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Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder
caused by a premutation CGG repeat expansion (55–200 repeats) within the 5′ UTR of
the fragile X gene (FMR1). FXTAS is characterized by intension tremor, cerebellar ataxia,
progressive neurodegeneration, parkinsonism and cognitive decline. The development
of transgenic mouse and Drosophila melanogaster models carrying an expanded CGG
repeat has yielded valuable insight into the pathophysiology of FXTAS. To date, we
know of two main molecular mechanisms of this disorder: (1) a toxic gain of function
of the expanded CGG-repeat FMR1 mRNA, which results in the binding/sequestration
of the CGG-binding proteins; and (2) CGG repeat-associated non-AUG-initiated (RAN)
translation, which generates a polyglycine peptide toxic to cells. Besides these
CGG-mediated mechanisms, recent studies have shed light on additional mechanisms
of pathogenesis, such as the antisense transcript ASFMR1, mitochondrial dysfunction,
DNA damage from R-loop formation and 5-hydroxymethylcytosine (5hmC)-mediated
epigenetic modulation. Here we summarize the recent progress towards understanding
the etiology of FXTAS and provide an overview of potential treatment strategies.
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INTRODUCTION

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused
by a CGG triplet repeat expansion within the 5′ UTR of FMR1. Normally, individuals possess
between 5 and 54 CGG repeats, and full mutation CGG repeats greater than 200 lead to
the neurodevelopmental disease fragile X syndrome (FXS), which results from the excessive
methylation of FMR1 and loss of FMRP protein (Kremer et al., 1991; Verkerk et al., 1991;
Hagerman and Hagerman, 2002; Colak et al., 2014). Individuals with 55–200 CGG repeats are
referred to as premutation carriers (Cronister et al., 2008).

Over a third of male expanded CGG repeat premutation carriers develop FXTAS later
in adulthood (Jacquemont et al., 2004), whereas female premutation carriers may develop
fragile X-associated primary ovarian insufficiency (FXPOI; Rodriguez-Revenga et al., 2009).
Random X-inactivation is believed to protect female carriers from developing FXTAS, leading to
relatively few female FXTAS patients (Hagerman et al., 2004; Zühlke et al., 2004; Coffey et al., 2008).
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Clinically, FXTAS presents with intention tremor, gait
ataxia, and other features including parkinsonism, cognitive
defects, brain atrophy and white matter abnormalities on
MRI (Jacquemont et al., 2003; Hagerman and Hagerman,
2015). Neuropathologically, FXTAS is distinguished by the
characteristic ubiquitin-positive intranuclear inclusions in the
brain and spinal cord as well as peripheral tissues (Greco et al.,
2002, 2006; Gokden et al., 2009; Hunsaker et al., 2011).

Animal models have played a critical role in revealing
the mechanisms of FXTAS pathogenesis. FXTAS mouse and
Drosophila melanogaster models effectively mimic the molecular
and cellular alterations and clinical symptoms of FXTAS.
Several knock-in and transgenic mouse models are available for
studying various aspects of FXTAS pathology (Bontekoe et al.,
2001; Peier and Nelson, 2002; Entezam et al., 2007; Hashem
et al., 2009). Aside from obviously elevated FMR1 mRNA
levels, reduced FMRP expression, and intranuclear inclusion
formation, mouse models of FXTAS also exhibit abnormal
dendritic spine morphology, impaired motor coordination,
and cognitive deficits, recapitulating many features of FXTAS
patients (Bontekoe et al., 2001; Willemsen et al., 2003; Entezam
et al., 2007; Hunsaker et al., 2009; Hukema et al., 2015). In
flies, the FXTAS transgenicDrosophilamodel expressing 90 CGG
repeats displays locomotor deficits and retinal degeneration (Jin
et al., 2003). Animal models allow researchers to investigate
pathological mechanisms of FXTAS, identify potential modifiers,
and pursue treatment development.

The two widely accepted mechanisms for the pathogenesis
of FXTAS are RNA toxicity and repeat associated non-AUG
translation (RAN) protein toxicity (via RAN). Several lines of
evidence support the RNA toxicity mechanism. First, older
adults with the full mutation ( >200 repeats), who do not
express FMR1 mRNA and lack FMRP, do not develop FXTAS
(Feng et al., 1995). Second, in FXTAS, there is significant
upregulation (2–8 fold) of the expanded CGG-repeat FMR1
mRNA, resulting in formation of nuclear RNA aggregates.
These aggregates sequester rCGG-binding proteins, preventing
them from performing their normal biological functions, such
as mRNA transcription and splicing, as well as dendritic
mRNA transport (Tassone et al., 2000; Kenneson et al., 2001;
Pretto et al., 2014). The level of FMR1 protein in cells from
premutation carriers, however, remains relatively unaltered
(Tassone et al., 2000; Kenneson et al., 2001). Third, FMR1
RNA is present in the intranuclear inclusions of postmortem
FXTAS brain tissue (Tassone et al., 2004), and animal and cell
models expressing rCGG repeats develop similar inclusions (Jin
et al., 2003; Willemsen et al., 2003; Arocena et al., 2005). But
RNA toxicity alone is not sufficient to account for the large
ubiquitin-positive intranuclear inclusions in the brains of FXTAS
patients, a neuropathological hallmark of the disease. In fact, in
addition to the RNA-binding proteins (RBPs), these inclusions
contain proteins that do not bind to CGG-repeat mRNA
and are reminiscent of the neuronal intranuclear inclusions
found in protein-mediated neurodegenerative disorders and
polyglutamine diseases (Greco et al., 2006; Iwahashi et al.,
2006; Williams and Paulson, 2008). In light of this, a protein-
driven mechanism of FXTAS pathogenesis was uncovered, in

which the premutation CGG repeat expansion was found to
induce RAN translation within the 5′ UTR of FMR1 mRNA
via an AUG-independent mechanism (Todd et al., 2013). The
resulting polyglycine-containing protein, FMRpolyG, is present
in the brains of FXTAS patients and was found to be toxic to
human cell lines as well as Drosophila neurons, leading to retinal
degeneration in FXTAS Drosophila (Todd et al., 2013).

To date, CGG repeat-mediated RNA toxicity and RAN
protein toxicity stand as the two most important mechanisms
in FXTAS pathophysiology, leading to the sequestration of
specific proteins and the generation of the toxic protein product
FMRpolyG, respectively. Besides these two main mechanisms,
others have been uncovered, such as antisense FMR1 RNA
(Ladd et al., 2007), epigenetic modulation, mitochondrial
dysfunctions (Hukema et al., 2014) and R-loop-induced DNA
damage response (Loomis et al., 2014). In this review article,
we summarize the current understanding of the underlying
mechanisms of FXTAS and discuss potential therapeutic
strategies.

RNA-MEDIATED FXTAS PATHOGENESIS
VIA RBP SEQUESTRATION

A defining molecular signature of FXTAS is the elevation of
premutation FMR1 mRNA levels with no detectable or only a
modest reduction in FMRP protein levels (Tassone et al., 2000;
Kenneson et al., 2001; Pretto et al., 2014). Alongwith the presence
of FMR1 mRNA in ubiquitin-positive intranuclear inclusions of
FXTAS patient brains, these observations point to a toxic RNA
gain-of-function mechanism for FXTAS pathogenesis, which
could lead to sequestration of various rCGG repeat-binding
proteins (Tassone et al., 2004).

Using mass spectrometric analysis combined with
immunohistochemical analysis, more than 20 proteins have
been identified in inclusions in the frontal cortex of FXTAS
patients, including RBPs hnRNP A2/B1 and MBNL1, and
some neurofilament proteins, such as lamin A/C and α-
internexin, which are involved in various neurological disorders
(Iwahashi et al., 2006). Pur α and hnRNP A2/B1 are found
to bind directly to rCGG repeats in inclusions. In fact, in
a Drosophila model expressing premutation CGG repeat
expansions, overexpression of Pur α and hnRNP A2/B1 leads to
suppression of neurodegeneration phenotypes (Jin et al., 2007;
Sofola et al., 2007). Sequestration of other proteins, such as
CUGBP1, Sam68, Rm62 and DGCR8, leads to altered mRNA
splicing and transport, as well as dysregulated microRNAs
(Sofola et al., 2007; Sellier et al., 2010, 2013; Qurashi et al.,
2011; Tan et al., 2012a). These findings support a toxic RNA
gain-of-function mechanism, which is mediated by the expanded
CGG repeats in FMR1.

Heterogeneous nuclear ribonucleoprotein (hnRNP A2/B1)
is an RBP noted for its presence in intranuclear inclusions
of FXTAS patients. hnRNP A2/B1 has been shown to bind
directly to rCGG repeats and, interestingly, overexpression of
hnRNP A2/B1 and its two homologs in Drosophila results in
suppression of the neurodegenerative eye phenotype caused by
the rCGG repeat (Sofola et al., 2007). hnRNP A2/B1 is also
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known to mediate the indirect interaction between CGG repeats
and CUGBP1, a RBP noted for its binding of CUG repeats and
involvement in myotonic dystrophy type 1 (DM1; Timchenko
et al., 1996, 2001, 2004). Overexpression of CUGBP1 also
suppresses the FXTAS phenotype in Drosophila (Sofola et al.,
2007). Moreover, Muslimov et al. (2011) found that premutation
CGG-repeat RNA binds competitively to hnRNP A2/B1 and
leads to the alteration of neuronal RNA dendritic transport,
which can be partially reversed by overexpression of hnRNP A2.
Furthermore, our group has shown that in a Drosophila model,
rCGG repeats trigger the activation of certain retrotransposons,
such as gypsy. We also demonstrated that hnRNP A2/B1 may
regulate the activation of gypsy by recruiting heterochromatin
protein 1 (HP1) for transposon silencing. As a result, in
FXTAS, the expanded rCGG repeats may sequester hnRNP
A2/B1 and diminish the recruitment of HP1 to genomic
regions containing retrotransposons, further contributing to
retrotransposon activation (Tan et al., 2012b). Significantly, we
also found that hnRNP A2/B1 regulates expression of miR-
277, a miRNA that, when overexpressed, results in enhancement
of rCGG repeat-mediated neurodegeneration (Tan et al.,
2012a).

Also present in intranuclear inclusions of FXTAS patients,
Pur α is an RNA- and specific single-stranded DNA-binding
protein that plays an essential role in DNA replication, neuronal
mRNA transport, and translation. Pur α knockout mice display
developmental delay along with severe tremor and spontaneous
seizures at 2 weeks after birth, and the expression and
distribution of axonal and dendritic proteins are also altered
(Khalili et al., 2003; Hokkanen et al., 2012). Similar to hnRNP
A2/B1, Pur α has been implicated in FXTAS pathogenesis
due to the fact that overexpression of Pur α in a Drosophila
model results in dose-dependent suppression of rCGG-mediated
neurodegeneration.

Probing the Pur α interactome has also led to the
identification of Rm62 as a possible mediator of FXTAS
pathogenesis. Rm62 was identified via a proteomic approach
as a potential regulator of rCGG-mediated neurodegeneration
(Qurashi et al., 2011). Rm62 is the Drosophila ortholog of
p68 RNA helicase, a transcriptional regulator that is also involved
in pre-mRNA splicing, RNA interference and nucleocytoplasmic
shuttling (Bond et al., 2001; Ishizuka et al., 2002; Liu, 2002;
Wilson et al., 2004; Lin et al., 2005). In FXTAS Drosophila,
rCGG repeats diminish posttranscriptional expression of Rm62,
and overexpression of Rm62 can suppress the neuronal toxicity
caused by the premutation rCGG repeats (Qurashi et al.,
2011). The decrease in Rm62 expression in turn leads to the
nuclear accumulation of mRNAs involved in stress and immune
responses, as well as the accumulation of Hsp70 mRNA, a target
of Rm62 (Qurashi et al., 2011), which has actually been found in
inclusions from both human FXTAS brains and animal models
of FXTAS (Jin et al., 2003).

The alternative splicing regulator Src-Associated substrate
during mitosis of 68-kDa (Sam68) is another RBP shown
to be sequestered by rCGG repeats. One study revealed that
Sam68 colocalizes with the giant dynamic aggregates that
form from mRNAs containing expanded CGG repeats in both

premutation CGG-expressing cells and FXTAS patient brain
sections (Sellier et al., 2010). The sequestration of Sam68 results
in the loss of its ability to perform splicing regulation
and causes pre-mRNA alternative splicing misregulation in
CGG-transfected cells and FXTAS patients (Sellier et al., 2010).
Sam68 localization is regulated by tyrosine phosphorylation,
and the phosphatase inhibitor tautomycin was shown to
prevent aggregation of both Sam68 and CGG RNA (Sellier
et al., 2010). Taken together, the sequestration of Sam68 must
play a role in FXTAS pathogenesis via a splicing alteration
mechanism.

TAR DNA-binding protein (TDP-43) is an amyotrophic
lateral sclerosis (ALS)-associated RBP, a marker of
neurodegeneration commonly found in inclusions in ALS
(Baloh, 2012). In the cerebellar Purkinje neurons of mice
expressing 90 CGG repeats, the mRNA for Tardbp, which
encodes TDP-43, showed a reduced association with ribosomes
(Galloway et al., 2014). In the same study, the authors went on to
find that in the Drosophila model of FXTAS, wild-type TDP-43
expression leads to suppression of neurodegeneration, while
knockdown of the endogenous TDP-43 fly ortholog, TBPH,
enhanced the eye phenotype. Another study also independently
reported that TDP-43 suppresses CGG repeat-induced toxicity in
aDrosophilamodel of FXTAS (He et al., 2014). Interestingly, this
suppression was shown to depend on hnRNP A2/B1, such that
deletion of the C-terminal domain of TDP-43 and thereby the
prevention of interactions with hnRNP A2/B1 led to abrogation
of the TDP-43-dependent rescue of CGG repeat toxicity (He
et al., 2014).

The DiGeorge syndrome critical region 8 (DGCR8) is yet
another protein reported to bind to premutation rCGG repeats
and cause partial sequestration of DGCR8 and its partner,
DROSHA, within the premutation RNA aggregates (Sellier et al.,
2013). DGCR8 and DROSHA play a critical role in microRNA
biogenesis. In the first step of microRNA biogenesis, RNA
polymerase II transcribes miRNAs as primary miRNA (pri-
miRNA) transcripts. DROSHA, a type III RNase, is anchored
to the pri-miRNA by DGCR8, and processes pri-miRNA into
precursor miRNA (pre-miRNA; Lee et al., 2003; Denli et al.,
2004; Gregory et al., 2004; Han et al., 2004; Landthaler et al.,
2004). Sellier et al. (2013) found that the sequestration of
DGCR8 and DROSHA precludes them from their normal
functions, leading to reduced processing of pri-miRNAs in
cells expressing expanded CGG repeats and also in the brains
of FXTAS patients. Consequently, levels of mature miRNAs
are reduced (Sellier et al., 2013). The authors also found
evidence that sequestration of SAM68 in the CGG aggregates
is mediated through DROSHA or DGCR8, but restoration of
SAM68 function is not sufficient to restore all normal neuronal
cell functions. In contrast, expression of DGCR8 alone in
cultured premutation mouse cortical neurons could rescue their
dendritic morphological abnormalities and diminished neuronal
viability. This work suggested a model for the mechanism of
FXTAS pathogenesis in which sequestration of the DROSHA-
DGCR8 microprocessor by expanded rCGG repeats may lead
to reduced mature miRNA expression, resulting in neuronal cell
dysfunction and degeneration.
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In summary, we have presented a broad overview of the RBPs
that are sequestered via the RNA toxicity mechanism, as well
as our current limited understanding of the downstream effects
of sequestration (Figure 1). The challenge remains to bring the
pieces of the puzzle together to figure out how the sequestration
of the RBPs interplay to cause FXTAS pathology (Hagerman,
2012).

RAN TRANSLATION IN FXTAS
PATHOGENESIS

In FXTAS pathogenesis, RAN protein toxicity plays a synergistic
role with the RNA toxicity mechanism and offers a potential
explanation for the presence of non-RBPs in the distinctive
ubiquitin-positive intranuclear inclusions found in the brains of
FXTAS patients. First discovered in CAG expansion constructs,
RAN translation initiates in an AUG-independent manner
and is known to occur in several repeat expansion disorders,

among them Spinocerebellar Ataxia type 8 (SCA8), DM1
Frontotemporal Dementia (FTD), and ALS, as well as FXTAS
(Zu et al., 2011, 2013; Ash et al., 2013; Mori et al., 2013). RAN
translation initiation requires an m7G cap, the EIF4A helicase
and 40S ribosomal scanning and is strongly influenced by repeat
length (Kearse et al., 2016). In CGG-induced RAN translation
of FMR1 mRNA, initiation of translation is similar to canonical
translation but only 30%–40% as efficient. The expanded
premutation CGG repeat expansion induces AUG-independent
RAN translation of FMRpolyG, which accumulates in the
ubiquitin-positive intranuclear inclusions in transfected cells,
FXTAS Drosophila, mouse models and patient brains (Todd
et al., 2013). Out of three possible reading frames in the 5′

UTR of FMR1, RAN translation occurs in both the glycine
(+1 frame) and alanine (+2 frame) reading frames, producing
the FMRpolyglycine and FMRpolyalanine proteins, respectively,
with no polyarginine product (+0 frame) detected as yet
(Todd et al., 2013). However, only the polyglycine-containing

FIGURE 1 | Illustration of the main mechanisms of Fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. During transcription of the FMR1
locus, the formation of RNA:DNA hybrid R-loops through GC interaction of the expanded CGG repeats (depicted by yellow bar) can activate the DNA damage
response and result in DNA breaks and the accumulation of γH2AX. The two main mechanisms linked to FXTAS pathology are post-transcriptional. In the RNA
toxicity mechanism, RNA-binding proteins (RBPs) are sequestered by the expanded CGG repeats, such as h2RNP A2/B1, Pur α, Sam68, TDP43 and DGCR8; these
are illustrated together for figurative purposes but do not necessarily form a complex simultaneously. In the RAN protein toxicity mechanism, the expanded CGG
repeat induces AUG-independent RAN translation of FMRpolyG, which is found to form inclusions in patient brains as well as animal models of FXTAS. Other
mechanisms not shown in this figure include the antisense transcript ASFMR1, mitochondrial dysfunction and 5hmC-mediated epigenetic modulation in FXTAS.
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protein, FMRpolyG, is detected in both cultured cells and
animal models of FXTAS, and most importantly, in inclusions
in FXTAS patient brains (Todd et al., 2013). Moreover, the
expression of FMRpolyG is known to be toxic to Drosophila
neurons, leading to retinal degeneration that can be enhanced
by increasing FMRpolyG product and suppressed by eliminating
RAN translation (Todd et al., 2013).

To determine the mechanism by which FMRpolyG
production may contribute to FXTAS pathogenesis, Oh
et al. (2015) examined ubiquitin-proteasome system (UPS)
impairment in Drosophila and cell models of CGG repeat-
induced toxicity. UPS impairment in FXTAS Drosophila led
to enhanced neurodegeneration, whereas overexpression of
HSP70 suppressed this toxicity. Furthermore, in cell models,
the expression of FMRpolyG increased induction of UPS
impairment, whereas prevention of RAN translation resulted in
diminished UPS impairment (Oh et al., 2015). These findings
indicate that RAN translation-induced FMRpolyG production
may drive FXTAS pathogenesis by perturbing the protein quality
control pathway through UPS failure (Oh et al., 2015).

Recently, researchers found that RAN translation also occurs
from antisense FMR1 transcript containing CCG repeats from
three different potential reading frames generating polyproline,
polyarginine and polyalanine proteins. More importantly, these
novel proteins are found to colocalize with ubiquitinated
intranuclear inclusions in FXTAS patient neurons. These new
findings provide additional support for RAN protein toxicity in
FXTAS pathophysiology (Krans et al., 2016).

OTHER MECHANISMS OF FXTAS
PATHOGENESIS

R-Loop-Mediated DNA Damage
In addition to post-transcriptional changes, there is evidence
to suggest that the increase in FXTAS FMR1 RNA transcript
results in molecular dysfunction at the transcriptional level.
Loomis et al. (2014) have found that, upon transcription of the
endogenous FMR1 locus, the nascent G-rich RNA transcribed
from the GC-rich region of FMR1 5′ UTR binds to the C-rich
DNA template and forms a stable RNA: DNA hybrid, or
R-loops (Reddy et al., 2011; Loomis et al., 2014). Notably,
R-loop formation can be increased by enhanced transcription
(Loomis et al., 2014). Excessive R-loop formation activates the
DNA damage response and leads to DNA breaks, resulting in
accumulation of γH2AX, a histone variant associated with DNA
damage repair that is also present in the inclusions of FXTAS
patient neurons (Iwahashi et al., 2006; Hoem et al., 2011). These
results clearly show that FXTAS pathology from the RNA toxicity
mechanism may also occur co-transcriptionally via increased
R-loop formation upon increased FMR1 transcription, leading to
subsequent DNA damage.

Antisense Transcript: ASFMR1
A lasting conundrum in the pathogenesis of FXTAS is that
only a fraction of male premutation carriers develop FXTAS
(Jacquemont et al., 2004), and there is considerable variability
in the phenotype of FXTAS patients. Such observations raise the

likelihood that FMR1 is not the sole gene responsible for FXTAS
pathogenesis. In the search for alternate gene involvement, Ladd
et al. (2007) identified an antisense transcript spanning the
FMR1 CGG repeat region in the antisense direction, which they
dubbed the antisense transcript at the FMR1 locus, ASFMR1.
Congruous to FMR1, ASFMR1 is upregulated in premutation
carriers but silenced in the full-mutation range. Following
transcription, ASFMR1 is spliced, and then transported to the
cytoplasm. ASFMR1 transcription is driven by two alternative
promoters: the FMR1 bidirectional promoter and the promoter
in the second intron of FMR1. The latter is considered to
be the major promoter in cells with premutation alleles and
drives the transcription of the transcript, which spans the CGG
repeat of the FMR1 gene in the CCG orientation and exhibits
premutation-specific alternative splicing (Ladd et al., 2007).
These findings strongly suggest that ASFRM1 is also implicated
in the pathogenesis of FXTAS.

Mitochondrial Dysfunction
There is also evidence to indicate that FMR1 premutation-
associated disorders, such as FXTAS and FXPOI, involve
mitochondrial dysfunction. Using doxycycline (dox)-inducible
transgenic mouse models expressing 90 CGGs in the RNA,
Hukema et al. have found that dox-induced 90 CGG
RNA-expressing mice not only experience loss of weight,
death within 5 days, steatosis, and apoptosis in the liver, but
that they also show altered expression of GPX1 and cytochrome
C, markers of mitochondrial dysfunction (Hukema et al.,
2014). Mitochondrial dysfunction is also seen in FXTAS
human patients and mouse cultured cells. Along with decreased
oxidative phosphorylation capacity, there is a defect in the
import of mitochondrial proteins in premutation carriers
(Napoli et al., 2011). Hippocampal neuronal cultures from
premutation CGG knock-in mice exhibit mitochondrial
abnormalities in the number, metabolic function and mobility of
mitochondria (Kaplan et al., 2012). Mitochondrial abnormalities
are also seen in granulosa cells and oocytes in a FXPOI mouse
model, including reduced mitochondrial content, abnormal
mitochondrial structure, and decreased expression of the
mitochondrial genes Mfn2 and Opa1 (Conca Dioguardi et al.,
2016). Hence, these findings point to mitochondrial dysfunction
as another possible component of FXTAS pathology.

5-hydroxymethylcytosine (5hmC)-Mediated
Epigenetic Modulation
Though initially regarded as only an intermediate of active
DNA demethylation products (Pfaffeneder et al., 2011),
5-hydroxymethylcytosine (5hmC) has gained attention more
recently as an epigenetic modification with a significant
role in processes like neurodevelopment and differentiation
(Branco et al., 2011). 5hmC is converted from 5mC via
catalysis by Ten-eleven translocation 1 (TET1), a 2-oxoglutarate
(2OG)- and Fe (II)-dependent enzyme (Tahiliani et al., 2009).
Our group has examined the global levels of 5hmC in the
cerebella of rCGG mice compared to wild-type age-matched
littermate controls (Yao et al., 2014). Significantly, 5hmC was
reduced genome-wide in the cerebella of the rCGG mice,
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while several repetitive elements as well as cerebellum-specific
enhancers exhibited increases in 5hmC levels. The differential
5-hydroxymethylated regions (DhMRs) were highly correlated
with genes and transcription factors that play key roles in
neuronal development. Furthermore, Esanov et al. (2016) have
found that there is increased hydroxymethylation at the FMR1
promoter in the brains of FXS full-mutation patients compared
to premutation carriers and unaffected controls.While these data
support 5hmC-mediated epigenetic modulation as a player in
FXTAS pathogenesis, further studies, such as characterizing the
level of 5hmC at the FMR1 locus, are warranted to reveal more
about the role of the 5hmC mark in the pathogenic mechanism
of FXTAS (Al-Mahdawi et al., 2014).

THERAPEUTIC DEVELOPMENTS

As there are still no effective treatment options for FXTAS,
current therapeutic strategies are limited mainly to treatments
aimed at ameliorating specific symptoms of FXTAS patients.
Selective serotonin and norepinephrine reuptake inhibitors have
been effective for anxiety and depression (Hagerman and
Hagerman, 2015). Psychosis and tremor can be improved by
atypical antipsychotics, such as propranolol and primidone
(Zesiewicz et al., 2005; Muzar and Lozano, 2014). Although
the NMDA receptor antagonist memantine, an FDA-approved
compound for the treatment of Alzheimer’s disease, did not show
any significant improvement on tremors, balance problems,
or executive function deficits in FXTAS patients compared to
placebo (Seritan et al., 2014), verbal memory was improved
when assessed by the event-related potential (ERP) paradigm
in a subgroup of patients in a recent clinical trial (Yang J. C.
et al., 2016). At the same time, however, the end goal is not
mere symptomatic treatment, but rather effective treatments
that target the pathogenic mechanism(s) of disease. Here we
discuss some ongoing efforts to identify potential compounds
and therapeutic targets in FXTAS both in vitro and in vivo
(Figure 2).

MPEP and allopregnanolone, an mGluR antagonist and a
GABA agonist, respectively, are potential therapeutics that may
mitigate some of the RNA toxicity effects. Cortical astrocytes
from mice expressing premutation CGG repeats display
decreased expression of Glu transporters (GLT-1 and GLAST)
and Glu uptake, and enhanced spontaneous asynchronous Ca2+

oscillations (Cao et al., 2013). An mGluR5 antagonist, 2-methyl-
6-(phenylethynyl)pyridine hydrochloride (MPEP), suppresses
the intracellular Ca2+ increase induced by Glu (Cao et al., 2012,
2013). Although MPEP is neurotoxic to humans and cannot be
used for therapy, these results shed light on Glu transport and
Ca2+ signaling as potential targets for treatment. The natural
neurosteroid allopregnanolone is a GABA signaling agonist,
and it was found to ameliorate the clustered burst firing in
hippocampal neurons from mice with FMR1 premutation alleles
(Cao et al., 2012; Reddy and Rogawski, 2012). Allopregnanolone
exhibits effective rescue in Alzheimer’s disease mouse models
and human cells, such as restoring learning and memory,
in addition to improving neuronal proliferation and survival
(Wang et al., 2010; Chen et al., 2011; Singh et al., 2012).

Allopregnanolone is already in use in Alzheimer’s disease and
traumatic brain injury clinical trials, making it a very likely
treatment choice for FXTAS (Lozano et al., 2015).

In a chemical screen of efficient small molecules to
suppress locomotion deficits and neurodegeneration of FXTAS
Drosophila, several phospholipase A2 (PLA2) inhibitors were
found to have significant effects, namely fluocinolone acetonide,
quinacrine and arachidonyl trifluoromethyl ketone. These
findings suggest a role for altered PLA2 activity in FXTAS and
present a potential therapeutic target (Qurashi et al., 2012).
Another potential target is the mammalian target of rapamycin
(mTOR). Although the mTOR inhibitor rapamycin was shown
to suppress neurotoxicity via autophagy activation in various
neurodegenerative disease animal models, it can also enhance
the neurodegeneration phenotypes in FXTAS Drosophila, such
as aggravation of retinal degeneration and locomotion defects,
as well as a shorter lifespan of flies (Lin et al., 2013). In contrast,
genetic activation of mTOR signaling significantly suppresses the
neurodegeneration phenotype (Lin et al., 2013).

Although a number of therapeutic strategies are being
explored that specifically target some of the underlying
pathogenic mechanisms of FXTAS discussed above, as of
now targeted therapeutic development is far from clinical trials.
Small molecules are being developed with a high affinity for
rCGG hairpins that inhibit target proteins from binding to
rCGG hairpins in vitro, thereby reducing the sequestration of
RBPs by rCGG (Disney et al., 2012). Some compounds, such
as 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-
pyrido[4, 3-b]carbazol-2-ium, improve pre-mRNA splicing
deficits and reduce the number and size of CGG protein
aggregates in FXTAS cells (Disney et al., 2012; Tran et al., 2014).
Moreover, most recently, Yang W. Y. et al. (2016) reported the
generation of designer, modularly assembled small molecules
that bind rCGG expanded repeats and potently improve
FXTAS-associated defects in cells.

Finally, in addition to small molecules, the histone
acetyltransferase (HAT) inhibitors garcinol and anacardic
acid have also been pursued as potential therapeutics for FXTAS.
In an effort to understand why there is FMR1 mRNA buildup
in FXTAS pathology, Todd et al. (2010) examined histone
acetylation at the human FMR1 locus and found, interestingly,
that histone acetylation was increased at the FMR1 locus in
premutation carriers compared to control or FXS-derived cell
lines, which correlated with increased FMR1 mRNA levels in
premutation cell lines. This study went on to show that in
premutation carrier cell lines, the HAT inhibitors garcinol and
anacardic acid can repress FMR1mRNA expression down to the
level of control and can also extend the lifespan of Drosophila
expressing the CGG repeat expansion (Todd et al., 2010). Based
on these results, a novel mechanism was posited for the increased
premutation FMR1 mRNA in FXTAS pathology. According
to the proposed model, the expanded CGG repeats in FXTAS
induces chromatin remodeling in cis, which leads to increased
expression of FMR1 mRNA. This study provides the basis for a
new potential therapeutic strategy for FXTAS by using HDACs
to control the increased expression of FMR1 mRNA-containing
expanded CGG repeats.
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FIGURE 2 | Potential therapeutic strategies for FXTAS. To date, there are no treatments available for FXTAS. Therapeutic strategies explored include targeting
the RBP sequestration mechanism of FXTAS pathogenesis, such as via the use of small-molecule inhibitors that bind to CGG hairpins with high affinity, thereby
reducing the sequestration of the RBPs (Disney et al., 2012). Other potential targets include the mTOR inhibitor rapamycin, phospholipase A2 (PLA2) inhibitors, an
mGluR antagonist (MPEP) and a GABA agonist (allopregnanolone).

Although it would be a challenge to bring these compounds
to the bedside in the immediate future, development
of these compounds enriches our understanding of
therapeutic targets and extends the frontier of therapeutic
development.

PERSPECTIVE AND FUTURE DIRECTIONS

Over the past decade, there has been considerable progress in
our understanding of FXTAS and its pathogenesis. Two potential
mechanistic models to explain the molecular pathogenesis of
FXTAS have taken root and begun to solidify; namely, the
RNA toxicity and the RAN protein toxicity mechanisms. In
addition, we are beginning to develop a much more holistic
understanding of other players in FXTAS pathogenesis, such
as ASFMR1, mitochondrial dysfunction, and the implications
of the 5hmC epigenetic mark (Ladd et al., 2007; Napoli
et al., 2011; Kaplan et al., 2012; Hukema et al., 2014; Conca
Dioguardi et al., 2016). However, much of our understanding of
FXTAS pathogenesis is incomplete, and many questions remain
unanswered.

Although we have identified numerous players in FXTAS
pathogenesis, we still lack enough mechanistic and chronological

understanding to identify the best targets for treatment. Indeed,
in terms of chronology, studies in mice have shown that
premutation expanded CGG repeats in the mouse Fmr1 gene
perturb embryonic neocortical development (Cunningham et al.,
2011). Also, in another study, cultured hippocampal neurons
from mice expressing premutation CGG repeats exhibited
shorter dendritic lengths and fewer branches between 7–21 days
in vitro compared to wild-type littermates (Chen et al., 2010).
These studies and others have raised the possibility that the
onset of FXTAS may be the result of a lifelong pathologic
process (Garcia-Arocena and Hagerman, 2010). If it is true that
premutation carriers are predisposed to this lifelong pathologic
process beginning in infancy, one of our next tasks would
be to determine the factors that distinguish the premutation
carriers who go on to develop FXTAS in late adulthood from
those who are somehow protected. In addition, we would
need to identify the earliest period for potential therapeutic
intervention.

Variability in FXTAS is not limited to the onset of disease;
there is also a broad spectrum of phenotypes (Garcia-Arocena
and Hagerman, 2010). Although the main clinical manifestations
remain locomotor in nature, FXTAS can also manifest as
significant non-motor neurodegenerative phenotypes, such as
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cognitive decline/dementia and neuropsychiatric disturbances
(Bourgeois et al., 2009; Garcia-Arocena and Hagerman, 2010).
Adding to the phenotypic variability, in the low proportion of
FXTAS patients who are female carriers, it is more common
to see clinical features such as autoimmune-type dysfunction,
hypothyroidism, and muscle pain than in men (Coffey et al.,
2008; Garcia-Arocena and Hagerman, 2010). Thus, in addition
to further decoding the molecular basis of FXTAS, subsequent
efforts should be directed toward the identification of genetic
modifiers that account for the variability in onset and phenotype
seen with FXTAS.
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