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The development of deformable drones is of high importance but presents significant
challenges. Such drones can be based on tensegrity structures, which leaves open the
questions of configuration-space path planning for such robots. In this paper we propose a
method that takes advantage of a simplified encoding of the drone’s shape, allowing to
turn the path planning into a sequence of semidefinite programs. The mapping from the
simplified description and the actual tensegrity configuration is done via a data-driven
method, using a pre-computed dataset of statically stable configurations and their outer
Löwner-John ellipsoids, as well as eigendecompositions of the ellipsoid matrices.
Together it allows rapid containment check, whose computational cost depends
linearly on the number of dataset entries. Thus, the proposed method offloads
computationally-intensive parts to the offline dataset generation procedure, speeding
up the algorithm execution.
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1 INTRODUCTION

The last 2 decades have seen steady progress in the theory of tensegrity structures and their
applications in Robotics. From tensegrity planetary landers [see Sabelhaus et al. (2015a);
Vespignani et al. (2018)] to tensegrity spines for quadruped robots [Mirletz et al. (2014);
Sabelhaus et al. (2015b); Zappetti et al. (2020)], the properties of these structures have provided
new ways to design mobile objects performing difficult tasks. These properties include low weight,
resistance to damage from collisions, the ability to control the stiffness of the structures, and the
ability to control the deformation of the robot [see Liu et al. (2022) for a review of other properties of
the tensegrity structures]. The latter properties motivate the interest in tensegrity as a structural
element of soft robots [Lee et al. (2020); Rieffel and Mouret (2018); Kimber et al. (2019)].

One of the possible areas of application for tensegrity structures is deformable drones. Such robots
can be used to traverse the cluttered environments, temporarily adjusting their shape to fit through
narrow spaces, as well as take advantage of their higher maneuverability [Deng et al. (2020)].
Collision resilience should allow such drones to navigate partially uncertain environments, where
exact positions and shapes of the obstacles are not always available. However, in order to effectively
use such drones, two connected classes of problems applied to deformable tensegrity robots need to
be solved: path planning and control. This paper is focused on the problems of the first class.

Same as in other areas of under-actuated robotics, path planning for deformable tensegrity
structures requires finding a feasible path in the state space of the robot (assuming the environment is
static, and the robot dynamics can be described by autonomous ODEs). And similar as in other high-
dimensional systems, such as walking robots, a direct search for such paths is difficult; this makes
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simplified methods, based on conservative assumptions a
favorable alternative. One of the most basic simplifications is
the assumption that the trajectory of the robot is quasi-static,
meaning that each configuration the robot assumes while
traversing the path is statically stable (or there exists a control
law that can make it become so). For a tensegrity structure, this
means that each configuration it assumes should correspond to a
local minimum of the potential energy of the structure. This
allows us to transpose the path planning problem into a problem
of finding a sequence of configurations that would path through
the environment.

In this paper, we propose a method for finding sequences of
configurations of deformable tensegrity drones as a sequence of
deformations of the original shape, with the space of
deformations being equivalent to the space of positive-definite
matrices. This limits the possible shapes the structure can assume,
but at the same time, it allows to cast the problem as a semi-
definite program (SDP), taking advantage of the widely used
solvers with well-understood properties. Moreover, the
constraints in the proposed method have the form of linear-
matrix inequalities (LMI), which is a familiar constraint type in a
number of control-related applications. Figure 1 illustrates the
work of the algorithm.

2 STATE OF THE ART

Motion planning for deformable objects is a wide field of study,
with notable sub-fields. For example, motion planning for rod-
like structures (generalized under the category of deformable
linear objects) has been well studied [see Moll and Kavraki
(2006); Roussel et al. (2014); Shah and Shah (2016)]; there,
such structures are usually manipulated by external forces.
Similarly, methods for manipulation-based motion planning
for objects of other shapes have been proposed Anshelevich
et al. (2000). Here we concentrate on the case when the robot

uses internal resources for deformation. This requires a way to
predict the form of the structure, given the distribution of forces
and torques acting on it.

As was discussed previously, limiting ourselves to the quasi-
static case (when the speeds and accelerations of the motion are
such that the inertial forces do not play a significant role in the
robot’s dynamics) allows us to cast the problem of finding the
shape of the structure assumes under the given distribution of
forces as a problem of finding static equilibrium. For fixed rest
lengths of the elastic elements that form tensegrity structure, the
static equilibrium problem can be solved by minimizing potential
energy of the structure, or equivalently, by solving a feasibility
problem, given force equilibrium equations and force limits
arising from the physical properties of the elements of which
the structure consists: the cables can only experience tensile
forces, while the struts are designed to experience compressive
forces. Both result in nonlinear optimization problems. Fixing
positions of the nodes, the feasibility problem can be solved as a
single convex program, using force density variables [see Xu et al.
(2018); Khafizov and Savin (2021)]. A more general form of this
problem, known as form-finding, is discussed in a number of
publications, including Tibert and Pellegrino (2003); Masic et al.
(2005); Zhang et al. (2006).

Alternatively, data-driven and learning-based methods can
be used for the same end. It was shown that a neural network
can be used to predict the statically-stable configuration of the
tensegrity structure, given the rest lengths of its elastic
elements [see Zalyaev et al. (2020)]. Similarly, evolutionary
methods for the design of statically stable structures have been
proposed Paul et al. (2005). Note that the latter is close to
topological tensegrity design methods based on force density
variables, as presented in Xu et al. (2018); Koohestani (2020),
as they focus on the design of the structures, rather than
finding the static equilibrium of the existing ones. We note
that algorithms mentioned in this paragraph are either limited
to the specific types of tensegrity robots, or are
computationally intensive, requiring the solution of
optimization problems, or running neural networks.

One of the many challenges associated with motion planning
for deformable robots is finding paths that require feasible
deformations Mahoney et al. (2010). Simplified models of the
deformable objects are an essential tool in motion planning for
such robots Mahoney et al. (2010). In Gayle et al. (2005),
deformable robot was modelled as an elastic system. One of
the methods proposed in Bayazit et al. (2002) uses bounding box
deformation to correct the shape of the robot. Here we propose to
encode deformations with as positive-definite matrices, thus
limiting possible deformations, but making the space of all
considered deformations convex.

Taking advantage of the simplified encoding described
above we propose a data-driven ellipsoid mapping, which
allows us to rapidly search for tensegrity configurations
compatible with the requested deformation, lying inside the
requested ellipsoids. This is done by pre-computing covering
Löwner-John ellipsoids and the use of eigendecomposition of
these ellipsoids, which allows checking ellipsoid containment
based on algebraic operations.

FIGURE 1 | A deformable tensegrity drone changing its configuration to
pass through a narrow window.
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The rest of the paper is organized as follows. Section 3
describes static equilibrium conditions for the structure.
Section 4 discusses the use of Löwner-John ellipsoids as
bounding volumes, presents optimization problems associated
with computing these ellipsoids, and gives forms of self-
intersection problem for the structure; all three topics form
the basis for dataset generation algorithm and the mapping
method, presented in Section 5. Section 6 presents motion
planning based on the proposed method. The computational
cost associated with the proposed algorithm is given in Section 8.

3 STATIC EQUILIBRIUM OF TENSEGRITY
STRUCTURES

The main elements making a tensegrity structure are cables and
struts, with cables experiencing purely tensile forces, and struts
experiencing purely compressive forces. Here we focus
specifically on a sub-class of tensegrity structures where no
two struts are immediately connected; this is the class of
tensegrity structures that have been the focus of the majority
of the tensegrity-related research, due to the comparative ease of
design of such structures.

The connection points between a strut and cables are called
nodes. One of the ways to describe a configuration of a tensegrity
structure is to describe the position of its nodes. Here we denote
the position of the nodes by vector variables ri.

3.1 Static Equilibrium Conditions
In order for the structure to maintain static equilibrium, the sum
of forces acting on each node should be zero. Denoting a force
acting on the node ri from the node rj as fi,j, this condition can be
written as:

∑n
j�1

f ij ri, rj( ) � 0, ∀i (1)

where n is the total number of nodes in tensegrity structure.
Assuming that both the struts and the cables can be modelled as
linear springs, the forces fi,j acting between two nodes can be
modelled as follows:

f i,j � Ci,jμi,j ‖ri − rj‖ − ρi,j( ) ri − rj
‖ri − rj‖. (2)

where μi,j is the stiffness coefficient, ρi,j is the rest length of the
given elastic element (distance between the nodes when the force
fi,j equals zero) and Ci,j ∈ {0, 1} is the connectivity identifier and is
equal to zero if no connection exists between the two elements.

3.2 Stable Configuration Problem
Assuming that stiffness coefficients μi,j are given and constant, but
node positions ri are functions of the rest lengths ρi,j, we can
formulate the direct stable configuration problem: given ρi,j, find
ri such that the system is in static equilibrium, and the inverse
stable configuration problem: given ri, find such ρi,j that the
system is in static equilibrium. Denoting vector of all parameters
ri as r and vector of all parameters ρi,j as ρ, we can define functions

DFF(·), IFF(·) solving direct and inverse stable configuration
problems:

r � DFF ρ( ), ρ � IFF r( ). (3)
Multiple algorithms implementing functions (3) can be found in
the literature. However, all implementations share a number of
properties.

Firstly, we note that for tensegrity structures not in contact
with the environment, simultaneous translations of all nodes do
not influence the static equilibrium conditions. Thus, there are
infinitely many solutions to direct stable configuration problem.
Moreover, since a stable equilibrium configuration with a non-
degenerate stiffness matrix corresponds to a local minimum of
the potential energy of the structure, a small change in ρi,j
corresponds to a small shift in that local minimum, implying
the existence of the solution to the perturbed problem.

Secondly, we note that for practical tensegrity structures
[including tensegrity prism and 6-bar tensegrity structure, see
Vespignani et al. (2018)] variables r span a higher dimensional
space than ρ; this implies that there are configurations that cannot
be stabilized, i.e., the inverse problem does not always have a
solution.

4 SIMPLIFIED DESCRIPTIONS OF THE
ROBOT AND THE ENVIRONMENT

In order to make the motion planning problem tractable, both the
robot and the environment need to be described in a form that
facilitates efficient computations. To this end we describe the
environment as a collection of convex polytopic obstacle-free
spaces Sp, given as H-polytopes: Sp � {r: Spr≤ hp}. In the
following subsections, we demonstrate how a deformable
drone shape can be represented, and how this representation
interacts with the obstacle-free spaces.

4.1 Bounding Volume for a Tensegrity
Structure
The method proposed in this paper requires the use of bounding
volumes. Both bounding boxes and bounding ellipsoids can be
used, but we limit our discussion to bounding ellipsoids. We use
outer Löwner-John ellipsoid (the smallest volume ellipsoid that
contains a given set of points) as a bounding volume containing
all nodes of the tensegrity structure; Figure 2 illustrates the
geometry of Löwner-John ellipsoids.

Finding outer Löwner-John ellipsoid containing all
nodes ri can be cast as a convex optimization [see Boyd
et al. (2004)]:

minimize
Y, y

log detY−1,

subject to ‖Yri + y‖≤ 1, ∀i, (4)

where Y is positive semidefinite ellipsoid deformation matrix
and y is ellipsoid center. Resulting ellipsoid E in set notation is
given as E � {r: ‖Yr + y‖≤ 1}. In practice, minimization of log
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det Y−1 is often replaced by maximization of det (Y)1/n

function.

4.2 Free-Space Containment
We need to be able to check if the ellipsoid representing the outer
approximation of the tensegrity structure fits inside a given
obstacle-free region S. To this end, it is more convenient to
use a dual ellipsoid representation E � {Xr + x: ‖r‖≤ 1}. The
connection with the primal representation is established by the
following relations: X = Y−1, x = − Y−1y. We do not attempt to
find the dual representation of the outer Löwner-John ellipsoid as
a single optimization problem; instead, we find the primal
representation of the ellipsoid, and then convert it when needed.

Given an obstacle-free region Sp � {r: Spr≤ hp}, where
Sp � [ s1,p . . . sm,p ]⊤, with sj,p forming rows of the matrix Sp
in the H-representation of the obstacle-free region and
hp � [ h1,p . . . hm,p ]⊤, finding inner Löwner-John ellipsoid in
dual representation contained in Sp can be written as the
following optimization problem [see Boyd et al. (2004) for the
derivation]:

minimize
X, x

log detX−1,

subject to ‖Xsj,p‖ + s⊤j,px ≤ hj,p, ∀j
(5)

4.3 Self-Intersection
One of the typical problems for tensegrity structures is self-
collisions and self-intersections. While self-collisions do not
pose practical problems during the motion of the robot, they
need to be taken into account when a configuration-space
trajectory for such a robot is planned.

Assume a pair of nodes r1 and r2 is connected via a cable or a
rod, and so is a pair of nodes r3 and r4. In order to check if these
two structural elements (rods or cables) of the structure intersect
in a given configuration, we can solve the following linear
problem:

find z,

subject to
r1 − r2( ) r3 − r4( )[ ]z � r4 − r2

z≥ 0
‖z‖∞ ≤ 1,

⎧⎪⎨⎪⎩ (6)

where z determines the position of the intersection point with
respect to the nodes r1, r2, r3 and r4. If the problem (6) has a
solution, there is an intersection between the two structural
elements. In order to explicitly control the precision of the
algorithm, we can add numeric tolerance threshold δin:

find z,

subject to
r1 − r2( ) r3 − r4( )[ ]z − r4 + r2

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2≤ δin
z≥ 0
‖z‖∞ ≤ 1,

⎧⎪⎨⎪⎩
(7)

The functions (6) and (7) can be useful in numeric dataset
generation procedures, as will be shown in the next section.

4.4 Cable Slack
Another problem of tensegrity structures is cable slack.
While it does not pose immediate problems by itself (as
long as the stiffness matrix of the structure does not
become degenerate), it may still lead to a more complex
behaviour of the system. With that in mind we would like
to avoid slackened cables.

One of the simplest ways to encode the taut cables constraint is
to require that the current length of cables exceeds their rest
length by a given margin lm:

Ci,j ‖ri − rj‖ − ρi,j − lm( )≥ 0, ∀i, j. (8)
We denote this constraint as slack(r) further in the text.

5 MAPPING ELLIPSOIDS TO
CONFIGURATIONS

5.1 Configuration Dataset
In order to map an ellipsoid to an actual robot configuration,
we use a configuration dataset. Each configuration in the
dataset is given by two sets of parameters: r and ρ. There
are two principal ways of obtaining the dataset: 1) collecting
the data on statically stable configurations of a given tensegrity
structure (via a motion capture system, for example), while
measuring or estimating rest lengths of the elastic elements ρ,
or 2) generating a number of sets of rest lengths ρ and solving
the direct stable configuration problem. Here we use the
second approach. Its main advantage is that it allows us to
easily change the dataset, as the generation process involves
solving a pair of small-size quadratic programs; its
downside is the necessity to detect and discard infeasible
configurations. The following subsections will elaborate on
this last point.

Our process of generating the dataset involves the following
steps. On the first step, a base rest length vector ρb is proposed.
We will consider the statically stable configuration rb = DFF(ρb),
associated with ρb, as undeformed. On the second step, an array of
perturbation directions ρd,1, . . . , ρd,N is generated, where N is the
number of directions in the dataset; we sampled ρd,i it from a
uniform distribution. For each direction ρd,i we solve the direct
form finding problem r = DFF(ρb + αρd,i), moving the value of
alpha from 0 to 1. For each configuration thus obtained we check
self-intersection of the structural elements (rods and cables), using
expression (7); if intersection did occur, the configuration is not
stored, and no further configurations associated with this direction
are computed. If no configuration occurred, the
configuration r and rest length vector ρ = ρb + αρd,i are both
stored in the dataset.

We augment the dataset with two additional fields that are used in
the following sections: perturbation norm and eigendecomposition of
the outer Löwner-John ellipsoid. We define the perturbation norm ]
as the 2-norm of the perturbationΔρ: ] = ‖Δρ‖. It will later be used as
a deformation measure.
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In order to find the outer Löwner-John ellipsoid for the
given configurations r, we solve problem (4), obtaining
corresponding matrix Y. Then we find the following
eigendecomposition:

Y−1V � VD (9)
Thus found values of Δρ, r, ], V and D form the dataset. The
process of compiling the dataset is outlined as Algorithm 1,
where Intersection (·) checks if (7) is feasible, Löwner-John (·)
solves (4), and eigendecomposition (·) returns an
eigendecomposition of a matrix. Note that the perturbation
norm ] is augmented with a regularization term ξ det (Y−1),
which aims at punishing configurations that
result in low volume ellipsoids; ξ is a scalar regularization
coefficient.

Algorithm 1. Dataset generation algorithm.

5.2 Dataset-Based Configuration Mapping
Given an ellipsoid in dual representation E � {Xr + x: ‖r‖≤ 1},
we can rapidly check which of the configurations from the dataset
can be contained in the ellipsoid E. To do it we define
containment matrix W:

W � X−1VD (10)
With that we can assign a measure to each configuration, using
either a step function or a log barrier. The expression for the later
is given below:

v � ] + ϕ 1 − e⊤1W
⊤We1( ) + ϕ 1 − e⊤2W

⊤We2( )
+ ϕ 1 − e⊤3W

⊤We3( ), (11)
ϕ x( ) � −δlog x( ) if x> 0,
v � ∞ otherwise,

{ (12)

where e1 � [ 1 0 0 ]⊤, e2 � [ 0 1 0 ]⊤, and e3 � [ 0 0 1 ]⊤
are unit vectors forming axes of the world coordinate frame.

Then, finding the configuration that corresponds to the
smallest v we find the desired map. Note that the map is not
designed to find the closest possible configuration to the given
ellipsoid, and instead it tries to find the one with the least
deformation that can fit in it.

5.3 Drone-Specific Considerations
The use of a tensegrity structure as a frame of a drone entails a
large number of problems. This paper does not aim to present a
comprehensive study or give solutions to these problems;
however, we can list a few important considerations
connected with the proposed dataset generation method
that need to be addressed when using the
method for planning a sequence of deformation for a
tensegrity drone.

Firstly, depending on the number of motors and on how they
are attached and oriented, some configurations of the tensegrity
structure might be impossible to stabilize in the air. These
should be identified and removed. The process of
identifying these configurations depends both on the
position of the motors and the control algorithm designed for
the drone.

Secondly, the geometry of the propellers needs to be taken
into account when the configuration of the tensegrity is being
evaluated as admissible or not. If the volume covered by the
propellers can be approximated as a convex polytope, and if the
position of this volume can be approximated as a linear form of
the positions of the nodes of the structure, then the problem of
finding self-intersections involving the propellers can also be
cast as a quadratic problem. The same can be said about other
structural elements of the drone: the batteries, the controller
and transmission boards, etc.

FIGURE 2 | A polytope with inner and outer Löwner-John ellipsoids.
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6 QUASI-STATIC
DEFORMATION-ENABLED MOTION
PLANNING
The goal of the quasi-static deformation-enabled motion planning is
to provide a sequence of positions and deformations of the robot, as
it moves from the initial to the goal point, such that no constraints
are violated. Here we only consider constraints associated with
containment in the obstacle-free regions.

6.1 Obstacle-free Region Intersections
To simplify computations we make a conservative assumption
that in order for the robot to be able to pass from one region to
another, it has to be able to fit in the intersection of the two
regions. This assumption can be prohibitive if the free space is
tessellated into non-intersecting obstacle-free regions.
However, it can be made less conservative if maximum-
volume convex obstacle-free regions are generated from
seed points [as was done in Deits and Tedrake (2015); Savin
(2017)], and the free space is densely populated by the seed
points.

Note that the requirement that two regions have a sufficiently
large intersection in order for the robot to be able to pass from
one to the other allows treating the obstacle-free regions as
graph edges, and intersections as graph vertices. Therefore a
path from the region containing the initial point to the region
containing the goal point is also a path along this graph. Thus
the path can be found by graph search methods, such as A*
algorithm. The heuristic for the search can be based on the
distances between the centers of the region intersections that
share a region, as well as the width of the region; both can be
approximated by finding the inner Löwner-John ellipsoid (5),
for the intersection of the regions with x giving the ellipsoid’s
center acting as an approximation of the region’s center, and
the width of the ellipsoid acting as an approximation of the
region’s width.

Figure 3 illustrates the graph representation of the path, based
on obstacle-free region intersections. The graph nodes and graph
edges are shown, generating at least two paths from the starting
point to the goal point, passing through different openings in the
wall (its intersection shown in red). Note that on the picture the
obstacle-free space is not densely populated with large obstacle-
free regions, and hence their intersections are unnecessarily small,
illustrating the conservativeness of the requirement in this case.

6.2 Inflation-Based Deformation Planning
In this subsection we assume that a single path from the initial
point to the goal point is given in form of a sequence of regions
S1, . . .Sn, and the robot needs to pass through intersections of
all consecutive regions in that sequence. The proposed inflation-
based deformation planning methods consists of two steps: 1) find
the biggest possible ellipsoid that fits in each region and in each
intersection that needs to be passed, 2) for each ellipsoid, find a
robot configuration that can fit in it with the least deformation v.

To check if the ellipsoid simultaneously lies in two regions
Sp � {r: Spr≤ hp} and Sp+1 � {r: Sp+1r≤ hp+1}, where Sp �
[ s1,p . . . sm1,p ]⊤ ∈ Rm1×3 and Sp+1 � [ s1,p+1 . . . sm2 ,p+1 ]⊤ ∈
Rm2×3, it is sufficient to check if it lies in their intersection,
whose H-representation is constructed by concatenation:

Sp ∩ Sp+1 � {r: S⊤p S⊤p+1[ ]⊤r≤ h⊤p h⊤p+1[ ]⊤}. The problem
(5) then takes form:

minimize
Xp,p+1 , xp,p+1

log detX−1
p,p+1,

subject to
‖Xp,p+1sj,p‖ + s⊤j,pxp,p+1 ≤ hj,p, 1≤ j≤m1,
‖Xp,p+1sk,p+1‖ + s⊤k,p+1xp,p+1 ≤ hk,p+1, 1≤ k≤m2.

{
(13)

Note that problem (5) can be solved independently for each
region Sp and each region intersection Sp ∩ Sp+1. This alleviates
numerical problems associated with the growth in the number of
variables in the planning problem.

FIGURE 3 | Graph representation of the path, based on obstacle-free region intersections.
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The second step of the process consists in mapping found
ellipsoids to configurations from the dataset. On this step we go
through found ellipsoids Ep = {Xpr + xp: ‖r‖ ≤ 1} and Ep,p+1 = {Xp,p+1r
+ xp,p+1: ‖r‖ ≤ 1} sequentially, and for each of them we use (10) and
(11) to determine the deformation value v of each configuration in the
dataset; the configuration with the smallest v is chosen as the image of
the respective ellipsoid. This process is described in the Algorithm 2.

Algorithm 2. Ellipsoids mapping.

The described above algorithm can be used for planning
deformations of a drone, as it passes through narrow spaces.
However, let us note that the algorithm only provides the desired
deformations (and corresponding node positions and cable rest
lengths) for a few trajectory nodes; hence, the evolution of the
nodes and the evolution of the cable rest lengths need to be
determined separately, e.g., via interpolation. With that in mind
it is of further interest to study resulting trajectories. Such a study is
presented in the following section.

Additionally, let us remark that if the additional safety margins
are required, the ellipsoids representing obstacle-free regions can
be scaled down by a given amount. Alternatively, the required
safety margins can be checked directly on the configurations
found by the algorithm; this might be preferable, as the use of
ellipsoids to approximate obstacle-free spaces already makes the
algorithm conservative.

7 SIMULATION RESULTS

In this section, we provide simulation results, which illustrate the
work of the algorithm. As was mentioned in the last section, the
algorithm is providing a sequence of deformations, but between
each pair of consecutive deformations, the rest lengths of the
elastic elements should be determined separately. Here we take
the simplest case when the linear interpolation is used. We study
the resulting trajectories in terms of the mechanical properties of
the structure as it undergoes deformation.

In order to provide a higher range of deformation, while
maintaining the orientation of the rods (which is preferable
for a drone where rotors are rigidly attached to the rods) we
choose to actuate symmetrically placed rods. In Figure 4 the
actuated rods are shown in blue, while the unactuated cables and
rods are shown in green. Actuated rods connect nodes 9 and 10,
and nodes 11 and 12, as shown in Figure 4.

Note that the practicality of such actuation pattern depends on
the ability of the drone to effectively change and maintain its
orientation; if the drone can be relied on to maneuver itself in
such a way as to face the narrow opening with the actuated
horizontal rods being orthogonal to the drone trajectory as it
traverses the opening, then the actuation pattern is justified, as the
other pair of horizontal rods would be oriented tangentially to the
trajectory, not influencing the ability of the robot to fit through
the opening. If the opening is horizontal rather than vertical (wide
and short rather than narrow and toll), the vertical rods would
also require to be actuated. In this section, we consider the
simpler case for a cleaner presentation.

FIGURE 4 | A 6-bar tensegrity structure with two actuated rods (rods
that can control their rest lengths), shown in blue; nodes of the structure are
numbered.

FIGURE 5 | Evolution of the magnitude of tensile forces for two cables;
cable 1 connects nodes 10 and 3, and cable 2 connects nodes 8 and 12.
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We consider the case when the structure has to pass through a
tall opening with a width of 0.35 m. The undeformed width of the
structure is 0.488 m. Two possible concerns with the resulting
trajectory are 1) cable slack, and 2) excessive tension in some of
the cables.

Firstly, we study the evolution of the tensile forces in the
structure’s cables. As a representative example we choose the
cable between nodes 10 and 3 (connecting one of the actuated
rods with one of the vertical ones) denoted as cable 1, and a cable
between nodes 8 and 12, denoted as cable 2, using the notation in
Figure 4. Figure 5 shows the evolution of the tensile forces in the
cables along the trajectory. The first 20% of the trajectory the
structure maintains its shape, next 20% it deforms, then it
maintains the deformed shape (during which period the
structure is required to pass through the opening), then the
structure deforms back into its original shape and maintains it
until the end of the trajectory. Note that the timing is chosen
arbitrarily; since the deformation planning requires purely
geometric information, the timing of the trajectory can be
planned separately taking into account its dynamical properties.

As we can see in Figure 5 the tensile force in the cable goes
down during the deformation, and then back up afterward. At its
lowest point, it goes down by 39.4% for the cable 1 and by 60% for
the cable 2. With the trajectory planned for this experiment, no
cable loses more than 60% of its initial tensile force value, and
only cables connecting nodes 6, 8, 11, and 12 do so.

We should note that while in this experiment the tensile forces
were not increasing throughout the motion and the relative
decrease of these forces was limited to 60% of their initial
values, the dataset used in generating the trajectory does
include a higher range of force changes. Overall in the dataset
of 200 elements, the highest recorded tensile force exceeds the
nominal value by 55.9%, while the smallest is only 4.78% of the
nominal value. Whether or not these values can lead to
mechanical damage of the structure, the loaded elements, or
the cables themselves depends on a choice of materials and the
design of mechanical parts (e.g., connectors between the cables
and struts).

Presented here study can serve as an illustration of how the
analysis of the trajectory quality can be done in practice. In our

case we can be satisfied that the structure is capable of following
the found trajectory since the tensile forces are clearly within the
nominal range, but for arbitrary trajectories generated with the
same dataset, we need to check the ability of the cables to
withstand a 55.9% increase in the tensile force magnitudes. If
such an increase of tensile force magnitude is undesirable, the
corresponding elements can be removed from the dataset, or a re-
design of the cables can be suggested.

8 COMPUTATIONAL COST

In order to assess the computational cost of the algorithm, we
need to recognize that the number of optimization programs (13)
to be executed is equal to the number of intersections in the path.
The number of variables in the problem formulation is
independent of the problem geometry, but the number of
constraints can change, subject to the shape of the region
intersections.

Another source of growth in the computational time relates to
the dataset search. Algorithm 2 requires checking ellipsoids found
by the solver against each entry in the dataset, making the number
of checks proportional to the dataset size. Figure 6 demonstrates
how the computational time depends on the number of entries in
the dataset. The time cost is computed for the algorithm run on a
PC with Intel i7 9700K processor, with 32 Gb memory and the
dataset stored on an SSD.

The graph was produced by running the algorithm 103 times
and taking an average, displayed as the data point. As implied by
Algorithm 2, the number of operations (matrix multiplications
and computation of logarithms) depends linearly on the number
of entries in the dataset.

9 CONCLUSION

In this paper we presented a method for deformation-aware
trajectory planning for deformable tensegrity drones.
Employing two conservative assumptions (over-approximating
the shape of tensegrity drone as an ellipsoid, and assuming that in
order to pass between two regions, the drone needs to pass
through their intersection) the proposed method takes
advantage of the convexity of the resulting problem, as well as
of the possibility to separate it into a number of independent
optimization problems, avoiding the growth in the number of
decision variables with the increase in the size of the path to be
planned. Pre-computing Löwner-John ellipsoids and their
eigendecomposition allow to keeping computational cost of
the algorithm relatively low, with the linear growth in the
number of elements in the dataset.
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