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Abstract

In reliability analysis for improving the system perfomme, the scale parameter of the life
time model has mainly considered to obtain equivalencerfafio the system designs. In this
paper, we propose a new approach through modifying thee gserameter of the Burr type [X
distribution. The proposed approach is applied to the geseras parallel systems. Three
different methods are used to improve the system reliabfi)tyhe reduction method, (ii) the
hot duplication method and (iii) the cold duplication method. Nicakexample is presented
to compare performance of the applied methods, to finitidliions for the equivalence factors
and to illustrate the overall theoretical analysis.
Keywords: Reliability, series-parallel system, equévale factor, burr type x distribution, hot and
cold duplications.

1 Introduction

Reliability evaluation is an important and integral part developing most of the engineering
systems. Operation researches in reliability theamgy mainly concerned with the problem of
having a system perform in the best possible way. Géydta system performance can be
improved using standby redundancy methods. Particularlymbst commonly used of such
methods are:

1. Hot duplication method: in this method, it is assumed tane of the system
components are duplicated in parallel.

2. Cold duplication method: in this method, it is assumed 8whe of the system
components are duplicated in parallel via a perfedthw
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For many different reasons, such as space limitatiod, egh manufacturing costs, using the
redundancy methods may not be the optimal solution for thensyatevhich the minimum size
and weight are overriding consideration; for example, iall#as or other space applications, in
well logging equipment, and pacemakers as similar to édiral applications [1]. In such
applications space or weight limitations may indicate arease in component reliability rather
than redundancy. Then emphasis must be placed on robugh dasitrolling the operation
environment. Since it is not always possible to improveséesy by duplicating some or all of its
components, engineers have adopted the reduction method. In thizdpieis assumed that the
failure rates of some of the system components are rédiyca factop ,0 < p < 1.In applying
the reduction method, the main recurrent problem is the leveltimh the failure rate should be
decreased to achieve the equivalence performance as applyohgptioation methods.

Rade [2] introduced the concept of reliability equivaleno®ugh his researches in statistical
quality controlling. He defined the reliability equivalenéactor as a factor by which a

characteristic of system design has to be multiplredrder to reach equality of a characteristic
for a different standard design. Equivalently, Sart#inhps used the reliability function as the
performance measure of the system reliability.

Beyond the assumptions of constant failure rates modelirtheb Exponential Distribution, Xia
and Zhang [4] considered equivalence factors in Gamnhgbdison. El-Damcese [5] obtained the
reliability equivalence factors of series-paralleltsyss in the Weibull distribution. Mustafa and
El-Faheem [6] found the reliability equivalence factofsa general parallel system with mixture
of life time distributions. Also, Shawky et al. [7] cidered the reliability equivalence for the
Exponentiated Exponential distribution. In the previous mentioned stutieshazard and the
reliability functions are decreases or increases throlghindexed scale parameter. In reliability
general frame analysis, there exists other lifetimeildigtons for which the hazard and reliability
functions are not affected by the scale parameter, airdynadfected by the shape parameter.

Burr type X distribution initially proposed by Burr [8] anavestigated as a generalization of the
Rayleigh distribution by Mudholkar and Srivastava [9]. This tigtionis effectively modeled in
general lifetime data and considered by many authoratesed [10], Ahmad et al. [11], Aludaat
et al. [12], EI-Damcese and Ayoub [13] and Migdadi and AlaBdi4].

The cumulative distribution of the random variable T having ther Bpe X distribution is given
by

F(t;2,0) = (1 — e #*)f t>0,1,0>0 (1)
This implies, the reliability function is given by

RT;1,0)=1—-(1—-e*)  t>0,1,0>0 )
The probability distribution and the hazard functions are givepeaively by

F(t;4,0) =202e (1 —e )01 >0,1,0>0 3)

2026~ M (1-¢=2t%)0-1
1-(1-e—At?)0

h(t; 4,0) =

t>0,1,0>0 4)
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whered is the shape parameter ahds the scale parameter.

Surles and Padgett [15] showed that Burr type X dididhucan be used quite effectively in
modeling strength data. It was also shown by Ragab and Ka&dlahat the hazard rate and the
reliability functions of Burr type X distribution is not aéfed by the scale paramefeand the
hazard rate function is a bathtub typedog 0.5 and it is an increasing function f@ér> 0.5.This
flexibility in the hazard rate function makes burr type Xrabable model for many reliability
systems.

In this paper, the reliability equivalence factors thoe general series-parallel system in the Burr
type X distribution are derived using the reliability ftioo through modifying the shape
parametep by multiplying with a factorp > 0.

The rest of this paper is organized as follows. In sectjahe? reliability and the mean time to
failure (MTTF) of the general series-parallel systara derived. In section 3, the reliability and
MTTF of the improved system using the reduction and the starditya(d cold) are obtained.

The reliability equivalence factors for both hot and cold dagibns are obtained in section 4.
Numerical results for the theoretical findings arespreged through an illustrative Numerical
example in section 5. Limitations of the study and highéidlor future work are included in

section 6.Finally general conclusion of the overall studmngemented in section 7.

2 Series-Parallel Systems

The system considered here, consists of m subsystemctedrie parallel, with subsystem i
consisting ofn; components connected in serieq ferl,2, ..., m. (Fig. 1) shows the diagram of a
series-parallel system.

Block 1 1 2 — — — n
Block 2 1 2 — @ — n,
I I I
I I [
Block m 1 2 — — Ny,

Fig. 1. General series-parallel system

Let R;(t) be the reliability of subsystein andr;;(t) be the reliability of componeitl < j <
n;in subsystemi = 1,2, ...,m. Then

Ri(t) = H;lil 735 (6) (5
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This implies, the system reliability is given by

R = [a - R
i=1

Using (5), the system reliability is
Rs(t) =1 — [T, (1 — [T}, 73;(8) (6)

Assuming that, the system components are independentdantical having the Burr type X
distribution. This implies that

O =1—1-e?),  j=12,..,n,i=12,..,m
Hence, the system reliability becomes
R = 1-TI72,(1 = (1 = (1 —e74))m) )

Using equation (7), the system mean time to failure (MTER)lee derived in the following form

[4].

MTTF = [ Ry(t)dt (8)
3 Thelmproved System

In this section, the reliability functions and the MTTF of thmroved system according to the
reduction and standby redundancy “hot and cold” are derived.

3.1 The Reduction M ethod

In this method, it is assumed that the reliabilitykpidentical components of the subsystem
i,i=1,2,..,mis improved by increasing the reliability function througlultiplying the shape
parameter by a factor, p > 0.Therefore, using (2), the reliability of each of fhecomponents of
the subsystem, i = 1,2, ..., m is given by
Frea(t) = 1 — (1 - e™4")P? ©)
setting:X = (1 — e %) (10)
This implies, the reliability of the system improved bg teduction method is given by

Rrea(t) = 1 TT2; (1 — (1 - X°%)" (1 - x9)" ™) 11§

Therefore, the MTTF of the system becomes
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MTTF = [ Ryeq(t)dt (12)
3.2 Hot Duplication Method

In this method, it is assumed that some of the system aoemps are duplicated in parallel. If
h; ,i=1,2,..,m components are hot duplication, the reliability for eachtlwh; ,i =
1,2,..,m components is given by

n®=@2-(1-(1- e—’“z)e) (1-(1- e—’“z)e) (13)

Using (10) and (2), the reliability function of the systempioved by the hot duplication method
becomes

Ry(t) = 1 — [Ty (1 — (1 — x26)" (1 — x0)"7") (14)
Therefore, the MTTF of the system becomes

MTTF = [ Ry (t)dt (15)
3.3 Cold Duplication Method

In this method, some of the system components are duplicatearallel via a perfect switch.
Following Rade [2], the reliability function of each componenprioved by a cold via perfect
switch can be given by

re(®) = r(t) + [; fOIr(t —y)dy (16)
wherer(t) is the reliability function of the component in the ana system.

If w; units from subsysterin= 1,2, ..., mis improved by the cold duplication, then using (2), (3),
and (10), the reliability function of the system becomes

Re(®) = 1 -T2, (1 - Q(Y,4,6)"1 (1 - X)) n
where,Q(Y,1,0) = [ ye ™" (1 —e™#")071(1 — (1 — e AE=%)%)qdy
The above integral can be numerically evaluated. Therefaa@TTF of the system becomes
MTTF = [ Rc(t)dt (18)

4 Reliability Equivalence Factors

In this section, the reliability equivalence factors bé timproved systems are derived. The
reliability equivalence factor(s) denotedﬁn&) ,D = H,(C) for hot, (cold) duplication is defined
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as that factop by which the failure rate for the set of system conepits should be reduced,or
equivalently the reliability function increased so that caeld obtain a design of the system with
a reliability function of a design obtained from the originatem. For the hot duplicatiqyi‘a)can
be obtained by solving the set of the two equations

Rred(t) =a, Rhot(t) =a

Substituting forR,..4(t), and R, (t)from equation (11) and (14;}1a)can be obtained by solving
the following two nonlinear equations

ki ks
Rrea® =1~ (1— (1 - x7@®) " (1-x0)" ™) =a (19)

Ry(®) =1 - (1— (1-x2)" (1 - x®)"") =« (20)
with respect to X angd(,,
Similarly, for the cold duplicatiopg,, can be obtained by solving the set of the two equations
Rrea(t) = @, R(t)=a

Substituting foR,..4(t), andR.(t) from equation (11) and (17)¢,, can be obtained by solving
the following two nonlinear equations

Rrea() =1~ T (1 - (1 - x00%) " (1 - x0)"™) = 1)

Re(®) = 1— [T, (1 - Q(V,2,0)" (1 -X°)"™) = a (22)

With respect to X and(,
5 Numerical Results

To illustrate the theoretical results obtained in the presvigections. Some numerical results are
given in the following example:

Consider a series-parallel system with= 5 units distributed inm = 2 subsystems wherg = 2
units in the subsystem 1 and = 3 units in the subsystem 2. Assume the scale parameieeds f
to be= 3, and the components are independent and Burr type X idgntcsiributed.

For the values af =0.1,0.5,0.9, and(k,,k,) = (0,1),(1,0),...,(2,3), wherek,, k, are the

number of units in the subsystems 1 and 2 respectivelyrianaroved by the reduction method.
p(ha): The reliability equivalence factor for the hot duption method is obtained for different
configurations of(h,, h,) = (0,1),(1,0) ..., (2,3), whereh,, h,are the numbers of units in the
subsystems 1 and 2 respectively that are improved by thdupbcation method as in (Table 1).
Similarlyp¢,,: The reliability equivalence factor for the cold duplicatimethod is obtained for
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different configurations ofw,,w,) = (0,1), (1,0), ..., (2,3) , wherew;,w, are the numbers of
units in the subsystems 1 and 2 respectively that are irgroy the cold duplication method as
in (Table 2). Values (- -) qf?a), D = H,(C) for hot, (cold) duplications means that it is not
possible to improve the design of the system to be eguit/alith the design of the system which
can be obtained by improving the components according to flaieduplications. Figs. 2 and 3
represent the reliability functions of the systems impdowy hot and cold duplications at
different settings of(hy, h,), (wy, wy).

Table 1. p?u): Thereliability equivalence factor for the hot duplication method

(hyhy)  « (ky, k2)
01y ©2 @©3 o @Y (12 (13 20 21H (22 (23
(0,1) 01 2 1.985 1521 1.473 1.387 1276 1.271 58.21.252 1.203 1.107
05 2 1.950 1.331 1.322 1.320 1.195 1.132 1.251 491.21.117 1.092
09 2 1.321 1.292 1.240 1.231 1191 1.130 1.107 611.01.012 1.011
(0,2) 01 - 2 1.733 - 1.725 1.681 1.601 1.582 24.5 1.427 1.399
05 - 2 1.562 - 1.710 1.485 1.483 1461 1.361 91.2 1.256
09 - 2 1.453 - 1556 1.450 1.329 1.328 1.320 8.2 1.205
(0,3) 01 - - 2 - - - 1.962 1.831 1.758 1.728.682
05 - - 2 - - - 1.795 1780 1.680 1.551 1.483
09 - - 2 - - - 1.782 1756 1570 1.493 1.532
(1,0) 01 - 1.982 1807 2 1.753 1.658 1.608 1574523 1.496 1.375
05 - 1.965 1502 2 1.630 1.450 1.388 1.385 1.321276 1.238
09 - 1510 1.238 2 1.542 1.220 1.217 1216 1215195 1.150
(1,1) 01 - - 1.825 - 2 1.789 1652 1.608 1.592.552 1.502
05 - - 1.650 -- 2 1.648 1451 1501 1.450 1.360.310
09 - - 1521 - 2 1523 1430 1.426 1.421 1.328.251
(1,2) 01 - - 1.962 - - 2 1.768 1745 1.682 226 1.601
05 - - 1.950 - - 2 1.655 1.720 1.630 1.541 49.4
09 - - 1.721 - - 2 1.492 1.681 1552 1.480 70.3
(1,3) 01 - - - - - - 2 - 1.961 1.902 1.834
05 - - - - - - 2 - 1.938 1797 1.656
09 - - - - - - 2 - 1.921 1.850 1.650
(2,0) 01 - - - - - - - 2 1.987 1.901 1.814
05 - - - - - - 1.966 2 1.901 1.765 1.635
09 - - - - - - 1.798 2 1.796 1.689 1.519
2.1) 01 - - - - - - - - 2 1.973 1.825
05 - - - - - - - - 2 1.886 1.689
09 - - - - - - - - 2 1.794 1.598
2.2) 01 - - - - - - - - - 2 1.947
05 - - - - - - - - - 2 1.834
09 - - - - - - - - - 2 1.778
2,3) 01 - - - - - - - - - - 2
05 - - - - - - - - - - 2
09 - - - - - - - - - - 2
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Table 2. pfy,: Thereliability equivalence factor for the cold duplication method

(hy,hy) « (K1, k2)
01 (02 (03 1O @€Y (12 (13 (20 (1) (22 (23
(0,1) 01 2 1675 1321 1.273 1.209 1.175 1.161 58.11.154 1.103 1.008

0.5 2 1552 1316 1.227 1.121
0.9 2 1.318 1.274 1.213 1.122

1165 1.135 1.131171.11.017 1.005
1120 1.118 1.105431.01.011 1.001

0,2) 01 - 2 1.483 - 1426 1.371 1.322 1.286 28.11224 1219
05 - 2 1.461 -- 1.417 1.295 1.281 1.253 1.121 03.21.157
09 - 2 1.352 - 1.358 1.252 1.223 1.119 1.110 81.0 1.075
0,3) 01 - - 2 - - - 1.467 1.401 1.356 1.321.304
05 - - 2 - - - 1.398 1.385 1.370 1.256 1.243
09 - - 2 - - - 1.361 1.310 1.275 1.192 1.176
(1,0) 01 - 1.780 1.583 2 1557 1.482 1.410 1.474343 1.299 1.271
05 - 1.662 1492 2 1434 1.387 1.382 1.378 1320264 1.250
09 - 1.417 1.378 2 1.341 1.220 1.207 1.202 1.115107 1.102
(1.1) 01 - - 1.825 -- 2 1584 1.451 1.408 1322259 1.207
05 - - 1.650 - 2 1548 1.351 1.302 1.258 1.19D115
09 - - 1521 - 2 1.421 1270 1.218 1.201 1.16R111
1.2) 01 - - 1.962 - - 2 1503 1.441 1.387 203 1.203
05 - - 1.950 - - 2 1.485 1.422 1.351 1.312 4.1
09 - - 1.721 - - 2 1.392 1.301 1.257 1.232 29.1
(1.3) 01 - - - - - - 2 - 1.666 1.502 1.432
05 - - - - - - 2 - 1.537 1.495 1.358
09 - - - - - - 2 - 1.424 1.358 1.275
(2,0) 01 - - - - - - - 2 1.782 1.651 1517
05 - - - - - - 1.966 2 1.603 1.468 1.431
09 - - - - - - 1.798 2 1591 1.382 1.311
2.1) 01 - - - - - - - - 2 1.973 1.825
05 - - - - - - - - 2 1.886 1.689
09 - - - - - - - - 2 1.794 1.598
2.2) 01 - - - - - - - - - 2 1.947
05 - - - - - - - - - 2 1.834
09 - - - - - - - - - 2 1.778
(2.3) 01 - - - - - - - - - - 2
05 - - - - - - - - - - 2
09 - - - - - - - - - - 2

From Tables 1 and 2, it appears clearly that:

1 Py, p{‘a) decreases asincreases for different settings 0k, h,), (W, w,).
2. For fixed values of (hl,hz),(wl,wz),p{la), P(a) are decreases as the number of
improved units according to the reduction methg, k,) increases.

w

Itis not possible to improve the system with valuepf , p{‘a) < 1.

4. ltis not possible to obtain equivalence factors with vagieater than 2.
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Fig. 2. Reliability for the system improved by hot duplication of (0, 1), (1, 0), (1, 1), (2, 3)
from the subsystems 1 and 2 respectively and Rs: Thereliability of the original system
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Fig. 3. Reliability for the system improved by cold duplication of (0, 1), (1, 0), (1, 1), (2, 3)
from the subsystems 1 and 2 respectively, and Rs: Thereliability of the original system
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From Figs. 2 and 3, we find that

1) Hot duplication of (0,1) components gives an imgwesign with lowest reliability
function among all of other improved designs whielm be obtained by improving any
other settings of components according to eithéohcold duplications.

2) Hot duplication of (0,1) components gives an imga\wdesign with lowest reliability
function among all of other improved designs whielm be obtained by improving any
other settings of components according to eithéohcold duplications.

3) At level of reliability 0.6, the MTTF increases fno0.48 time units to 0.59 time units by
improving (0,1) components, to 0.615 time unitsifaproving (1,1) components and to
0.713 time units by improving (2,3) components adicg to hot duplication.

4) At level of reliability 0.6, the MTTF increases fmo0.48 time units to 0.62 time units by
improving (0,1) components, to 0.64 time unitsitmproving (1,1) components and to
0.78 time units by improving (2,3) components adoay to cold duplication.

6 Limitations and Future Work

In this study, the shape parameter is investigaieabtain reliability equivalence factors for the
general series parallel systems in Burr type Xrithistion. This is reasonable, since the hazard rate
and the reliability functions of Burr type X diditition are mainly affected by the shape and not
the scale parameter because the hazard rate funstiocreasing when the shape parameter
6 > 0.5. This consideration may be generalized to morerobfathtub hazards lifetimes models
which are frequently used in reliability analysldowever, there exists many other life time
distributions for which neither the hazard rate tlwe reliability functions are affected by the
shape parameter, and hence, modifying the scatemeder and not the shape parameter will be
the subject of concern. Future work may highligbiiser configurations of the system designs,
like non-identical system units, mixed system uyniks out of n systems and complex
configurations systems. The repairing and the reasnice operating processes can also be
implemented using different transition markoviampm@aches. Reliability equivalence for discrete
lifetime's distributions may also be a subject mterest. The analysis of censored and interval
censored data could also be included using Bayesialysis approaches.

7 Conclusion

In this paper, the reliability function is usedahgh modifying the Burr type X shape parameter
as a performance measure to compare the systeabiligfi of different designs. The reliability
equivalence factors of the general series-pargilgiems in Burr type X distribution are obtained.
Three different methods are used to improve théesyseliability: (i) the reduction method, (ii)
the hot duplication method and (iii) the cold doption method. Numerical results for different
system configurations manifest the performancéieftheoretical findings and indicate levels for
the reliability equivalence factorp(y , p?a)obtained by either cold or hot duplications to be
1< Pl p(ha) < 2.Limitations for this study are restricted for tifee's models for which the
hazard and the reliability functions are mainlyeatéd by the shape parameter. Future studies may
extends by considering a more general class dfrfilss models through reliability and survival
analysis issues using different statistical infiéisg methods.
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