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Abstract: This article explores the fitting of Autoregressive (AR) and Threshold AR (TAR) models with
a non-Gaussian error structure. This is motivated by the problem of finding a possible probabilistic
model for the realized volatility. A Gamma random error is proposed to cater for the non-negativity of
the realized volatility. With many good properties, such as consistency even for non-Gaussian errors,
the maximum likelihood estimate is applied. Furthermore, a non-gradient numerical Nelder–Mead
method for optimization and a penalty method, introduced for the non-negative constraint imposed
by the Gamma distribution, are used. In the simulation experiments, the proposed fitting method
found the true model with a rather insignificant bias and mean square error (MSE), given the true AR
or TAR model. The AR and TAR models with Gamma random error are then tested on empirical
realized volatility data of 30 stocks, where one third of the cases are fitted quite well, suggesting
that the model may have potential as a supplement for current Gaussian random error models with
proper adaptation.

Keywords: Autoregressive Model; non-Gaussian error; realized volatility; Threshold Autoregressive
Model

1. Introduction

As the financial market and investment instruments grow more sophisticated, the need for the
proper risk management of financial activities and the modeling of financial volatility has become more
crucial. As there is no unique and unambiguous definition for volatility, observable quantities (such
as daily high-lows or intra-day price changes) are used to approximate the quantity, thus dividing
volatility modeling techniques into two sub-groups: Parametric and non-parametric (Anderson et al.
2002; Zheng et al. 2014). The first group are the traditional parametric latent volatility models, such
as the Generalized Autoregressive Conditional Heteroscedastic (GARCH) model or the Stochastic
Variance (SV) model. However, these parametric models have become increasingly restrictive in use,
due to growing complexity. As mentioned in McAleer and Medeiros (2008), as the traditional standard
latent volatility models cannot adequately describe the slowly decreasing auto-correlations of squared
returns and as the usage of Gaussian standardized error has been criticized by many, the Realized
Volatility (RV) model, as an alternative non-parametric method, has received increasing attention. In
its simplest form, the RV model can be simply defined as

RVt =
nt

∑
i=0

r2
t,i, (1)
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where RVt denotes the realized volatility at day t, rt,i denotes the ith intra-period return at day t, and nt

is the number of high frequency data observed. It has been shown that the RV model more accurately
measures the ’true volatility’ than daily squared returns (Anderson et al. 1999; Kambouroudis et
al. 2016) and it is among the best for modeling the volatilities of the U.S. and E.U. stock indices
(Kambouroudis et al. 2016). It is also a good measure for market risk, due to its ability to show
clustering and fat-tail behavior for price fluctuations (Zheng et al. 2014).

A lot of work has been done towards constructing the realized volatility; see
McAleer and Medeiros (2008) for a review. The focus of this article is to consider possible probabilistic
models, given RVt; particularly if it is possible to model it with a non-Gaussian random error structure. As
models based on the Wishart distribution have been proposed for multi-variate realized volatility (Golosnoy
et al. 2012) and multi-variate stochastic volatility (Gouriéroux et al. 2009), and as the Wishart distribution
is the multi-variate analog of the chi-square distribution (which is a member of the Gamma distribution
family), a Gamma random error structure in the univariate case has become of interest. Thus, traditional
Autoregressive (AR) and Threshold-type non-linear AR (TAR) models with Gamma random error are
explored. This article can be regarded as an extension of Li and McLeod (1988).

2. Materials and Methods

This section aims to provide the specification for the proposed model and the fitting methodology.
It will also briefly touch on the materials and methods for conducting the empirical data analysis.

2.1. Model Specification

Time-series models with non-Gaussian error were previously considered, in some detail, by Li
and McLeod (1988), and earlier in Lawrance and Lewis (1980) and Ledolter (1979). In this article,
specifically, the AR and TAR models are further explored. The AR(p) model is defined as follows:

RVt =
p

∑
i=1

ϕi ∗ RVt−i + εt , (2)

where εt is the random error, assumed to follow a Gamma distribution; thus, εt ∼ Γ(α, β), where the
density function is defined as

f (x) =
1

Γ(α) ∗ βα
∗ xα−1 ∗ e−

x
β . (3)

It should be noted that it is assumed that there is no drift term in the AR model; yet, the drift
term could be easily incorporated into the model. The TAR(p) model, similar to that introduced in
Tong (1978) but with a modification in the random error term, is defined as follows:

RVt =
p

∑
i=1

ϕ1,i ∗ RVt−i + ε1,t i f RVt−d ≤ T ,

RVt =
p

∑
i=1

ϕ2,i ∗ RVt−i + ε2,t i f RVt−d > T ,

(4)

where d ≥ 1 is the lag of the model and T is the threshold, such that the model is divided into two
regimes, according to the observations at d time periods earlier. The pivot element RVt−d determines
which regime RVt falls into, with RVt falling into the first regime if RVt−d is less than or equal to the
threshold and into the second regime, otherwise. Each regime follows an AR(p) model, as defined
above, with different AR and Gamma parameters.

2.2. Model Estimation

The fitting of the AR(p) model is introduced in this part, followed by the extension of the procedure
to the fitting of the TAR(p) model. Both procedures are fitted with the maximum likelihood procedure,
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as it has been shown that the maximum likelihood estimators (MLE) are consistent for Gamma random
error (Li and McLeod 1988).

The MLE for AR(p) model are derived by l(α̂, β̂, ϕ̂) = argmin(−l), where l denotes the
log-likelihood function, in the form of

l(α, β, ϕ) = −n ∗ ln(Γ(α))− n ∗ α ∗ ln(β) + (α − 1) ∗
n

∑
t=1

ln(εt)−
∑n

t=1 εt

β
, (5)

where

εt = RVt −
p

∑
i=1

ϕi ∗ RVt−i (6)

is the random error.
To further reduce the dimension of estimation, a profile likelihood method is used. The Gamma

parameters α and β are replaced by the MLE of α and β, using the result of Wilk et al. (1962) and the
approximation dln(γ(α))

dα ≈ ln(α − 1
2 ). Thus, the final estimates of α and β are as follows:

α̂ =
A

2 ∗ (A − G)
and β̂ =

A
α̂

, (7)

where A stands for the arithmetic mean of the random error and G is the geometric mean. Thus,
the estimation of the model is achieved by estimating ϕ̂ = argmin(−l̂), where

l̂(ϕ) = −n ∗ ln(Γ(α̂))− n ∗ α̂ ∗ ln(β̂) + (α̂ − 1) ∗
n

∑
t=1

ln(εt)−
∑n

t=1 εt

β̂
, (8)

where α̂ and β̂ are estimated by Equation (7) and, by Equation (6), thus depend on ϕ .
The Nelder–Mead method, which is a non-gradient optimization method, is proposed to optimize

the negative log-likelihood function. Although such a procedure is heuristic and may converge to
non-stationary points, its performance is much more stable than traditional gradient methods, such
as the Hessian matrix method, which may not be easily calculated (even numerically) given the
dependency of the log-likelihood function and as ϕ is quite complicated.

Additionally, before simply applying the method and carrying out the optimization, it should be
noticed that, as the random error εt is assumed to be Gamma, it is required to be greater than zero,
which is also evident from the term ln(εt) in the expression of the log-likelihood function. To reflect
this non-negativity constraint, a penalty method is applied and the log-likelihood function becomes:

l̂ = (−n ∗ ln(Γ(α̂))− n ∗ α̂ ∗ ln(β̂) + (α̂ − 1) ∗
n

∑
t=1

ln(εt)−
∑n

t=1 εt

β̂
) ∗ Iall εt≥0 − M ∗ Isome εt<0 , (9)

where M is some large-enough number.
As the Nelder–Mead method is a heuristic search method, the choice of initial point may greatly

affect the result and, thus, the estimation process takes various initial points and returns the result
that yields a best fit, using the AIC or BIC . Furthermore, a candidate set of AR order p is given and
the procedure searches for the best AR order within the set, again by AIC and BIC. Specifically, in the
scope of the simulation study in this report, the initial points for ϕ are set uniformly within [0,1] and
the initial points for T are set within [µ − n ∗ σ, µ + n ∗ σ], where µ the sample mean of the RV, σ is the
sample variance, and n is a pre-determined number to control the range, here set as 0.5. The step size
of ϕ is set to be 0.25 and that of T to be 0.05σ. For empirical data analysis, values of ϕ in the ranges
[0,0.5] and [0.5,1] are tested, with step size 0.125, and the results showed that the outcome from [0,0.5]
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almost always dominated that from [0.5,1] and, thus, the range [0,0.5] and step size 0.125 were used
for ϕ.

The fitting of the TAR(p) model is essentially the same, except that the random errors are classified
into two different regimes. Thus, the log-likelihood function is expressed as:

l̂ = (−n1 ∗ ln(Γ(α̂1))− n1 ∗ α̂1 ∗ ln(β̂1) + (α̂1 − 1) ∗
n1

∑
t=1

ln(ε1,t)−
∑n1

t=1 ε1,t

β̂1

−n2 ∗ ln(Γ(α̂2))− n2 ∗ α̂2 ∗ ln(β̂2) + (α̂2 − 1) ∗
n2

∑
t=1

ln(ε2,t)−
∑n2

t=1 ε2,t

β̂2
)

∗Iall ε1,t ,ε2,t≥0 − M ∗ Isome ε1,t ,ε2,t<0 ,

(10)

where ε1,t are the random errors corresponding to the observations in the first regime, n1 is the number
of observations in the first regime, and ε2,t and n2 the corresponding counterparts in the second regime,
respectively.

A final concern regarding the model estimation would be that, for the first few observations,
the AR model may not be properly initiated, as there are no earlier observations. Therefore, the sample
estimates are essentially estimated by a sample, with the first few observations serving only as the
independent variable, but not the dependent variable; that is,

RVt+n =
p

∑
i=1

ϕi ∗ RVt+n−i + εt+n , (11)

with n being the truncated size. Additionally, as the AIC and BIC are typically applied on the same
sample with the same sample size, to allow for the comparison between models of different AR order
and lag, a common truncation of size 10 is applied in the scope of this study, as the AR order and lag
investigated did not exceed this reasonably.

As with the process of fitting the AR(p) model, the fitting for TAR(p) searches for the best model of
AR order p and lag d, where p and d are given in the pre-determined candidate set and the threshold T.

2.3. Empirical Data Analysis Preparation

The data used in this paper were the consolidated realized volatility data from Shen et al. (2018),
which are the realized volatilities for 30 stocks traded on the New York Stock Exchange (NYSE).

Graphs of PACF and the corresponding naive 95% confidence bound, proposed by
Quenouille (1949), were first examined for the stock data, which showed that the PACF of the
stocks were mostly significant within a lag of 5 and demonstrated a somewhat cut-off property;
thus suggesting the fitting the AR model was potentially a good starting point. Non-linear threshold
type AR models were also considered as a supplement to the AR model.

After considering the practical reasonableness of the model and the computational power
available, an AR order up to 5 and lag order up to 3 were considered.

The final model for each stock was determined by both considering the AIC and BIC and the
associated Ljung–Box test for each criterion. If the model selected by the two criteria differed with
a similar goodness of fit, a simpler model was preferred. Otherwise, the model that gave a better
goodness of fit result was preferred.

The data set and R code used for the study are available upon request, from either author.

3. Results

This section aims to briefly describe how the proposed AR and Threshold AR (TAR) models were
fitted with a simulation study and some empirical data.
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3.1. Simulation Study

A simulation study was conducted, by running the model-fitting process on batches of randomly
generated AR or TAR models of observation length 500 and batch size 50 for all the results in this
section (i.e., 50 simulated observations of length 500 were considered in each simulation experiment).
The completion of each simulation took around half a day on a laptop. The following tables give the
results for the bias and mean square error in the simulation study. Tables 1 and 2 give the results for the
threshold models and Table 3 gives the result for AR models. The correct estimation of AR order and
lag meant that the estimation of both the AR order p and the lag d were in line with the true parameters.
The bias and MSE were calculated with the results in the simulations which gave the correct estimation
of AR order and lag. The parameter for the true TAR model was selected such that the TAR structure
was reasonably demonstrated (i.e., there were not too few observations in any regime).

Table 1. Simulation results for the threshold Autoregressive (TAR) (2) model with d = 2.

True Model α1 β1 α2 β2 ϕ1,1 ϕ1,2 ϕ2,1 ϕ2,2 T

5 2 5 2 0.5 0.3 0.3 0.2 30

AIC Proportion of correct estimation of Autoregressive (AR) order and Lag: 44/50
AIC Bias 0.032 0.023 0.341 −0.022 0.013 −0.007 0.003 −0.004 0.001
AIC MSE 1.245 0.083 2.759 0.123 0.002 0.003 0.002 0.002 0.001

BIC Proportion of correct estimation of AR order and Lag: 50/50
BIC Bias 0.015 0.022 0.384 −0.015 0.012 −0.006 0.004 −0.005 0.001
BIC MSE 1.198 0.08 3.887 0.143 0.002 0.003 0.002 0.002 0.001

Table 2. Simulation results for the TAR (1) model with d = 1.

True Model α1 β1 α2 β2 ϕ1,1 ϕ2,1 T

4 2 4 2 0.7 0.3 15

AIC Proportion of correct estimation of AR order and Lag: 36/50
AIC Bias 0.34 −0.074 0.068 −0.006 −0.008 0.007 0.019
AIC MSE 0.929 0.086 0.722 0.078 0.003 0.001 0.002

BIC Proportion of correct estimation of AR order and Lag: 50/50
BIC Bias 0.199 −0.035 0.016 0.024 −0.002 0.007 0.019
BIC MSE 0.825 0.079 0.711 0.082 0.003 0.001 0.002

Table 3. Simulation results for the AR (2) model.

True Model α β ϕ1 ϕ2

5 2 0.6 0.2

AIC Proportion of correct estimation of AR order and Lag: 7/50
AIC Bias 0.627275 −0.08103 0.020833 −0.02968
AIC MSE 2.004022 0.087312 0.001747 0.002992

BIC Proportion of correct estimation of AR order and Lag: 46/50
BIC Bias 0.137581 −0.02197 0.006732 −0.00646
BIC MSE 0.605966 0.037434 0.001058 0.001104

The estimates of the AR order and lag were generally good, except the AIC criterion for the AR
model, as the AIC tends to pick a more complicated model. In fact, the AIC estimated the AR order
correctly in 36 out of 50 cases; yet, in most of these cases, it preferred a threshold structure.

The simulation results show that the model could identify the correct AR order p and the lag d
with good accuracy in general, the estimate for the threshold T was very consistent; and the results
for the AR parameters ϕ were rather accurate when p and d were estimated correctly. It should be
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noted that the accuracy here is defined as the probability of identifying the correct AR model order
and correct threshold, given that the underlying model was indeed an AR/TAR model.

3.2. Empirical Data Analysis

The realized volatilities of 30 stocks traded on the New York Stock Exchange (NYSE) were tested
by the proposed models. Please kindly refer to Appendix A–C for the best model selected by the AIC,
BIC, and the final model.

From the results, the AR/TAR model seemed to be a good fit for around 33% of the cases, with
almost all of the final models having a threshold structure and a marginally good fit for another 10%
of the cases, where the Ljung–Box test was marginally significant. This demonstrates that, overall, the
proposed model has the potential to explain a little less than half of the empirical data, in this case,
and further investigation, through other data sets or improved fitting algorithms, is worthwhile.

4. Discussion

This section aims to provide a brief discussion as a supplement to the results found above. It is
divided into discussions regarding the simulation study and the empirical data, respectively.

4.1. Simulation Study

While, as mentioned before, the bias and MSE were acceptable overall, with consistent estimates
for the AR parameter and threshold, it can be noticed that the estimates for Gamma parameters were
more volatile. This is possibly due to the profile likelihood methodology adopted for estimation, which
increases the complexity in estimating the Gamma parameters.

Additionally, as the simulation study was constructed in such a way that the true model was
within the set of candidate models, the BIC would select the true model with probability tending to
one and, thus, outperformed the AIC. However, in practice, the true model may not reside within the
candidate set, and the AIC may give a better result, yet may also choose a more complicated model (as
mentioned above), while the BIC would prefer a simpler model. Therefore, in terms of forecasting
MSE, both criteria are considered, in practice, for model selection.

4.2. Empirical Data Analysis

A residual analysis was conducted by looking at the PACF plots for the models with significant
goodness of fit test results. It was observed that, in some cases, the PACF still demonstrated a rather
clear cut-off at a higher order, suggesting that the AR order of the model could be further increased.
Thus, it is suggested that, in this case, it is possible that the model was not a good enough fit, as it
did not select a high enough order. This was possible, as the model fitting limited the highest AR
order to be less than five, for practical concerns, and as the optimization process was sensitive to the
selection of initial points and the initial points were evaluated in a sparser set at higher AR orders,
thus resulting in a less-than-ideal fit.

Alternative models with non-Gaussian error provide another perspective of improvement.
A Buffered Threshold Autoregressive (BAR) model, as described in Li et al. (2015), has been examined,
using a fitting methodology similar to that of the TAR model. However, as the goodness of fit did
not improve much, and as it is natural to choose a simpler model given similar goodness of fit, the
results of BAR model have not yet been reported. However, other models (such as the Autoregressive
Moving-Average model (ARMA)) could still be considered.

5. Conclusions

In this article, the model fitting of a non-Gaussian model on the realized volatility is explored.
As the definition of realized volatility requires it to be positive, previous works established a Wishart
model (a multi-variate analog of the chi-square distribution) that belongs to the Gamma family;
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considering this selection, a univariate Gamma random error is proposed and the AR and TAR models
are explored. MLE estimation, based on the AIC and BIC, and with some adjustment, is proposed.
A profile likelihood method, which replaces the Gamma parameters with their MLE counterparts, is
used to reduce the dimension of the estimation and a non-gradient numerical optimization method
is employed, as the calculation of gradient may not be feasible. A penalty method is introduced
into the likelihood function, to enforce the non-negative constraint imposed by Gamma random
error. The proposed process manages to find the true model with a rather insignificant bias and MSE,
when the true model is AR or TAR. Finally, the model is tested on the empirical realized volatility
data of 30 stocks and managed to fit one third of the cases quite well, suggesting that the model
may have the potential to be further generalized, in order to act as a good supplement for current
Gaussian random error models. The lack of fit may be improved by considering higher AR orders
or a denser initial point selection for the Nelder–Mead method, which requires more computational
time. Other possible directions of improvement include using a better method (instead of AIC or BIC)
to reduce the ambiguity in choosing the model and possibly using other AR structures, such as the
Heterogeneous Auto-Regressive (HAR) model. Other time-series models with non-Gaussian error
may also be considered and the model fitting methodology proposed in this article could possibly be
extended to these models without difficulty.
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The following abbreviations are used in this manuscript:

AR Autoregressive
AIC Akaike Information Criterion
BAR Buffered Threshold Autoregressive
BIC Bayesian Information Criterion
EU European Union
GARCH Generalized Autoregressive Conditional Heteroscedastic
MSE Mean Square Error
NYSE New York Stock Exchange
PACF Partial Auto-Correlation Function
RV Realized Variance
SV Stochastic Variance
TAR Threshold Autoregressive
US United States
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Appendix A

Table A1. Best Model Selected by the AIC.

StockNum p d AIC Ljung–Box Test p-Value

1 2 2 275.7274 Significant 0.0073
2 2 2 2.2509 Insignificant 0.2034
3 5 3 3.8177 Insignificant 0.0220
4 2 2 246.9670 Insignificant 0.3230
5 5 1 143.1260 Significant 0.0155
6 4 2 −28.6272 Significant 0.0218
7 4 1 −9.54336 Insignificant 0.0716
8 5 1 −21.6088 Insignificant 0.1159
9 5 1 5.7717 Significant 0.0000
10 2 1 144.2935 Insignificant 0.6415
11 2 2 −17.8815 Somewhat Significant 0.0093
12 5 2 4.7316 Significant 0.0012
13 4 1 −81.0311 Somewhat Significant 0.0064
14 2 1 −241.8272 Insignificant 0.4850
15 2 2 157.0407 Significant 0.0000
16 3 1 −180.8073 Significant 0.0000
17 2 1 −127.2748 Somewhat Significant 0.0194
18 1 1 −90.0935 Significant 0.0000
19 5 1 −117.8152 Significant 0.0000
20 3 1 30.9568 Significant 0.0136
21 4 1 −60.7726 Significant 0.0005
22 1 3 −192.5901 Significant 0.0000
23 2 1 −99.0953 Significant 0.0000
24 3 2 −92.6265 Significant 0.0000
25 2 2 68.0884 Insignificant 0.8520
26 1 1 16.6098 Significant 0.0005
27 1 1 44.5472 Insignificant 0.2261
28 2 2 −121.6981 Significant 0.0000
29 2 1 −120.5036 Significant 0.0000
30 1 1 −93.9557 Significant 0.0002
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Appendix B

Table A2. Best Model Selected by the BIC.

StockNum p d BIC Ljung-Box Test p-Value

1 2 2 582.7805 Significant 0.0073
2 2 2 35.8275 Insignificant 0.2304
3 1 1 36.9940 Significant 0.0000
4 2 2 525.2598 Insignificant 0.3203
5 5 0 318.3741 Significant 0.0000
6 1 1 −28.8146 Significant 0.0000
7 1 3 17.7029 Insignificant 0.8858
8 2 0 −11.8445 Significant 0.0060
9 1 1 38.3802 Significant 0.0000
10 2 1 319.9127 Insignificant 0.6415
11 2 2 −4.4373 Somewhat Significant 0.0093
12 1 1 43.3797 Significant 0.0000
13 1 1 −134.143 Significant 0.0000
14 2 1 −452.3287 Insignificant 0.4850
15 2 2 345.4071 Significant 0.0000
16 1 1 −331.1404 Significant 0.0000
17 2 1 −223.2238 Somewhat Significant 0.0194
18 1 1 −155.8226 Significant 0.0000
19 1 3 −192.3672 Significant 0.0000
20 1 1 93.1204 Significant 0.0000
21 1 1 −86.9778 Significant 0.0183
22 1 3 −360.8156 Significant 0.0000
23 2 1 −166.8648 Significant 0.0000
24 1 2 −159.1344 Significant 0.0000
25 2 2 167.5026 Insignificant 0.8520
26 1 1 57.5842 Significant 0.0002
27 1 1 113.4588 Insignificant 0.2261
28 2 2 −212.0704 Significant 0.0000
29 2 1 −209.6814 Significant 0.0000
30 1 1 −163.5470 Significant 0.0002
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Appendix C

Table A3. Best Model Selected by considering both AIC and BIC and goodness of fit.

StockNum p d Info Cri * Ljung-Box Test p-Value

1 2 2 BIC Significant 0.0073
2 2 2 AIC Insignificant 0.2304
3 5 3 AIC Insignificant 0.0220
4 2 2 AIC Insignificant 0.3203
5 5 0 BIC Significant 0.0000
6 1 1 BIC Significant 0.0000
7 1 3 BIC Insignificant 0.8858
8 5 1 AIC Insignificant 0.1159
9 1 1 BIC Significant 0.0000
10 2 1 AIC/BIC Insignificant 0.6415
11 2 2 AIC/BIC Somewhat Significant 0.0093
12 1 1 BIC Significant 0.0000
13 4 1 AIC Somewhat Significant 0.0064
14 2 1 AIC/BIC Insignificant 0.4850
15 2 2 AIC/BIC Significant 0.0000
16 1 1 BIC Significant 0.0000
17 2 1 AIC/BIC Somewhat Significant 0.0194
18 1 1 AIC/BIC Significant 0.0000
19 1 3 BIC Significant 0.0000
20 1 1 BIC Significant 0.0000
21 1 1 BIC Significant 0.0000
22 1 3 AIC/BIC Significant 0.0000
23 2 1 AIC/BIC Significant 0.0000
24 1 2 BIC Significant 0.0000
25 2 2 AIC/BIC Insignificant 0.8520
26 1 1 AIC/BIC Significant 0.0005
27 1 1 AIC/BIC Insignificant 0.2261
28 2 2 AIC/BIC Significant 0.0000
29 2 1 AIC/BIC Significant 0.0000
30 1 1 AIC/BIC Significant 0.0002

* denotes the information criteria by which the fitted model is selected. The goodness of fit is regarded as
somewhat significant if, out of the different lags considered in the Ljung–Box Test, which is five in this case,
around half (two or three) are insignificant, while the others are only marginally significant.
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