of the four frontal events, were tested using non-parametric
Kruskal–Wallis (H) ANOVAs for each of the three categories of
life history strategies (COB, COP, and PEP) with main effects
further evaluated through a post hoc Dunn Test.

Relationships Among Environmental
Conditions and Larvae of Dominant Fish
Families
Principal component analysis (PCA) was performed to gain
insight into which environmental variables were driving the
larvae of the most abundant fish families using PRIMER v6
with the PERMANOVA + add-on. Environmental data were
examined in draftsman scatter plots (Supplementary Image 1)

to ascertain whether some variables were highly (r2 = / > 0.70)
correlated with one another. Salinity was positively correlated
with temperature (r2 = 0.76) and therefore salinity was removed
from the analyses to reduce the influence of cross-correlated
variables on the data. Temperature was included to serve as a
surrogate for salinity (Holliday et al., 2011). After normalisation,
the averages of the environmental variables for the most
abundant fish families were used. Following that of Weidberg
et al. (2019), PC1 and PC2 of the analysis were considered as the
descriptors of the larval fish assemblage.

RESULTS

Oceanographic Conditions
Event 1 was characterised by a salinity gradient, with lower
salinity in the onshore. High values of fluorescence were observed
at the front (Figure 3), located about 2.25 km from the coastline.
The front was also marked by a drop in temperature with
temperatures 1◦C higher on either side (Figure 3) and vertical
velocity was stronger at the bottom than at the surface (Figure 4).
Currents within the front and offshore flowed roughly parallel to
the coast in an easterly direction at the bottom and a westerly
direction at the surface.

During Event 2, the front was located about 1.1 km from
the coastline and was characterised by having high fluorescence
and oxygen concentration. Current speed at the bottom offshore
station was substantially higher than the other positions,
reaching almost 150 cm/s in the northeastward direction at the
deepest measurement, with upward vertical currents of 57 cm/s
(Figure 4). In the surface layers of the offshore zone, current
flowed westward with slower velocities (35 cm/s) and vertical
upward currents were similarly substantially slower (0.2 cm/s).
Thus, a change in flow direction with different depth layers was
also observed during Event 2.

During Event 3, temperature defined the front, which was
located about 2.75 km from the coastline. The surface waters were
warmer and more oxygenated than the bottom waters. Turbidity
was higher in the onshore, particularly at the bottom of the
water column. During Event 3, weak offshore currents (∼8 cm/s)
were observed in the bottom waters of the onshore zone, while
slower alongshore currents (∼4 cm/s) were found at the surface
(Figure 4). Within the front zone, weak (<6 cm/s) offshore
currents were observed in both the surface and bottom layers. In
the offshore zone, strong westward (38 cm/s) alongshore currents
were observed in the surface waters with weaker westward
(8 cm/s) alongshore currents observed at the bottom (Figure 4).

During Event 4, the front was located about 2 km from
the coastline (Figure 3). A slower southwestward alongshore
current of <10 cm/s was observed in the bottom of the water
column, while faster westward alongshore currents in the surface
layers (>25 cm/s).

Accumulation Patterns
In the surface layer, positive relative accumulation velocities
indicating convergence and potential accumulation were
observed from the onshore side (positive 1µYon) during
Events 1 and 4 and from the offshore (positive 1µYoff )
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FIGURE 3 | Cross-shore transect for each frontal event showing vertical sections of temperature, salinity, oxygen, fluorescence, and turbidity recorded at each zone
within the coastal nearshore of Sardinia Bay region during December 2014–May 2015.

during Events 2 and 3. At the bottom, positive convergent
speeds from the onshore occurred only during Event 3, while
during the other events waters converged to the front from
the offshore side (Table 1). During Event 1, the source of
larvae of COB at surface frontal waters was onshore, while
COP accumulated from the offshore at the bottom (Table 2).
During Event 2, COB and COP aggregated from the offshore
side of the front both at the surface and at the bottom, while
the source of PEP could only be inferred at the surface and
it was also offshore. At Event 3, COB and COP at the front
were advected from offshore waters at the surface and from
onshore waters at the bottom, while PEP also came from the
onshore at the bottom. During Event 4, all species shared
the same source, which was onshore at the surface and
offshore at the bottom.

Larval Fish Species Composition,
Seasonality, and Life History
Larval fishes collected (Table 3) over the entire sampling
campaign (ntotal = 807; nonshore = 356; nfront = 218;
noffshore = 233) represented 21 fish families (nonshore = 16;
nfront = 11; noffshore = 18) and 39 species (nonshore = 22;

nfront = 22; noffshore = 29). On all occasion, each recorded
taxon was numerically dominated by a singles species.
The Cynoglossidae (COP) dominated overall catches and
numerically was represented almost entirely by Cynoglossus
capensis (96.5% of Cynoglossidae family composition). Other
abundant fish families included the Soleidae, dominated by
Heteromycteris capensis (98.7%), Mugillidae, dominated by
an unidentified species (94.9%), Gobiesocidae, dominated
by Diplecogaster megalops (93.3%), Clupeidae, dominated by
Etrumeus whiteheadi (86.0%) and Blenniidae, dominated by
Parablennius pilicornis (61.3%). The Cynoglossidae comprised
42.2% of individuals in offshore samples, 13.4% in the front and
11.0% in the onshore region. Offshore, Soleidae (COP) (15.1%),
Mugillidae (COP) (10.8%), and Blenniidae (COP) (8.2%) also
contributed to larval fish catches. In the front itself, Mugillidae
(39.4%) dominated catches, with a substantial presence of
Blenniidae (19.0%) and Soleidae (8.8%). The Soleidae (26.8%),
Gobiesocidae (COB) (26.2%), and the Clupeidae (PEP) (12.7%)
dominated catches in the onshore region. The COP dominated
overall catches comprising 59%, with the COB contributing
33% toward the overall catch and the PEP contributing
only 8%.
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FIGURE 4 | Cross-shore transect for each frontal event showing vertical sections of density, zonal, meridional, and vertical current velocity recorded at each zone
within the coastal nearshore of Sardinia Bay region during December 2014–May 2015. Sardinia Bay runs approximately east-west, thus zonal currents are
alongshore, with positive values eastward and negative values westward. Meridional currents are across-shore, with positive values northward (toward the coast)
and negative values eastward (away from the coast). Positive vertical currents are toward the surface and negative vertical currents are away from the surface.

Preflexion larvae comprised roughly 50% of the larval fish
catch and larvae in the flexion stage of development contributed
36.6% to the total catch with 10.2% of the total catch consisting of
postflexion larvae.

Significantly (W = 81.0; p < 0.001) more larvae were recorded
during the winter (mean 5.2 larvae/100 m3) than summer (mean

TABLE 1 | Mean (±SD) absolute (µ) and relative (1µ) velocities (cm/s) of surface
and bottom waters moving perpendicular (Y ) to the front.

µYon µYf µYoff 1µYon 1µYoff

Event 1 Surface −0.7 ± 1.9 9.0 ± 0.6 3.2 ± 0.7 9.7 −5.8

Bottom 7.9 ± 1.1 −1.6 ± 5.9 4.8 ± 4.5 −9.5 6.4

Event 2 Surface 4.5 ± 3.3 1.3 ± 3.6 5.4 ± 2.5 −3.2 4.1

Bottom 4.9 ± 3.5 9.3 ± 4.3 33.9 ± 27.9 4.4 24.6

Event 3 Surface 1.7 ± 0.5 −1.6 ± 3.1 10.2 ± 0.9 −3.3 11.8

Bottom −7.4 ± 4.2 2.6 ± 0.7 1.3 ± 1.8 10.0 −1.3

Event 4 Surface 0.8 ± 0.9 4.0 ± 1.2 −0.5 ± 1.5 3.2 −4.5

Bottom 2.4 ± 0.6 2.2 ± 0.9 8.8 ± 0.4 −0.2 6.6

Velocities were recorded on the onshore (on), at the front (f), and on the offshore
side (off). A positive value indicates a northward (onshore) direction on the Y axis.

1.0 larvae/100 m3) sampling. This trend was particularly true
for the COP (winter mean 3.4 larvae/100 m3; summer mean
0.2 larvae/100 m3; W = 35.0; p < 0.001) and PEP (winter
mean 0.4 larvae/100 m3; summer mean 0.1 larvae/100 m3;
W = 195.0; p < 0.05). Although more COB larvae were captured
during the winter period, the difference between seasons was not

TABLE 2 | The source of accumulating larvae at the surface and the bottom of the
frontal waters during the four different frontal events.

Event 1 Event 2 Event 3 Event 4

Surface Total Density Onshore Offshore Offshore Onshore

COB Onshore Offshore Offshore Onshore

COP n/a Offshore Offshore Onshore

PEP n/a Offshore n/a Onshore

Bottom Total Density Offshore Offshore Onshore Offshore

COB n/a Offshore Onshore Offshore

COP Offshore Offshore Onshore Offshore

PEP Offshore n/a Onshore Offshore

n/a = not applicable.
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TABLE 3 | Species composition by number (N) and as a percentage of total catch (%
∑

N), mean body length (LB), and developmental stage (Pr, preflexion; F, flexion; Po,
postflexion) of larval fishes caught by bongo net in the nearshore surface slicks in Sardinia Bay.

Family Species Category Onshore Front Offshore

N %
∑

N LB (mm) Stage N %
∑

N LB (mm) Stage N %
∑

N LB (mm) Stage

Range Range Range

Blenniidae Blenniidae sp. 1 COB 2 0.6 4.8–8.8 Pr, F 29 13.3 3.1–9.0 Pr, F 7 3.0 4.8–10.0 Pr, F, Po

Blenniidae sp. 2 COB 1 0.3 8.1 F 1 0.4 5.4 F

Parablennius
cornutus

COB 5 2.3 3.6–6.5 Pr, F 1 0.4 8.8 F

Parablennius
pilicornis

COB 2 0.6 3.7–7.0 Pr, F 7 3.2 3.3–8.0 Pr, F, Po 9 3.9 4.0–6.8 Pr, F

Bregmacerotidae Bregmaceros
atlanticus

COP 2 0.6 15.2–16.0 Po

Chaetodontidae Chaetodontidae sp. 1 COP 1 0.4 11.8 Po

Clinidae Clinidae sp. 1 Brooder 1 0.5 7.9 Po

Clupeidae Sardinops sagax PEP 1 0.3 9.9 Pr 4 1.8 9.4–16.1 Pr, F 2 0.9 8.6–14.0 Pr, F

Cynoglossidae Cynoglossus
capensis

COP 53 15.7 2.6–10.5 Pr, F, Po 22 10.1 3.0–9.3 Pr, F 94 40.3 2.0–11.4 Pr, F, Po

Cynoglossus
zanzibarensis

COP 1 0.5 10.5 F 4 1.7 3.5–10.2 Pr, F, Po

Dussumieriidae Etrumeus whiteheadi PEP 40 11.9 6.2–20.2 Pr, F, Po 1 0.5 12.5 F 2 0.9 11.7–14.1 Pr, F

Engraulidae Engraulis
encrasicolus

PEP 2 0.6 2.5–2.8 Pr 7 3.2 2,2–6.5 Pr 9 3.9 5.1–9.4 Pr, F

Gobiesocidae Chorisochismus
dentex

COB 2 0.6 4.5–5.0 Pr 3 1.4 4.6–5.1 Pr 1 0.4 4.8 Pr

Diplecogaster
megalops

COB 69 20.5 3.2–6.3 Pr, F, Po 29 13.3 2.8–6.1 Pr, F 13 5.6 3.3–5.6 Pr, F

Gobiidae Caffrogobius gilchristi COB 1 0.3 5.0 F

Caffrogobius
nudicpes

COB 34 10.1 2.3–5.5 Pr, F 2 0.9 4.4–5.0 Pr, F 1 0.4 3.2 Pr

Haemulidae Haemulidae sp. 1 COP 4 1.8 7.7–9.4 F, Po 1 0.4 4.5 F

Hemiramphidae Hemiramphus far Brooder 2 0.9 7.3–9.6 Po

Lotidae Gaidropsarus
capensis

COP 1 0.3 3.9 F 2 0.9 4.3–4.6 F 1 0.4 7.4 Po

Mugillidae Mugillidae sp. 1 COP 2 0.9 2.8–4.6 Pr, F 1 0.4 6.0 Po

Mugillidae sp. 2 COP 1 0.5 11.4 Po 1 0.4 4.4 Pr

Mugillidae sp. 3 COP 20 5.9 5.6–9.2 F, Po 69 31.7 2.5–8.9 Pr, F, Po 22 9.4 3.2–7.7 Pr, F

Pomatomidae Pomatomus saltatrix COP 1 0.4 4,3 F

Sciaenidae Argyrosomus
inodorus

COP 2 0.6 3.5–3.7 Pr 2 0.9 3.0–4.4 Pr 1 0.4 2.9 Pr

Scorpaenidae Scorpaenidae sp. 1 COP 1 0.5 4.3 Pr 9 3.9 3.3–5.4 Pr, F

Soleidae Heteromycteris
capensis

COP 92 27.3 2.1–8.0 Pr, F, Po 26 11.9 2.5–7.6 Pr, F 35 15.0 2.4–7.7 Pr, F, Po

Sparidae Diplodus capensis COP 1 0.3 3.2 Pr 4 1.8 4.2–8.3 Pr, F, Po

Porcostoma dentata COP 1 0.3 6.0 F

Rhabdosargus
globiceps

COP 3 1.4 3.3–8.0 Pr, F, Po 2 0.9 3.4–5.2 Pr, F

Sparidae sp. 1 COP 1 0.4 3.2 Pr

Sparidae sp. 4 COP 1 0.4 4.5 Pr

Sparidae sp. 5 COP 1 0.3 4.5 Pr

Spondyliosoma
emarginatum

COB 8 3.7 3,9–5.3 Pr 2 0.9 4.7–6.5 Pr. F

Synodontidae Synodontidae sp. 1 COP 1 0.5 8.0 F

Trigilidae Trigilidae sp. 1 COP 1 0.3 2.8 Pr 1 0.4 11.1 Po

Tripterygiidae Cremnochorites
capensis

COB 8 2.4 4.5–9.0 Pr, F 13 6.0 5.9–10.0 Pr, F, Po 3 1.3 6.4–7.4 F

Unidentified Unidentified sp. 1 1 0.3 9.0 Po

Unidentified sp. 4 1 0.5 6.0 Pr

Unidentified sp. 5 1 0.5 7.2 F

Dominant developmental stages are in bold.
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significant (winter mean 1.3 larvae/100 m3; summer mean 0.7
larvae/100 m3; W = 270.5; p = 0.72).

Fish larvae of the dominant taxonomic groups differed
significantly in size (length) at different positions with respect
to the fronts. Large sized Soleidae (H = 11.26; df = 2; p < 0.01;
Dunn test = 3.3) and Gobiidae (H = 3.52; df = 2; p = 0.17)
larvae occurred predominantly at the front (Table 3). Small-sized
Blenniidae (H = 7.99; df = 2; p < 0.05; Dunn test = −2.3),
Cynoglossidae (H = 0.89; df = 2; p = 0.64), and Mugilidae
(H = 9.22; df = 2; p < 0.001; Dunn test = −3.0) larvae occurred
at the front. Large Blenniidae, Gobiesocidae (H = 1.80; df = 2;
p = 0.41) and Mugilidae larvae occurred in the onshore.

Spatial Trends in Larval Fishes
The outcome of the PERMANOVA tests on total larval fishes
run individually for each frontal event (Table 4) revealed high
variability at the levels of both zone and depth (excluding zone
at Event 3). Higher mean densities of fish larvae were observed
in the front during Event 1 (H = 4.77; df = 2; p = 0.09), onshore
during Event 4 (H = 0.15; df = 2; p = 0.93), and offshore during
Event 2 (H = 7.14; df = 2; p < 0.05) than during the rest of
the sampling. During Event 4, the interaction between zone and
depth was highly significant (Table 4), with highest densities
being observed in the onshore bottom layers.

The composition of the larval fish assemblage and the spatial
distribution of larvae in relation to the fronts differed among the
four frontal events. COB accumulated onshore during Events 1
(H = 8.12; df = 2; p < 0.05), 3 (H = 0.73; df = 2; p = 0.69) and
4 (H = 0.81; df = 2; p = 0.67) (Figure 5). During Event 2, COB
(H = 7.54; df = 2; p < 0.05) and COP (H = 8.12; df = 2; p < 0.05)
accumulated significantly in the offshore. COP accumulated at
the front during Event 1 (H = 8.12; df = 2; p < 0.05) and
Event 3 (H = 0.73; df = 2; p = 0.69). No specific pattern in PEP
was observed with accumulation in the offshore during Event 1
(H = 2.00; df = 2; p = 0.37), at the front during Event 2 (H = 0.07;
df = 2; p = 0.97) and onshore during Event 3 (H = 4.02; df = 2;
p = 0.13) and Event 4 (H = 4.83; df = 2; p = 0.10).

Dominant Fish Family Analysis and
Environmental Correlation
The PCA multivariate analysis using environmental variables
within the zones and their relationships with the distribution
of the dominant larval fish families showed that PC1 explained
44.5% of the total variability of the data (Figure 6 and Table 5).

The greatest loadings on PC1 being meridional flow followed by
zonal flow. Haemulidae larvae were most influenced by offshore
(south) meridional flow while Sparidae and Cynoglossidae
larvae were influenced by onshore (north) meridional flow.
PC2 explained a lower percentage of variability (27.3%) and
was driven by dissolved oxygen and fluorescence. Sparidae and
Blenniidae larvae were mostly influenced by higher levels of
fluorescence and oxygen.

DISCUSSION

Our findings highlight the important contributions that life
history traits and hydrodynamics play in larval transport
and coastal retention associated with fronts. Specifically, four
different fronts were sampled during austral summer (2014) and
winter (2015), during falling neap tides, and the data analysed
separately to identify common trends. Owing to the sampling
design adopted for this study, with measurements within each
event, serving as independent replicates, the strength of the
analysis lies in the description of each event separately.

During this study, each frontal event was characterised by
different hydrological and physical conditions. Surface slicks are
associated with one or a combination of wind-driven, buoyancy,
topographic or tidally generated physical forcing mechanisms
and are often interpreted as propagating features associated with
internal waves (Franks, 1992a; Leichter et al., 1998; McCulloch
and Shanks, 2003; Shanks et al., 2003). Previous research within
the same study region suggested that these fronts are formed by
internal waves (Weidberg et al., 2019) and appeared to follow the
predictions of Pineda’s (1994) two-phase model for cross-shore
internal tidal bores. The first phase occurs when a cold water
bore is advected shoreward with warmer, lighter waters displaced
offshore, resulting in a front at the surface separating water
types of different temperatures, and an imbalance in hydrostatic
pressure. In our study, the direction of currents moved in
opposite directions, supporting Pineda’s (1994) two-phase model.
The frontal events observed by Weidberg et al. (2019) in the same
study area, indicate how invertebrate larval assemblages changed
in time together with water circulation, following the tidal cycle.
Thus, it is possible that larval fish distributions changed on
similar time scales. The dynamics in the nearshore circulation of
the present study resulted in contrasting accumulation patterns
of fish larvae at the surface and bottom layers with the different

TABLE 4 | Results of the PERMANOVA conducted on square-root transformed abundance data of fish larvae recorded in the shallow nearshore of Sardinia Bay during
the four different frontal events.

Source df Event 1 Event 2 Event 3 Event 4

MS F MS F MS F MS F

Zone 2 2628.1 3.2* 1985.0 2.5* 2276.6 1.9 2553.8 2.5*

Depth 1 2389.4 2.9* 2416.3 3.1* 6600.6 5.5* 4839.3 4.7*

Zone × depth 2 714.5 0.9 1078.2 1.4 1542.2 1.3 3224.9 3.2**

Res 6 820.8 788.0 1198.1 1020.1

Total 11

*p < 0.05; **p < 0.01; df = degree of freedom; MS = mean sum of squares; F = F-value by permutation.
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FIGURE 5 | Mean (+SD) larval fish densities of the three categories of life histories found in the onshore (black), the front (white), and offshore (grey). Note change in
axis scaling for each event. ∗Significant accumulation (p < 0.05).

life history categories showing specific zone association to the
frontal systems.

Within the frontal zone, the vertical distribution of larvae was
species specific, as has been observed in internal waves in other
coastal habitats (Greer et al., 2014). Larvae of the COP Mugillidae
and Sparidae, almost always dominated surface waters. The

prevalence of mugillid and sparid larvae in ichthyoplankton
tows in slicks has been previously documented, with ephemeral
prevalence at the surface (Kingsford and Choat, 1986; Rissik
and Suthers, 1996). During Event 3, flexion Mugillidae occurred
exclusively in the surface layers of the front zone, with the source
of accumulating larvae being from the offshore. A significant
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FIGURE 6 | PCA analysis showing percentage variability for each PC axis for larval fish families for all samples during the four frontal events within the coastal
nearshore of Sardinia Bay region during the study (December 2014–May 2015).

accumulation of Mugillidae (co-occurrence of all developmental
stages) at the front zone during Event 4 was also observed, but the
source then was the onshore region. With large larvae occurring
onshore, these larvae could potentially be moving inshore from
offshore spawning areas, toward their juvenile nursery areas
using the mechanisms of the coastal fronts. The shoreward
progression of larval reef fish in fronts supports the supply of
competent larvae to their reef settlement habitat (Woodson et al.,
2012). During Event 1, Sparidae larvae occurring at the surface
of the front zone were associated with fluorescence according
to the PCA. Fluorescence can be considered as a proxy for
chlorophyll-a and in the upwelling region of the Senegalese
coast, highest chlorophyll-a concentrations were observed in
the inshore upwelling front habitat which coincided with the
highest larval Sparidae densities (Tiedemann and Brehmer,
2017). Recent evidence of slicks serving as nursery areas for
fish larvae have indicated that older, larger larvae that are
competent swimmers are actively seeking out surface slicks
in search of prey and shelter from predators (Whitney et al.,
2021). This increased predator-prey overlap has been found to
enhance coastal ecosystem and fisheries productivity (Woodson
and Litvin, 2015; Woodson, 2018).

TABLE 5 | Results of the principal component analysis (PCA).

Variables PC1 PC2

Temperature 0.408 −0.255

Fluorescence −0.232 −0.584

Oxygen −0.137 −0.600

Turbidity 0.378 0.071

Zonal flow −0.461 0.292

Meridional flow −0.515 −0.214

Vertical flow −0.374 0.313

Eigenvectors (correlations) for each environmental factor (values greater than
0.4 are in bold).

In the surface waters during all frontal events, regardless of
position in relation to the front itself (i.e., onshore, front, and
offshore), on 11 out of 12 times (three regions, four events),
onshore currents persisted and on seven of these occasions
currents were >20 cm/s, but <40 cm/s. In the bottom waters,
regardless of the position in relation to the frontal systems,
onshore currents persisted nine out of 12 times, and only
twice were the currents >20 cm/s. Stable conditions within the
nearshore environment renders this area a suitable habitat for
retention and recruitment of coastal larvae (Paris et al., 2002).
Larvae of coastal species hatching from either benthic (COB) or
pelagic (COP) eggs were found to occur predominantly either in
the onshore zone or at the front. The abundance of Blenniidae
(COB) and Gobiesocidae (COB) larvae has been suggested to
decrease with increasing distance from shore, due to the absence
of passive drift during the demersal egg phase (Leis and Miller,
1976; Marliave, 1986; Kingsford and Choat, 1989; Suthers and
Frank, 1991; Brogan, 1994). Gobiesocidae and Blenniidae larvae
do, however, hatch with functional eyes, developed fins and
some positive active swimming toward light (Villegas-Ríos et al.,
2009). This advanced stage of morphological development upon
hatching, could allow larvae to switch vertical position as the
flow directions change (Breitburg et al., 1995) and actively seek
out the shallower inshore. Such behavioural and developmental
capabilities, which often limit larval dispersal in coastal areas
(Paris and Cowen, 2004), could also apply to the surveyed frontal
systems and promote retention close to the sea floor, where these
eggs develop. It therefore appears that coastal frontal systems
play a pivotal role in allowing the larvae of the COB species to
retain themselves within the nearshore. The co-occurrence of all
developmental stages (preflexion, flexion, and postflexion) within
plankton samples as well as the limited area of the onshore zone
also suggests retention (Stephenson et al., 2015) as observed for
other taxa (Morgan et al., 2018; Roura et al., 2019). The physical
structure of these coastal fronts therefore provides favourable
conditions for short larval development, and plays a major role
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in reducing transport, increasing settlement and maintaining
retention of larvae from these COB within nearshore waters.

The bottom of the offshore zone during Event 2 was
characterised by a strong onshore current reaching almost
150 cm/s and upward vertical currents of 57 cm/s, indicative of
shoaling and breaking of internal waves (Aghsaee et al., 2010;
Richards et al., 2013). In the surface layers of the offshore zone,
current velocities were considerably slower (35 cm/s), although
still relatively strong, with upward currents also substantially
weaker (0.2 cm/s). During these turbulent strong current
conditions however, accumulation of the larvae of COB and COP
occurred in the offshore zone, highlighting the fact that the front
is serving as a barrier for onshore advection potentially, through
wider larval dispersal increasing population proliferation, which
has important implications for population connectivity.

For PEP, no clear pattern was observed, with offshore
accumulation during Event 1, accumulation of larvae at the front
during strong turbulent current conditions (Event 2) and onshore
accumulation of larvae during Events 3 and 4. The larval catches
of PEP were substantially lower than those observed within
a similar study area during previous surveys (Beckley, 1986;
Pattrick and Strydom, 2008), however, PEP were generally found
to occur in higher densities further offshore than shallow sites
just behind the surf zone (Pattrick and Strydom, 2008). For PEP,
perhaps other underlying physical and biological mechanisms
influence their larval dispersal and retention. The seasonality
observed during the present study could mainly be attributed
to higher abundances of PEP occurring during winter (Event
3 and Event 4), although the peak occurrence of the larvae of
PEP is known to occur in spring in this region (Pattrick and
Strydom, 2008). It has been noted that defining the dispersal
and habitat for larvae with pelagic adults is difficult and hence
this important detail has often been omitted from analyses
(Bradbury and Snelgrove, 2001).

Changes in current direction and velocity between different
depth strata were often observed. These shifts would result not
only in crosshore advection but also in alongshore transport
in either direction. Cynoglossids, tripterygiids, and gobiesocids
dominated at the bottom while the blenniids and sparids
dominated at the surface. By occupying different depths in
the water column, even for short periods of time, different
larvae will generally experience transport in different directions.
Within the region, spawning occurs all year round for these
families, but with seasonal peaks, depending on the species
(Pattrick and Strydom, 2008, 2014). Such multiple spawning,
coupled with active selection of preferred depths by the larvae,
may be a form of bet-hedging (Shanks and Eckert, 2005), with
larvae from certain batches experiencing a particular alongshore
transport, while other batches experience transport in other
directions. Variability in alongshore transport could therefore
lead to differences among the species in population connectivity
(Shanks and Pfister, 2009). Indeed it has been shown that the
roles that fronts can play are important to understanding the
reproductive strategies of local marine populations (Acha et al.,
2004). During Event 3, within the front itself, surface strata flowed
in a southwestward direction and bottom strata flowed in the
southeastward direction, and again, due to the orientation of

the coastline, this would result in offshore transport in both
cases. Larval assemblages were dominated by mugillids at the
surface and by cynoglossids, gobiesocids, gobies and soles at the
bottom. Studies have found that the larvae of nearshore demersal
spawning fishes, including gobiesocids and gobies, are usually
found close to shore (Marliave, 1986; Kingsford and Choat, 1989),
near the bottom (Shanks and Eckert, 2005) and swimming against
the current to maintain a fixed position (Kingsford and Choat,
1989). For these larvae therefore, despite the offshore current
at the front, residing near the bottom, where current velocities
were slow (< 6 cm/s) and swimming against the flow is possible,
would decrease their dispersal distances. Using this recorded
mechanism of nearshore retention would reduce mortality and
increase coastal retention in species with short PLDs as found in
the Mugillidae, Cynoglossidae, and Soleidae.

During Event 2, within the onshore zone, all larvae occurred
exclusively in the surface layers where an onshore (N) current
prevailed, with larvae appearing actively to avoid the offshore (S)
bottom currents, where no larvae were captured. During Event
3, within the onshore zone, larval assemblages in the surface
of the water column, where currents flowed in an onshore (N)
direction, were dominated by species of Mugillidae. Meanwhile,
larval assemblages in the bottom layers where currents flowed
in an offshore (S) direction, were dominated by cynoglossids
and haemulids. According to the PCA, Haemulidae larvae were
mostly influenced by these meridional currents. The presence
of large (flexion and postflexion) larvae in the onshore at
the bottom of the water column, further supports the idea
that haemulid larvae remain in the nearshore throughout their
larval development (Sponaugle et al., 2003), with mechanisms to
control their retention actively, despite the presence of offshore
currents. Fish larvae often show aggregated distributions in both
horizontal and vertical dimensions within large scale oceanic
frontal systems (Lough and Manning, 2001; Lee et al., 2005)
and have been found to position themselves at mid-depth levels
with onshore current directions (Cowen and Castro, 1994). Such
offshore flow avoidance and general association with a body of
water that is moving in an onshore direction, is a low cost means
of transport (Shanks, 1983; Norcross and Shaw, 1984; Kingsford
and Choat, 1986; Kingsford, 1988, 1990; Leis, 1991b). By actively
selecting a favourable vertical position in the water column where
flow is retentive, larvae can utilise coastal fronts to enhance local
accumulation where conditions are likely to retain them close to
shore even during advective conditions.

When currents flowed in the same direction at the surface
and the bottom of the water column (evident in the onshore
of Events 1 and 4), larvae tended to accumulate in the slower
waters. During Event 1, abundances of gobiesocid larval were
considerably higher in the bottom of the water column, where
current velocities slowed down compared to the surface. During
Event 4, Gobiidae larval abundances were higher at the bottom of
the water column, where current velocities were less than half the
velocities observed within the surface layers of the water column.
Larvae of the naked goby (Gobiosoma bosc) actively aggregate and
select low-flow microhabitats and can shift their position with
changing flow directions (Breitburg et al., 1995). This particular
behaviour has the advantage of allowing pre-settlement larvae
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such as the gobiesocids and gobies, which utilise benthic habitats
as juveniles, to remain close to suitable habitats, rather than being
swept off to less favourable habitats (Breitburg et al., 1995).

The observed diversification in larval distribution links
dispersal to processes such as, spawning strategy, ontogenetic
stage, pelagic larval duration and advective oceanographic
processes (Sponaugle et al., 2002; Werner et al., 2007). Coupled
with coastal ocean currents, larval behaviour can further
influence transport through active vertical positioning in the
water column (Parrish et al., 1981; Boehlert and Mundy, 1988).
While hydrodynamic conditions are clearly important to larval
transport and retention, our data suggest that spawning strategy
and life history are linked to behaviours that are critically
important and lead to a variety of responses to the same
physical conditions.

While coastal fronts may serve to accumulate larvae of coastal
species onshore, the dynamic nature of frontal hydrography
can also result in increased dispersal when fast currents
prevail, with important implications on larval connectivity.
Local small-scale hydrographic variability in coastal frontal
events can therefore exert a powerful influence on fish larvae
with potential ecologically meaningful effects on population
connectivity. Repeated measurements of physical conditions and
larval abundances illustrated clear links between on/off shore
current direction and life history of different fish assemblages.
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