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MRI-based porosity index (PI)
and suppression ratio (SR) in the
tibial cortex show significant
differences between normal,
osteopenic, and osteoporotic
female subjects
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Introduction: Ultrashort echo time (UTE) MRI enables quantitative assessment of

cortical bone. The signal ratio in dual-echo UTE imaging, known as porosity

index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-

UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based

bone evaluation techniques developed to reduce the time demand and cost in

future clinical studies. The goal of this study was to investigate the performance

of PI and SR in detecting bone quality differences between subjects with

osteoporosis (OPo), osteopenia (OPe), and normal bone (Normal).

Methods: Tibial midshaft of fourteen OPe (72 ± 6 years old), thirty-one OPo (72 ±

6 years old), and thirty-seven Normal (36 ± 19 years old) subjects were scanned

using dual-echo UTE and IR-UTE sequences on a clinical 3T scanner. Measured

PI, SR, and bone thickness were compared between OPo, OPe, and normal bone

(Normal) subjects using the Kruskal–Wallis test by ranks. Spearman’s rank

correlation coefficients were calculated between dual-energy x-ray

absorptiometry (DEXA) T-score and UTE-MRI results.

Results: PI was significantly higher in the OPo group compared with the Normal

(24.1%) and OPe (16.3%) groups. SR was significantly higher in the OPo group

comparedwith the Normal (41.5%) andOPe (21.8%) groups. SR differences between

the OPe and Normal groups were also statistically significant (16.2%). Cortical bone

was significantly thinner in the OPo group compared with the Normal (22.0%) and

OPe (13.0%) groups. DEXA T-scores in subjects were significantly correlated with PI

(R=-0.32), SR (R=-0.50), and bone thickness (R=0.51).
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Abbreviations: DEXA, dual-energy x-ray absorptio

resonance; MRI, magnetic resonance imaging; 3D-U

ultrashort echo time imaging; RF, radiofrequency; FO

region of interest; TE, echo time; TR, repetition time; CT,

HR-pQCT; high-resolution peripheral quantitative com

flip angle; BMD, bone mineral density.
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Discussion: PI and SR, as rapid UTE-MRI-based techniques, may be useful tools

to detect and monitor bone quality changes, in addition to bone morphology, in

individuals affected by osteoporosis.
KEYWORDS

osteoporosis, cortical bone, MRI, ultrashort echo time (UTE), bone quality
1 Introduction

According to the World Health Organization, bone mineral

density (BMD) assessment using dual-energy x-ray absorptiometry

(DEXA) is the standard method for osteoporosis (OPo) diagnosis

(1–4). Notably, a major portion of bone volume (>55% in cortical

bone and >90% in trabecular bone) (5) is comprised of the organic

matrix, water, and fat, which cannot be accurately evaluated via

DEXA measurement or other x-ray-based techniques (6).

An increasing number of musculoskeletal research groups are

investigating the potential benefits of utilizing magnetic resonance

imaging (MRI) for bone evaluation, particularly for quantifying the

water components, organic matrix, and fat content in cortical bone

(7–10). MRI-based bone evaluation avoids the potential harmful

exposures to ionizing radiation associated with x-ray-based

techniques (11–14) and provides the opportunity for

simultaneous assessment of the surrounding soft tissues (15, 16).

Although conventional clinical MRI sequences can be used for

morphological imaging, they are not capable of quantitative evaluation

of bone due to the lack of detectable signals (7–9). Specifically, the

detected MR signal intensity of bone depends on several factors,

including its apparent transverse relaxation time (T2*), which is very

short (11, 12) and cannot be captured by conventional clinical

sequences. Notably, T2* of bone is on the order of hundreds of

microseconds, while the echo times (TEs) in conventional clinical MRI

sequences are typically several milliseconds or longer (11, 17). On the

other hand, ultrashort echo time (UTE) MRI sequences have TEs on

the order of several to tens of microseconds, which are short enough to

detect signal from cortical bone directly and consequently enable

quantitative assessment of cortical bone (7–9, 11, 12, 18, 19).

UTE-MRI-based evaluation of bone is partly underutilized due

to the high cost and time demands of MRI in general. Several

research studies have focused on developing rapid and efficient

UTE-MRI-based bone evaluation methods to facilitate clinical

translational imaging of bone. The signal ratio calculation in

dual-echo UTE imaging (20) and the signal ratio between UTE

and inversion recovery UTE (IR-UTE) (21) are two remarkable
metry, MR, magnetic

TE, three-dimensional

V, field of view; ROI,

computed tomography;

puted tomography; FA,

02
examples of rapid UTE-based bone evaluation techniques, each of

which takes less than 5 minutes. Notably, the required time for such

measurements depends on the UTE acquisition techniques, which

can be two-dimensional (2D) (using cartesian or radial trajectories)

(22, 23) or three-dimensional (3D) (using cartesian, radial, spiral, or

cones trajectories) (10). Generally, a 2D UTE sequence is faster than

a 3D UTE sequence, and a spiral acquisition is faster than a radial or

cartesian acquisition. It should be noted that the signal-to-noise

(SNR) is one of the major challenges with UTE bone imaging,

particularly in the hip and spine with thin cortex. 3D UTE

sequences have the advantage of providing significantly higher

SNR efficiency than 2D UTE sequences.
Rajapakse et al. (20) have proposed a dual-echo UTE imaging

technique to calculate porosity index (PI), which is the signal ratio

between two MRI images, one with UTE (TE < 0.05 ms) and one with

TE = 2.2 ms (where bound water signal has decayed to near zero, and

pore water and fat signals are in-phase at 3T). The first echo image

represents the total detectable signal from bone, including bound

water (BW), pore water (PW), and fat. The second echo represents

mostly PW and fat signals (no BW signal). Therefore, the signal ratio

between the two images is hypothesized to correlate with the pores’

volume (assuming that pores are filled with PW and/or fat) to the total

volume. Although this technique does not estimate the absolute PW

content or fat content, it can provide an estimation of bone porosity.

In original validation studies, PI in a limited number of human

cadaveric tibiae has shown significant correlations with porosity

measured with micro-computed tomography (µCT) (n=16), donor

age (n=16), mechanical compression stiffness performed on whole-

cross-section tibial specimens (n=18), and collagen estimation from

near-infrared spectroscopy (n=18) (20, 24). Recently, the significant

correlations of PI with microstructural and mechanical properties

were confirmed using 135 cortical bone strips (25). The feasibility of PI

calculation in vivo and its reproducibility level was also investigated,

with a coefficient of variation of 2.2% and an intraclass correlation

coefficient of 0.97 reported (20). In another in vivo study, PI has shown

a significant direct correlation with the chronic kidney disease stage

(n=95) (26). However, the PI performance in distinguishing subjects

with OPo has not been investigated yet.
In another attempt to develop rapid UTE-MRI-based

techniques for bone assessment, Li et al. have proposed

“suppression ratio” (SR) index, defined as the ratio between the

bone UTE signal and the UTE signal after long-T2 suppression

performed via dual-band saturation-prepared UTE (DB-UTE) or

IR-UTE (21). It is assumed that the UTE image represents the total
frontiersin.org
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detectable signal from bone (BW, PW, and fat), while the IR-UTE

image represents only the BW signal. Therefore, higher PW and fat

signals may result in higher SR magnitudes, indicating a higher

cortical porosity. In previous ex vivo validation studies of a limited

number of specimens (n=13), SR demonstrated significant

correlations with mCT-based bone porosity and donor age (21).

Recently, the significant correlations of PI with microstructural and

mechanical properties were confirmed in an investigation with a

larger sample size (n=135) (25). The feasibility of SR calculation and

its reproducibility level were investigated in previous studies

(intraclass correlation coefficient of 0.98) (21) SR from in vivo

studies (n=72) demonstrated significant correlations with

volumetric bone mineral density (vBMD) (R=0.64) and age

(R=0.67) in healthy subjects (21). However, the SR performance

in distinguishing subjects with OPo is yet to be investigated.

This study aimed to investigate the performance of PI and SR in

detecting bone quality differences between female osteopenia (OPe),

osteoporosis (OPo), and normal (Normal) subjects.

2 Materials and methods

2.1 Subject inclusion

A total of 82 female subjects were recruited for MRI scans: 37

with normal bone (Normal group, 36 ± 19 years old), 14 OPe (72 ±

6 years old), and 31 OPo (72 ± 6 years old). The inclusion criteria

for each group were as follows: (1) Normal group: pre-menopausal

females under 40 years old or post-menopausal females with recent

(<one month) DEXA T-scores above -1; (2) OPe group: post-

menopausal females with DEXA T-scores between -2.5 and -1;

and (3) OPo group: post-menopausal females with DEXA T-scores

below -2.5. Subjcets with a history of bone fracture have been

excluded from the study. The institutional review board (IRB) of the

University of California, San Diego, approved this study, which was

conducted in accordance with applicable good clinical practice

requirements and the relevant guidelines and regulations. Written

informed consent was obtained from each subject.
2.2 UTE-MR imaging and data analysis

All subjects were scanned on a 3T MRI (MR750, GE Healthcare

Technologies, WI, USA) scanner using an eight-channel knee coil for

both RF transmission and signal reception. The imaging slab was

centered in the middle of the tibia and localized based on the operator’s

experience. The UTE-MRI scans involved: a) dual-echo 3DUTECones
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sequence (repetition time (TR)=100 ms, TE=0.032 and 2.2 ms, flip

angle (FA)=10°) for porosity index (PI) measurement (PI= 2nd TE

signal divided by UTE signal) (7, 9, 20) and b) 3D adiabatic IR-UTE

Cones sequence (TR=100ms, TI=45ms, and TE=0.032ms, FA=20°) to

calculate the suppression ratio (SR=UTE signal divided by IR-UTE

signal) (7, 9, 21). The field-of-view (FOV), voxel size, in-plane matrix

dimension, number of slices, and slice thickness were 140×140×120

mm3, 160×160, 0.87×0.87×5 mm3, 24, and 5 mm, respectively. The

total scan time was approximately 10 mins.

Average PI and SR were calculated within regions of interest

(ROIs) covering the entire bone cross-section selected by two

experienced MRI readers for measuring PI and SR using a home-

developed MATLAB (Mathworks, MA, USA) code. MRI

measurements were performed on single slice consistently selected

in the middle of the acquired stack of images. Local bone thickness

was calculated for each pixel as equal to the diameter of the largest

fitted circle within the selected ROI. Bone thickness for each subject

was calculated by averaging the local thickness of all bone pixels.

Intraclass correlation coefficient (ICC) was calculated for PI and SR

between the two readers to investigate their reproducibility.
2.3 Statistical analysis

The one-sample Kolmogorov-Smirnov test was performed to

determine whether the measured PI and SR were normally

distributed for each group. The Kruskal–Wallis test by ranks was

used to examine the data differences between the three subject groups

(Normal, OPe, and OPo). Spearman’s rank correlation coefficients

were calculated between DEXA T-score (51 subjects had DEXA

scans) and the UTE-MRI-based bone measures (PI and SR). P-

values below 0.05 were considered significant. Statistical analyses

were performed using MATLAB codes developed by the authors.

3 Results

Table 1 presents the average and standard deviation (SD) values

of PI and SR performed on the tibial bone midshaft of the subjects

in the three studied groups (Normal, OPe, and OPo groups).

Independent measurements by the two readers were averaged.

ICCs between these independent measurements are also

presented in Table 1. For all MRI parameters, ICCs were higher

than 0.95, indicating a high consistency between measurements

performed by independent readers.

Figure 1 demonstrates the generated PI and SR pixel maps for

three exemplary subjects from the Normal, OPe, and OPo groups.
TABLE 1 Average PI, SR, bone thickness, and T-score values for different groups.

Normal OPe OPo ICC

PI (%) 32.7 ± 4.3 34.8 ± 6.7 40.5 ± 7.2 0.97

SR 3.2 ± 0.2 3.7 ± 0.5 4.5 ± 0.8 0.96

Thickness (mm) 5.4 ± 0.8 4.8 ± 0.7 4.2 ± 0.5 0.98

T-score -1.74 ± 0.7 -2.58 ± 0.5
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As expected from Table 1, PI and SR values were observed in the

following ascending order: Normal<OPe<OPo. In contrast, the

mean bone thickness was found in the following descending

order: Normal>OPe>OPo.

Percentage differences in PI and SR between the investigated

groups and their statistical significance are presented in Table 2. PI

was significantly higher in the OPo group compared with the

Normal (24.1%, p<0.01) and OPe (16.3%, p<0.01) groups. PI in

the OPe group was higher than in the Normal group, but the

difference was nonsignificant (6.6%, p=0.73). SR was significantly
Frontiers in Endocrinology 04
higher in the OPo group compared with the Normal (41.5%,

p<0.01) and Ope (21.8%, p=0.02) groups. SR differences between

the OPe and Normal groups were also statistically significant

(16.2%, p<0.01). Cortical bone was significantly thinner in the

OPo group compared with the Normal (22.0%, p<0.01) and OPe

(13.0%, p=0.02) groups. Bone thickness in the OPe group was lower

than in the Normal group, but the difference did not reach statistical

significance (10.3%, p=0.19).

Figure 2 depicts the average, median, SD, and first and third

quartiles of PI, SR, and bone thickness values for each group of

subjects using Whisker boxplots. Statistically, significant differences

are indicated between groups by horizontal red lines marked with

an asterisk.

Spearman’s correlation coefficients between DEXA T-score

(performed at the hip) and UTE-MRI measures (performed at the

tibial shaft) are presented in Table 3 (using 51 data points with

DEXA scans; young control subjects did not have DEXA scans). SR

correlation with T-score was significant (moderate, R=-0.50,

p<0.01), while PI showed a significant but poor correlation with

T-score (R=-0.32, p<0.01). Bone thickness also showed a significant

correlation with T-score (moderate, R=0.51, p<0.01). Figure 3

demonstrates the scatter plots and the linear regressions of the

DEXA T-score on PI, SR, and bone thickness. As expected, higher
TABLE 2 Percentage difference in PI, SR, bone thickness, and T-score
values between the studied groups.

Normal/OPe Normal/OPo OPe/OPo

PI
6.6%

(p=0.73)
24.1%

(p<0.01)
16.3%
(p<0.01)

SR
16.2%

(p<0.01)
41.5%

(p<0.01)
21.8%

(p=0.02)

Thickness
-10.3%
(p=0.19)

-22.0%
(p<0.01)

-13.0%
(p=0.02)

T-score
-45.6%
(p=0.01)
FIGURE 1

Generated PI, SR, and bone thickness maps for exemplary subjects from the Normal group (first column, 28-year-old female), the OPe group
(second column, 78-year-old female), and the OPo group (third column, 85-year-old female). PI and SR were observed in the following ascending
order: Normal<OPe<OPo. Regions with higher PI and SR values are likely regions with higher porosity, particularly near the endosteum. In contrast,
the mean bone thickness was found in the following descending order: Normal>OPe>OPo.
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bone mineral densities are associated with thicker tibial cortex yet

lower PI and SR in scanned subjects.
4 Discussion

This study investigated the differences in PI and SR, two

recently developed rapid UTE-MRI-based bone assessment

indices, between OPo, OPe, and Normal subjects. These rapid

UTE-MRI-based techniques for bone assessment can be

considered in vivo-translatable techniques due to their simplicity,

time efficiency, and, importantly, their non-invasive and ionizing-

radiation-free nature.

PI and SR were significantly higher in the studied OPo group

compared with the Normal and OPe groups. The SR difference

between the OPe and Normal groups was also statistically

significant. Higher SR and PI values in OPo subjects can be

explained by the anticipated porosity increase in cortical bone

during OPo disease development. This study added to the

previous feasibility in vivo studies of PI and SR, where healthy

elderly subjects demonstrated higher PI and SR than young subjects

(20, 21). This highlights the potential capability of PI and SR as

measures of bone porosity, positioning them as useful and rapid

tools for monitoring OPe subjects before OPo advancement, as well

as for OPo subjects undergoing medical interventions. It should be

noted that the relationships between bone porosity and these UTE-

based indices were validated in previous ex vivo studies (20, 21, 25).

A significant moderate correlation was observed between the SR

measured at the tibial bone midshaft and the DEXA T-score

measured at the hip. PI correlation with T-score was also

significant but poor. The reported correlations of PI and SR with

vBMD in prior investigations (21), both performed at the tibia, were

higher compared to the presented correlation in this study.

Although it can be assumed that the bone matrix deterioration

occurs across the entire lower extremity at similar rates, higher
Frontiers in Endocrinology 05
correlation levels would be expected between PI/SR and DEXA T-

score if the same bone sites were investigated in the study.

Moreover, it is likely that PI and SR detect the PW signal in

slightly different ranges of pores; therefore, they did not

demonstrate a similar level of correlation with the DEXA T-Score.

It should be noted that the required scan time for all UTE MRI

techniques can be improved by different acceleration techniques

such as spokes stretching in Cones (27), compressed sensing (28,

29), and parallel imaging (30, 31). Since both PI and SR

measurements require only two acquisitions, they may be faster

than other techniques which require multiple acquisitions (19, 32–

42), if similar acceleration techniques are utilized. This applies also

to other techniques with single or dual acquisitions, such as the PW

and BW direct imaging techniques, employed by Horch et al. (43)

and Manhard et al. (44), as well as the MTR technique employed by

Chang et al. (45).

PI and SR have the potential to monitor the subvoxel cortical

bone quantity changes. Subvoxel bone quantifications (e.g., porosity)

can play a critical role in determining the bone fracture risk if

combined with the current fracture risk assessments. Notably, bone

strength is highly determined by the bone structure and its subvoxel

material properties. Along with increases in PI and SR in OPo

subjecs, cortical bone was significantly thinner compared with the

Normal and OPe groups. Similar bone thinning has been reported in

previous MRI-based (46) and high-resolution peripheral quantitative

CT (HR-pQCT) (47)studies. In light of this fact, comprehensive

cortical bone fracture risk evaluation is suggested by complementing

the current standard measures (e.g., BMD and FRACS) with bone

morphology and MRI-based subvoxel quantity measures.

The limitations of this study can be summarized in five aspects.

First, while the presented techniques were translated to in vivo

applications, only a limited number of subjects were recruited for

this study. These techniques must be examined on a larger cohort of

OPe and OPo subjects to confirm their clinical applications for OPo

disease monitoring. Second, SR magnitude is related to the selection

of TR and TI, which was based on our experience with SNR

improvement and efficient PW signal nulling. There might be an

optimal TR/TI combination that could further improve the

performance of SR detecting bone deteriorations in OPo subjects,

even though, based on the current parameters, PI and SR

demonstrated comparable performance. Third, we have

investigated the correlations of PI and SR performed at the tibial
TABLE 3 Spearman’s correlation coefficients between DEXTA T-score
and UTE-based measures (PI, SR, and bone thickness).

PI SR Thickness

DEXA T-Score
-0.32

(P<0.01)
-0.50

(P<0.01)
0.51

(P<0.01)
FIGURE 2

Boxplots of PI, SR, and bone thickness in the Normal, OPe, and OPo groups. Average, median, SD, and first and third quartile values are indicated in
the boxplots.
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midshaft with the DEXA T-scores at the hip. Future in vivo

validation studies using HR-pQCT or DEXA performed on the

tibial midshaft may be required to confirm the significant

correlations between our rapid UTE-based indices and bone

microstructural changes. Fourth, tibial bone is not the prominent

fracture site in most OPo subjects; however, because of the relatively

thick cortical bone in tibias, a robust investigation of the UTE-MRI

feasibility has been possible. Future investigations should be focused

on the hip or spine which present more fracture morbidity and

mortality and similarly much more of a challenge for UTE-MRI

imaging encountering a thinner bone with sophisticated

morphology, located deeper inside the body. Such studies also

provide the opportunity for comprehensive comparisons between

UTE-MRI and DEXA data which usually are acquired at the hip or

spine, such as bone area, BMD, bone mineral content, and bone

texture in addition to the often-used T-score. Fifth, PI, SR, and bone

thickness were calculated in a single slice in the middle of the tibial

shaft. The potential variations of MRI measures across the length of

the tibia likely influenced the presented results in this study.

Employing an automatic approach for ROI selection in future

studies would help to investigate the MRI measurement variations

across the entire scanned volumes.
5 Conclusion

We investigated the differences in PI and SR, two recently

developed rapid UTE-MRI-based bone assessment indices, between

OPo, OPe, and Normal subjects. These rapid UTE-MRI-based

techniques for bone assessment can be considered in vivo-

translatable techniques due to their simplicity, time efficiency, and,

importantly, their non-invasive and ionizing-radiation-free nature. PI

and SR were significantly higher while bone was significantly thinner

in the OPo group compared with the Normal and OPe groups. DEXA

T-scores in subjects were significantly correlated with PI, SR, and

bone thickness. This study highlighted PI and SR as potential rapid

UTE-MRI techniques to assess and monitor the quality of cortical

bone in patients affected by OPo.
Frontiers in Endocrinology 06
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Scatterplots and linear trendlines of DEXA T-score on PI, SR, and bone thickness. R2 values were calculated from Spearman’s correlation coefficients.
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