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Abstract

Due to the need and the necessity to express a physiabmplenon in terms of an effectiye

and comprehensive analytical form, this paper is devoteduty of Airy functions, whic

arise from the Airy differential equations, by means imfegral transforms. lllustrativ

examples are also provided. The result reveals thamtiagral transforms are very useful tools

to solve differential equations.
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1 Introduction

Airy differential equation named after British mathemiaticand astronomer George Biddell Airy
(1801-1892) is a special DE in physics which is used in evatuatidiffraction of light near the
caustic surface (such as rainbow). The Airy differéngiquation in fact is a special case of
Schrédinger's equation for a particle confined within a tudéargpotential well and for a particle
in a one-dimensional constant force field. The Airy funci®also important in microscopy and
astronomy: it describes the pattern due to diffractiahiaterference, produced by a point source
of light (one which is smaller than the resolution limit sh&zroscope or telescope).

The Fourier and Laplace type integral transforms are wéudsternative methods for solving
different types of PDEs of fractional order. There alat @f applications of PFDEs in the field of
Visco elasticity as well.

In this work, the authors implemented Laplace integaatgform method for solving fractional
Airy equation which arise in applications. Several methode Heeen previously introduced to
solve fractional differential equations (see [1,2,3,4,5,@},8owever most of these methods are
suitable for special types of fractional differentiguations, mainly the linear ones with constant
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coefficients. In recent years, the implementationsxtéreled G’/G — method for the solutions of
non — linear evolution equations, non linear Klein - Gordon tamps Boussinesq equations have
been well — established by notable researchers (sg€l[12,13,14])

2 Definitions and Notations

Definition.2.1. Laplace transform of the functich (t) is defined as follows
Lif(tt -9 =[e“(ydt=F} (21
0

If L{f (1)} =H 9 ,thenL™{F(9)} is given by

f () :%Te“ F(s) ds (2.2)

c-ioo

where F (S) is analytic in the regiolRe(s )> c.
Definition.2.2. For an arbitrary real number >0 (n—1<a <n, nOJ N)Caputo fractional
derivative is given as

PN S L A ©.9
aDt f(t)_r(n_a)ja (t_x)a—n+l

Theorem.2.3.For N —1<a < n one gets
n-1
L{GD, (1)} =s" K 9 -3 &7 f{0).
k=0

Proof. See [15].

Lemma.2.4. (Titchmarsh)Let F (p) be an analytic function having no singularities in the cut

plane C\ R . Assume thaf (p) = F(p) and the limiting values
Fe(t)=lim F(te®?), F'(t)=F (1),
Q-1

exist for almost all
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() F(p)=o0(1) for |p| - oandF(p) = O(| p|_l) for |p| — 0, uniformly in any sector
|argp|<m-n . 1>0n> 0;
(i) There exists€ >0 such that for everyr— & < @< 71,

F(rew)

T OL(R), |F(re™)|< a1),

wherea(r) does not depend o anda(r)e™” O L'(R ) for any 0 >0. Then, in the
notation of the problem,

(0= LIF(9) = [Im{ F (7] € ch

Proof. See [16].

Example.2.5.Solve the following ODE under the given boundary condition
DXy -kD%y = J,(2J/t), y(0)=0,y (0)= 0, 0.5xa < 1

Solution. To solve the above ODE first we take Laplaacestoam of both sides of the equation

1
sV (9- ké Y( 3=+ e,
S
in which
Y ()= LY $
therefore
1
e S
Y(S)=——7F7,
(5 s7(s” - k)
by using Titchmarsh theorem we have
1 15 1
L it ==|e™l dr==|e™"l d
{s"’—k } ﬂj;e m{(re'”) } r J'e m !

(r”co%T—k )+ir @ sin%T

which can be rewritten in the form
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1 t} -——15an e™" r dr

o (r"-k co&)ﬂk (1+ coé 4

LY

SU

now considering Laplace transform of convolution of functiongetethe following result

y(t) = _;sm— J, @/t )DJ. r'e”

il (a-1) o (r° —kco&)z+k2(1+ co§ )

Definition.2.6. The differential operatad called the -derivative is defined as

this definition can be extended to any positive integer power.

Lemma.2.7.(Schouten-Vanderpol)Consider a functiorf (t)which has the Laplace transform
F (s) which is analytic in the half planRe )> c. If q(S) is also analytic foRe )> c,
then the inverse oF (q(S)) is as follows

LHF((9): s } = j € {—j g1 & d%

3
Special Casef|(S) = $;

3 [ [ 3 §
LHF(sY): s~} =[ () (I e"'sin(m? €” avj @
0 0
Proof: See [17].
Problem.2.8.Find inverse Laplace transform of the following function

-As?

F(s)=2

5~ 0<a<l, O<p<1l
S

Solution. By using lemma 2.4 we have
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LYF(9: & = () =71Tj|m[|iarpn_ Kk ne'y] ev

substituting the functiorF (S) in the above formula we get

ZI.oo g e )
A =g

0

therefore, the result is obtained as

-As? o _—An? cosamr
L {e_ﬁ; t} = 1J'—ﬁsin( B+ Ansin rm)e ™ dn.
s 5 N

Special Case =0 ,a =% ;

Using Schouten-Vanderpol we have

LHF(s ;s - } = jf(z) {—j '33’é5d%

C—loo

. , 1
Now it suffices to use Problem 2.7 ff# = 0,a = § to get

1 @ 13
L™Ye™™ ¢ :lj'e 2 sm( V3,
T

0

7D € oy

it means that

HR(sY s~ 3 =] (| [ sm(f W | d

0

Lemma.2.9.We have the following integral representation for modified€I's function of the
second kind
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1(zYF z?| dt
K,t)==| = _[exp t-——t=g
2\ 2) 4 4 [t

Lemma.2.10.The following relationship holds true

Proof. See [18].

[ 27K, (2) dz= 2ﬂ-1r(”+'2’+1)r(”";”).
0

Proof. By substituting the above integral representatietnave

TZ”KV(z)dz:T 2’{ ( jVTexp(-t— )W}

changing the order of integrals we get

fz“KV(Z)dz:(%)m]: ¢ [{ g d}td—tl

2
Z
making a change of new variab’r‘«]et— =W , the above integral could be rewritten as below

+o  ptv-1 +oo  y-v-1

jz”K(z)dz 2”_1IW2 g dV\J t2 @ d

which can be evaluated by using definition of Laplacesfam as follows

[ 27K, (2) dz= 2”'1r(”+2'/+1)r(”_;+1).
0

Example.2.11.Prove that

+00

jK(az)dz—— j (az)dz-—

0
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Solution. By making a change of variabz = U and then using the above lemma for

1
,u=0,l/=§,wehave

1 1
jK (az)dz_—j Kl(L)duzle(j)F(i)—zlr(l j])r(—}__ :T

sin

_ 1
and again lef/ =0,V = 3 to get

IOK;(az)dzzi]: (9 dmz—ilr(—?f)r(%):?lalr(1—_§r(_ =_219L=’_7_

/4
SIn— a
Generally it can be shown that

_[K (az)dz= G—[
2a

n sm—
n

Theorem.2.12. (Buschman)f the functionsf (t), g (t),k (t) be analytical and real of0,c0)
such thatg (0) = 0 and g () = oo . Then

L{K(OFL o] = [ R s Eu du

in which

Qs p=[ €™ Rsyde €7 kh)p'h)p =+ Y

Proof. See [19].

Example.2.13.The following relationship holds true

L{F () = jfdw_o R du
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1
Solution. It suffices to takk (t) =1,g(t) = n in Buschman theorem, then

R(s, U) = |:1{—ep—Z} = —\E X2/ s,

and therefore

L{F ()} = jﬁuzﬂ) R ) du

. And also

Example.2.14Llet f (t) =Int then F(S) = L{f(1)} =- y':n S

S
. Therefore using the above lemma one gets that

L{In%} -y =Y

y+Ins 1% y+Inu
=—-—=1J,(2Jsu)—=—dul
v G R

Especially fors =1 we have

+In Uy
- —j D
Example.2.15.Consider the functiod (t) = l'[e_/]t thenF (s) = L{f(?} = 1
ple.2.15. 5 T

A
On the other handi (%) = Ele t and L{f (%)} =K {2 VAS) . Now using lemma 2.13 we

have
1% 1
K,(2vAs) = PN .([,/ uJ(2v su)—(u 1)

and especially fos =1 we get the following integral representation féro(Zﬁ)
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K (21)=+ J'\/_J(Z\/_)

3 Integral Transforms for Fractional Differential E quations

The classical integer order constitutive differentigli&ions are approximations to every - thing
as “point” quantity in time or in space. The classioéger order methods do not thus take into
account the space history or time history and therefammot represent the natural laws close to
reality. Fractional calculus does take of all theseitseand therefore is more appropriate for
representation of natural phenomena. Differential equations aifdinal order appear more and
more frequently in various research areas of science arideengg. An effective method for
solving such equations is needed. The method of Fourietadsf, - transforms technique

gives almost a unified approach to solve the fractional éififal equations.
3.1 Airy Differential Equations

George Biddell Airy (1801-1892) was particularly involved ptics for this reason, he was also
interested in the calculation of light intensity in théghborhood of a caustic (see [20,21]). For
this purpose, he introduced the function defined by the iritegra

W(m):]:co{g W’ - mw)} dw,

which is the solution of the following differential equation

W"+i mwW =0.
12

In 1928 Jeffreys introduced the notation used nowadays

: 1% ity 17 t° :
AI(X)=—I€I SE dt=—_[co —+ xt| dt, (3.1
21T -, T 3
which is the solution of the following homogeneous ODE calleg @DE
y"=xy=0. (3.2)

The following Bairy function is another solution for AIBE which differs from Airy function in

T
phase byE
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Bi (x) =7—1T+J20{exp(—§+xt)+ sin§+ xt )} dt.

In some texts the Airy differential equation is consideas

y"+f(x)y =0,

in which f (x)is any function having expansion in a neighborhood of a poirt X, with

f '(X,) # 0.The values of A) and Bif) and their derivatives at= 0 are given by (see [21])

M)z Bz AI'(Q)=-— Bi'(O):%[
3 (< 61 (< B[ (- r
Fre) FrE) Q) Q)

Lemma.3.1.1.The following integral relationship holds true
: 1lx, 22
Ai(x)=—,[=K,(=x?2).

T\ 3 3 3

Lemma.3.1.2.The following relationship holds true

Proof. See [22].

T Ai(x) dx=1[

Proof. Taking Fourier transform of the Airy function wevba

H . _oo isx _oo SiSX iw iXHi%
F{Ai(X); § —_J;e Al X dx—_J; & [2]‘[ e dJ o>

—00

changing the order of integrals and considering Fouriesfmem for fundamental functions, we

get

© _t3 0 © .t3 .33
ova - [43 1 X (t-s) 's '3
F{Al(x),s}_LeS(EIéx dxjdt:_j; S s)tdt &

—00

2639



British Journal of Mathematics & Computer Scien€&8}, 2630-2664, 2014

now it suffices to lets = Qto get the desired result
j Ai(X) dx=1[
Lemma.3.1.3.The following relationship holds true
e 1
IAl (x)dx ==.
0 3
Proof. By using lemma 3.1.1 we can write
T 1 7 2 2
jA. (x )dx =—j& K, (= x2) dx
0 ﬂ\/§ 0 5 3

3
making a change of variable = 5 X we get

TAi (x)dx ﬂ,%/gj K,(2)dz

1
now using lemma 2.10 fop/ =0,V = :—)’ , the following result will be obtained

[Ai (x)dx :iir(—z)r(—;) N
3 m/32 3 3 26 T 3
3
Lemma.3.1.4.The following relationship holds true
[Aiz ()t :2;.
0 3§r2 -
(3)

Note that, Ai®(t) is not square integrable over whole real line R.
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Proof. Consider the function
| (x) =TAi 2(t)alt.
Integrating by parts we have
| (x) =tAi 2(t)|:° —TZAi t)AI' ¢t )dt,
X

but we know that the Airy function is a solution of Airy Diierefore one can rewrite the above
relationship as below

| (x) =tA] 2(t)|:’ —ZTAi”(t)Ai’(t)dt =tAi2(t)|‘: —Ai'z(t)|°: ,

on the other hand from the following integral represemtatisee [22] )

\/_ t s

: 37 3w
Ai(X)=—1e d
(%) an t

we get

lim xAi2(x) =0, lim Ai'(x) =0,

X - 00

it means that
I (x)=-xAi%(x)+ Ai'%(x),
therefore we have

1 (0)= [Ai ¢ xit =Al '2(0)=2;1[
0 P2z
(3)
Lemma.3.1.5.The following integral representation holds true
t t
v J (\/ Zt 2
~+1 _
(aZ _ t2)2 a t

1-K, (@)= | Yot
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© 5 3
2—Ai(x)=£\/gj.u3J2(—2u du
T 30 3 3 1

Proof . 1) Making a change of variabl&’ = u we can write

J W, (Ew) J @ (&0 du
w?+1 2 ,  utl

which is in the form of Stieltjes transform, on théethand the Stieltjes transform is the second
iteration of Laplace transform therefore

j""m‘] (‘(‘de_ L@y & usls s

T &
=ZL{(D"s" e s 1} = E < = :
> {(2) } = 7 x2( ) K9 = K()
L t , N
now it suffices to setv = ——— to get the following relationship

a’-t?

2

a v+l
K,(&) = [———3, =yt
2 ongt a’-t?
’(@ -t%)?

2) From the previous part, we know that

K@= [— ",

—+1 2 —
(aZ _t2)2 a t

)d,

2 3 1
making a change of new variabfe= —X 2 for V = :—3 we have

therefore
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3
2
Ai(x)=1\fK (2x 2)_—(j 2t ik
T\ 3 '[)6 5 —t
making a new change of vanabﬁ =Uu we will have

AI(X)——\/7I

Definition.3.1.6. Let Y, , Y, be differentiable functions. The Wronski#¥ (Y, , Y,) associated

to y,, Y,is defined as

Y1 Y2

W (Y1, Y,) =
v Y1 Y5

=V Yom Vo Ve

Theorem.3.1.7(Abel) If y,, Yy, are two solutions to

y'+p(x)y'+ o x y=0,

then the Wronskian of the two solutions is

—Jx‘p(t)dt
WYL p)(X=W Yy (¥ €

for someX,.

Proof. See [23].

Lemma.3.1.8.The following relationship holds true

Ai (x)Bi'(x) - Bi(x) Ai'(x) ==

Proof. By using theorem 3.1.7 for Airy differentiajuation and p(Xx) =0 then , forx, =O0we
have

W (Ai(x), Bi(x)) = Ai(0)Bi' (0)- Bi(0)A (0)=]—1T[
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3.2 Solution to Airy DE by using L - Integral Transform

Consider a fred] charged particle, moving on thé axis plunged into a uniform electric fielél )
This particle is submitted to the forde =(Q¢& and its potential energy I =—FX . So the

Schrddingerequation is checked by the wave function of the particle

d% 2m
+—(E+ )y =0,
dx* h? ( W

where E is the total energy of the particle. Let us perfone ¢change of variable

1
E \2mF)s
E = X+ 2 I}
F h
where £ is a one dimensional variable. Then the Schrédinger equatioediiced to the Airy
equation ( see [22])

dZy
dé?

+{Y =0l

Definition.3.2.1. The Laplace-type integral transform calléd - transform was introduced by
Yurekli and Sadek in [24], as

LA (1); § :Tlexp(—sztz) f( 9 dt (3.2.)

Although the L, - transform is not nearly as versatile in applicationsams the Fourier and

Laplace transform, there are some areas of applicatiorevitheain be a useful tool. In particular,

it is useful in the calculation of certain integradlving some special integral and differential
equations. If we make a change of variables in the highti side of the above integral (3.2.1), we
get

17 e
LAF(0: 8 ==[e™ () dt
2 0
We have the following relationship between the Laplacensform and thd., -transform

LAF (1) § :%t{ (v §
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Theorem.3.2.2.1f f ,f',....,f ™ are all continuous functions with piecewise continuous

derivativef (" on the intervat >0, and if all functions are of exponential ord@xp€>t?)as
t — oo for some constant then for anyn =1, 2,3, .. the following relationships hold true

L L{gfys=2""L () b2 <" 0)
- 202X )07 ) - G )(O),

2. Lertars =Sl s

Proof. See [25,26].

Example.3.2.3. We have the following relationships

1- L,{J(t —a); s = exp(-& ),

e g o L_am
2- Lye ,5}—22 43xp(4sszrfc(23j

a

L{Erf (at); S} =———,
B (@) 9 =T

r(n+1j
nna - \2
4- Ljthg=—2

Proof. See [8].

3_

Theorem 3.2.4. ( Main theorem ) et us consider differential equation
y'—ax"y=0; a>0.pJ N

It has the following formal solution

y(x)= AVXI, ( fxp5)+Azf| (i_ﬁxm)

Proof. Making a change of variablg = XEV( X) we get the following DE

+1

X" (%) + XV x)—(ax“lﬁ) ( 3=0,
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Pt
again introducing a new variable = \/g.x 2 and manipulating we will have

2
2 1
ZNV"(2)+ z2V( I -| —— | ( Z+= =0,
(2)+ zv( 3 (p+1j( 4)(/)Z
making change of variablesz— Z = twe have
p+1

1

tA"(t) +tv'(t) — (t +(p+1)2

V(1) =0,

1

= t_‘:Trl

which is the Bessel differential equation. Now Mft) u(t) to get the following

relationship, and after simplifying

1 1

p7+l+2 " _ 2 a _pi+1+l , _ —p—+1+2 _
t u'(t) e 1t u'(t)-t u(t)=0.
Y

_i-{-z

Now let us divide both sides of the above equatiott By to get
1 1 1
u"(t)—=u'(t) |- 2(——-1)=u'(t)- u(t)= 0,
[ t p+l1 't
by using the definition oD -derivative for L,.transform, one can rewrite the above equation as

below

2 PV Ut =
t*qu() Z(p+1 Du(t)-u(t)=0,

taking L, transform of both sides of the above relationship andingakse of theorem 3.2.2 we
obtain

-2 a4s'U(9-29 U0)- @ VO - Z(piﬂ—l)[z% W9 (0 U0
inwhichU (s) = L{u(9; § . The above relationship may be rewritten as follows

31! 1 _ 2
2s°U (s)+{452(p—+1+1)+1} U(s)—p—_i_1 ua )
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Assumingu (0") = 0 we have

U's) . 1 p+1

U) 2s° S
integrating the above relationship we can write

InU (s) :4—12—2(%1+1)|ns+ Inc,
s “'p

or
1

( +1 ) 1
U(s)=Cs "™ expt—)
4s

1
Now we substitute the functiog*s’ by its Taylor series expansion

—Z(T 1 d 1 1
U (S) CZ 22n 2n P =C E 1

2n !
nmo NI 2 SZ(“*'E*']-)

taking inversel, -transform to have

2(n+—)

2

u(t) = CZ ,22n I'(n+1+—)
p+

-1
Now it remains to move backward over all of the changinibtes, firstv (t) =t P*u(t)

v (t) :ZCt"Tli 1 1 Eé%} n,
)

Sonif(n+1+——

2
secondt =——7Z then
p+1
1

v(z) :ZC[E jpﬂi 1 Eéij ,
P nOnlr(n+1+—)

p+
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p+l
third z =\/€1X 2 therefore

1 LERN

P+l \p+1 o 2
v(x)=2C( Jax? Jp > 1 T Ja& :
" nIr(n+1+——) P
p+l

1
and finally y = x2v(X)

p+l 2n
p+l p+1 0 , 2
Y= ﬂwﬁ?fﬁwJ y— 1 JaX
= 1 p+1
onf(n+l+—-)
p+1

1
-—1
Without loss of generality and because of having elegartaeship let us considet =2 P*
to have

1
4
P )2 p+l

4 1 X 2
y(x)=\/;z 1 Ja 1 :
onir(n+l+~ )| P
p+1

which may be re written as

&Ffﬁ+%ﬁ_4%@f%

y(x)=AVxI, (= .

p+1 p+l
Airy differential equation arises when consider= 2,a = 1then

y'=xy =0,

and the solution is
y00= AVKLE Xy + AR ) =2 Ar ) BUY+ 3 A- A Al X

3.3 Solution to Airy FDE via Fourier Transform

Definition.3.3.1. The Fourier transform of the functidn(x ) is defined as following

F(@)=F{f(®: x-a = [ { ¥ e™dx
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if the integral exists. The inverse of Fourier transf@gm
1 +00 .
F{F(aa ~x=--[R9e™da
21T,
Problem.3.3.2.Solve the following Airy differential equation

y"—kxy=0; xORIm y ¥=Ilim ¥ X=0.

X — *oo X — +oo

Solution. Taking Fourier transform of both sides of thevee DE we have
a¥ (a)+ikY'(a) =0,

we solve the above first order ODE to get

3

—Cexnli T
Y (@) =Cexpli_-),

taking inverse Fourier transform the following relatiapsk obtained

. a
ia(x+—

C 7 a’ cC¥T ) (ol a?
X)=— | €™ exp(i=—)da=— | e * dr=—| cor (x+— )&
y(x) 2n_jw (i) 271_[0 ﬂ! O3
Lemma.3.3.3.The following relationship holds true

F{Ai(D);t —w} =Zexp(i W?S).

Proof. See [22].

Lemma.3.3.4.The following relationship holds true (see [27])
in(t+x)Ai(t+y)dt:5(x— y). (3.3.1)

Proof. Using Parseval identity, we substitute the Aimycfions in the above formula by their
Fourier transforms

TAi(t +x)Ai(t+y)dt:TéWX Aj(w) ™ Ai(w dw
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in which Ai. (W) =F{Ai(t);t - w} and the bar sign above it indicates the complex
conjugate. By using lemma 3.3.3 we have

3

[AiE+x)Ait+y)d=[e™e? & e dw [ ¥ dwd( x )
Case: Letx =y =0 then we have

in 2(t)dt = +oo,

Problem.3.3.5.Solve the following Airy differential equation
y'+(A+ux)y=0,  y(x)d B,
in which S( R) is the Schwartz space.

Solution. Taking Fourier transform of the above DE and sfyipy we will have

Y'(W) _ - W+
Y(w i

in whichY(w) = H ¥ X, W. Now solve the above DE of the first order to get thiiong
result

it suffices to use the inverse Fourier transform (withess of generality lefA =1)
w AW wi ® 3
1 - wx ) 1 w
y(x):—_[e Hooom dw:—jcosﬂ—w#—)dw
2 Ty u 3u

—00

Problem.3.3.6. Consider the following fractional Airy differential equatiowhich is a
generalization of the previous DE

D¥y +(A+ux)y=0, y(x)0 Y R.

Solution. Again using Fourier transform we have
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W) e wy),
U

which can be rewritten as below

Y'(V\b :__i(/]_'_WZaéan),
Y(w oy

it means that
B 2a+1
Low-Y cosarr)

Y( V\b - Ae—sinm‘r é;( 2a+1

Taking inverse Fourier transform we get the following ltesu

2a+l

e—sinmr i xw _iw +Leosar )
O v
7T —00

One could takeA = & =1to get the solution obtained in the previous problem.

Problem.3.3.7.Consider the following Airy differential equation ¢f +1)—th order
y ™D~ Axy =0, yOS(R, AOR
Solution. Taking Fourier transform we have

Y '(W) B ian+1
Y (w) A

solving the above differential equation to get

ian+2
)

Y ()= Ael n2 |

taking inverse Fourier transform we will have

i (xw - ) Ci(xw-
Y=o e 0D dw=2 [0 aw
7T 00

It can be rewritten as below
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A < —sinLnJrl)WM2 i(><w—cosLnJrl)Wm2
y(x)=2—je 2 n2e 2 2 dw
]T—OO

Case: Letn =1, A=1,1 = 1to get
. 1% w?
A|(x)=—.|'cos(xw+—)dw.
Ty, 3

Problem.3.3.8.Solve the following differential equation

m

y"+Axy'+ gy =0, Ilim y(x)=Ilim y(X=Ilim y( X=0CL
X - *oo X — Foo X — *oo
Solution. Taking Fourier integral transform we will have

(w )Y (W) =AWY'(W)+ Y( W) +u X W=0,

or
Y'w) __ iwe+A-u
Y (w) Aw ]

the solution of the above differential equation is

3

Y (W)= Ae ¥ (Wi - Wl

Therefore taking inverse Fourier transform we have

T w x—W—2 #
y(x) =2 [ & (wi - w) dw
21T,

3.4 Solution to Airy FDE by means of Laplace Transirm

Problem.3.4.1. Consider a very thin homogeneous rod, which could be treated ane
dimensional system, of length L placed in the ground aretjinlibrium. Assume that the rod is
free at its top. Then the horizontal variation of itX¥ndirection is expressed by the following
differential equation

IEx" =-q(L-2)X,
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in which | is the moment of inertial= the Young modulus(] the weight per unit length and

3
the vertical position. Now lex'(z) = u( 2), & = (ij (z= Dtohave

El

W& -¢u(@ =0,

which is an Airy differential equation. Note that the Iloweend is fixed,
x(0)=x"(0)=x"(0)= 0oru(0)=u'(0)= 0.

Taking Laplace transform with respect to the variabiaf the last differential equation we have
s?U(s)- sx0")- X(0)+ U(9=0,
inwhichU (s) = L{u(§); ¢ — § . Therefore we get the following ODE of the first kind

U'(s)+s2U(9 =0. (3.4.3)

The solution of the homogeneous differential equation is cidaas below

U (s) = Ae 3,

therefore using inverse Laplace transform we have

C+ioo s®

WEO=2 [evetas (344
277I Cc-ioo
sinceU (s) = Ae_g has no singularities, one can consider the above integagibn as below
(let A =1)
1 iL s
u@@=——1m [e 3e’ds
270 bt
making a change of variabl&= iW we get
(e e 2
U@ == Je"“Vaw=2[coswe+yaw, (345
21T 2, Ty 3

becausesinX is an odd andcosx is an even function. It means that
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& +o v (&
x(£) :%I(j cosw(7+%)dw} a7 :%j(j coswq +% )d]j dv

= l+jzc{sin(wf+ﬁ) —smﬁ}ﬂ
Ty 3
or
w3 dw

x(z)-—f{sin[w((%)g(z— ) + —)] -sin =}

In addition since there are some kinds of errors in tmgl@ physical phenomenon, it will be a
good idea to model it by a fractional differential equattberefore the following FDE is suitable
for the above mentioned equilibrant rod

IE D**'x =-q(L-2) X,

1

2a+1
Now let x'(z) = u( 2),& = [SI j : ( z= Dto get the following fractional Airy differential

equation

D*u($) - ¢ u(é) =0,

the reader could find the above fractional DE under thealdeitboundary conditions in the
following problem

Problem.3.4.2.Consider the fractional Airy DE

1
°D*U(E) +k°DPUE) +AE UE) =0 ;S <ag<l 0<f<1,
under the conditions
u(0)=u'(0)=0.
Solution. Taking Laplace transform of the above differentiabéion we have

SU(9+ k& U $-4 Y $=0,

we will have

(s +kg)U$=2 U( %

therefore
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S2£I+1 k §?+1
U (s) = Aexpt ).
A2a+1) A B+l

Use the Titchmarsh theorem to get the following relatignéet A =1 )

(re—m)20+1 K ( re—m)ﬁﬂ

u(é) =]—1TT e"“{lm U re'"} dr= —J' € {im( &' v )} dr

it means that

2 +1
< 2a+1+k r? 1

(
u(é) == j e fim(@ ' A e (3.4.6)
On the other hand we know that
2a+1 (2ar+1)InE-1) | (2a+1)7 +1 @B+ 1)In¢ 1) i (B2
(-1)** =e =e 2 (-1ft=e =e 2

substituting in (3.4.6) we get the result as below

l,2a+1 k I,,/3+1
u(é) = —jexp{—rf Aa 1)00 (2r + 12 )I,B i1 cos@ + 1%*

2a+1 B+l
sin r—sin(:r‘.2'+ 1)7—T+5r sinf + 1;1 dr .
A2a +1) 2 ApB+1 2

Special caseLet A =1, 8 =k = 0 to find the solution of the fractional problem asse@uiao
the elastic rod ( mentioned above ) as below

2a+1

ué)== J exp(—r{— cos(Z+ 1;1 X sw{ Z 1 sin@+ %}dr

And then becausei (&)= u({) we have

2a+l

2a+1

cos(Z+ 17(—1 X sn{ Tl sin@+ %}dr}m

changing the order of integrals we will have

2a+l

X(&)= I[I expiri -
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r2:71+1

177 I —cos@@m+1ff . p2ett 7T - r
X(&)== | e 2911 2sin sin(zy + 1 e
) rrJ; {20'+1 ( )E ( %

and therefore

T cosare 2a+1 -r iﬁ(z—L)
x(Z)=1_[ e 2a+l @ l%sin ' sin(2r + 1)7_7 (te (Elj fl[
nm 2a0+1 2 r

Problem.3.4.3.Solve the following system of fractional differentiabetjons

D“u(x,t)- DAv(Xx, t)+a—u(x, )=0
gé ’ O<a1ﬁ<11
D% (x,t)+ D?u(x, t)+a—(x, =0

X

under the given boundary and initial conditions
u(x,0)=v(x,0)=0, 0<x<1 t>0

Solution. By changing a new variablé =U+ iV , the above system of equations will be
changed to

. ow
D% (x,t)+iDAw (X, t) = —— (X, 1),
0X
now taking Laplace transform of the above differentialeeigpn we get
(8" +is)W( x $=- W x B
it means that (assum@ = a+ib)
W (X, 9= A6 =(a i & (cos x&+ Bin ¥&
therefore
U (x,s)=ae™ cosx§ - be& sin x&

V (x,s)= ae” sin x§ + be* cos X6

taking inverse Laplace transform we will have
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C+ioo

u(x,t)=i_ j (ae™ cosx€ — be* sin x8) & d
2m _:

v(x,t)=i_ j (ae™ sin x§€ + be* cos x5) & ¢
2m 5

Special case: Assume that a=L=05u(0f)=0¢)v (Of = ( and therefore
a=1,b = 0to get the following solutions

U(x,s) = g/ cos(x/ ), V(% ¢ &' sin(k 3
to the problem

1

= 1 au _
D2u(x,t)-Dav(Xx, t)+&(x, =0

D& (x,t)+ D2u(x, t)+a—(x, =0
X

Then by using series expansion of the functions sin and coanverite

U(X S) Z( 1) —x«/—(x\/_$2n V( X$ i é\/—( {ﬁml

o (2n)! = 1)'

which can be rewritten as below

1 et grigs
(2n +1)' Js

U(e9=3 0086, Vs 3

(2 )'
using the relations

jf(t)ék(t—a)dt=g—:k f(Ol,, LS s>x=0"1t

we have
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XZ

5 s g (A & xe O
u(x t)= Z (2 )! (Y 7'1t ; (2n)' a4z 2\/77'('[ {)g £20
n+1 2n+1 n+1 . _L 1 )gn+1 On+1 _4(: 5)
S gy 85 S 8 0

(2n+1),l n+l \/ﬂ(t 5) §=0
Problem.3.4.4.Solve the following partial fractional differential eqiaost

aDu(x, t)+ bR u( x, + cu x )+/lg—::=0, o< x1

under the conditions
u(x,0)=0, u(Ot)=t, a,bA0R
Solution. Taking Laplace transform of the above differertiplation with respect tbwe have

U9 - _jase + b + g,
U (x,s)

now let us solve the above DE of first order to get

U(X,S): A(Q e—Ax(as”+b£+o — /‘ $ —ecx]( _é" x)a‘é)( —é} x)oBS)

At this point, using boundary conditiotl(0,t) =t and taking inverse Laplace transform leads to
the following relation

-(Axa)s” e—(/l xb €

———) 0L (——}
s

u(x,t) = e Y E—

it suffices to evaluate the inverse Laplace transfdrtheabove function considering problem 2.8
and then using Laplace transform of convolution of functions
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U(x, 1) = € [ L& Isin(} xg° sinar) &
77'0/7

1 | Lo -modteossns gin b singr)ds)

ey é
—cxA t [
S ( [Feer e sin () xag” sinaﬂ)dq] x
772 o\ o0

[J‘:lze_/b(b"(ﬂcosﬁ”_ t-u) Sln(/.i XQ{/B S”"]ﬁﬂ)df) du
0

Changing the order of integrals one has

—CcXA ©

e 1 —\xan” cosarm .; a
—e SIn(A X sinarmr
— j p ! xay ¥

u(x,t)=

¢

Problem.3.4.5.Consider fractional — order system of differential epunest
D7 yDPLY] [ cly] Lot
Solution. One can rewrite the above system as below
{aD"—cl bDﬂ—cz}[x}:[f (t)}
- B _ ’
D7 =¢c, ,Df-c,|ly] [9(t)
taking Laplace transform we will have

(" -c)X(9+(F- QY = G)s

then using Cramer's rule we get

{(s"—q)X(sw(s‘f— Y 3= Ex

(]31 —/lxbfﬂcosﬁn H B i e—tﬂ_e—tf ]
—e sin(A xb¢: sm,Bﬂ)ﬁdf a.
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X (5= S (F(9-G(9)- A3e+ Gpg
s7(c,-c)+ (G- 9+(6G- 69’

Y (9= SCO-HI+ RIg- G,
s7(c,-¢)*+ ¥(6- Q+(6G- 69

At this point, using invesion formula for Laplace transidp obtain

=t [ SEE-A9- Ryer Gpe

27

st

d
J s -c)rd(s- 9+(ee- 59 -

L1 S(H(9- K3+ Ry GEC
t)=— dsC
YO | S e-c (e gr(ce 69°

Problem.3.4.6.Solve the following system of fractional differentigjuations

%Dtax-"CDtﬂy:_X_e_t . _ —
cCha CRAv — ; x(0)=-1y(0)=1
oDx +2"D/y =-2x -2y

Proof. Taking Laplace transform of the both equations oéyseem we have

a -1
(8" +DX (9)+ Y( 3= s+l
(s” +2)X (s)+2(£+1Y(9=1

which can be solved using Cramer’s rule as below

1 .

s+1

1 26°+1) 3P-s1+2
X(s)=1— 7 Ty SR

s7+1 S s +5" +1

sT+2 2(s" +1

and in a similar way

_1-36+1)-s"(st1)- ¢
YOy e+ 2)
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1
Leta =L =§ then we have

X (s)=

3s-s/s+2 v(g= 130 NGRS
s+ys+1 (s+1)(s++/ s+ 2)

We can assume the above relationships as below

X(9)= F/s) ~ F9=> "2

_1-36"+1)-s(S+1)- S
(s?+1)(s*+ s+ 2)

Y(9=GW9 - q 3

Now by manipulating the above functions and taking inverse tapglansform of them, we will
have

f ()= L‘{F(s)}—%e [sm(fb+2x/—cos(£3t)J a(t),

g(t) = LHG( 9} = -% e_zsin(g J —cos t

Now by using Efros theorem ( see [6] ) we have

jﬁie_;r{% 62 (sin(%srﬁ 2\/_3005{\g>’r }—5 t } or

y(t)=— f { e? sm(\/—r)+ cosr}dr

O

X(t):Z

4 Conclusion

In this work, the Fourier, Laplace ardd, transforms are implemented to solve boundary value

problems of fractional order. The paper is devoted to stuelyafiplications of various integral
transforms to solve different types of Airy differentiguations of integer and fractional order.
They conclude by remarking that many identities involvingous integral transform can be
obtained and some other definite integrals can be evalbgteghplying the results considered
here. It may be concluded that the transform method is eHigient tool in finding exact
solutions for ordinary differential equations and systehslifferential equations of fractional
orders. Finally, illustrative examples for the above noerd transforms are provided.
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