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Abstract 
This paper presents the stress resultants of hyperbolic paraboloidal shells using higher order 
shear deformation theory recently developed by Zannon [1]-[3]. The equilibrium equations of mo-
tion use Hamilton’s minimum energy principle for a simply supported cross-ply structure by Zan-
non (TSDTZ) [2] [3]. The results are calculated for orthotropic, two-ply unsymmetrical [90/0] 
shells. The extensional, bending and coupling stiffness parameters are calculated using MATLAB 
algorithm for laminated composite hyperbolic paraboloidal shells. A comparison of the present 
study with other researchers in the literature is given, and is in good agreement. 
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1. Introduction 
The main objective of shell theory is to predict the stress and the displacement arising in an elastic shell in re-
sponse to given forces. Such a prediction is made either by solving a system of partial differential equations or 
by minimizing a functional, which may be defined either over a three-dimensional set or over a two-dimensional 
set, depending on whether the shell is viewed in its reference configuration as a three-dimensional or as a two- 
dimensional body. The three-dimensional theory of shells is obtained simply by replacing the reference confi-
guration of a general body with that of a shell [2]-[4]. 

Tow formulations are used to show equations of motion with required boundary conditions for doubly curved 
deep thick composite [5]-[7]. The first is based upon the formulation that is presented initially by Reddy [8]. The 
second formulation is based upon that of Qatu [1] [9]. Qatu considers the radius of twist in his formulation.  
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The vibration of thick shells has been solved using the first order shear deformation shell theory [5]-[10]. 
Three dimensional theory of elasticity is used for solving theories of shell structures. Thus three dimensional 
analyses of shells are considered to be the most accurate.  

This paper presents Stress resultants becuase hyperbolic paraboloidal shells are determined by deriving the 
dynamic stiffness matrix from the equilibrium equations of motion using Hamilton’s minimum energy principle 
for a simply supported cross-ply structure by Zannon (TSDTZ) [2]-[4]. The results are calculated for orthotropic. 
The extensional, bending and coupling stiffness parameters are calculated using a commercial software package 
(ANSYS). In this formulation, the stiffness parameters are calculated using exact integration (and/or terms trun-
cated to a specific order) of stress resultant equations. In addition, Zannon [2]-[4] considers the radius of twist in 
formulation. The third order polynomials for in-plane displacements in the z-direction are utilized allowing for 
the inclusion of shear deformation and rotary inertia effects (Third order shear deformation theory or (TSDTZ) 
[2]-[4]. 

Exact static and free vibration solutions for isotropic and symmetric and anti-symmetric cross-ply hyperbolic 
shells for different length-to-thickness and length-to-radius ratios are obtained using the above theories. Results 
of both theories are compared with those obtained using a three-dimensional (3D) analysis to test the accuracy 
of the shell theories presented here. Early treatment of composite thick shells (e.g. [5] [11]) includes both shear 
deformation and rotary inertia rotary but fails to include accurate representation of curvature (the z/R terms in 
the stress resultants). 

2. TSDTZ Shell Theory 
The approximation of displacement components using the third-order shear deformation shell theory can be 
written as Zannon (TSDTZ) [2]. 
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where h  is the shell thickness and 
2 2
h hz− ≤ ≤ , 0u , 0v , 0w  are mid-surface displacements of the shell and 

αψ , βψ , zψ  are mid-surface rotations and αϕ , βϕ  are higher order terms rotation of transverse normal.  
Equation (1) constitutes the only assumption needed to reduce 3D elasticity equations in curvilinear coordinates 
to the shell theory by Zannon [2] [3]. The strain-displacement Relationships in the principal coordinates of a 
doubly-curved shell are given in [2] [3]. The stress resultant or the stiffness matrices are given in [2] [3]. Subs-
tituting these stiffness parameters in the Hamilton equation [1]-[5] and simplifying the resulting equations, we 
get the equations of motion and boundary conditions for S2 are given in [2] [3]. 

3. Equation of Motion  
Let us consider the Hyperbolic laminated shell as shown in Figure 1 with length 1a b =  under load per unit 
area, h  is the thickness of the shell. If the load is orthogonal to the surface, then Lame’ parameters (elastic and  

shear modulus) of middle surface 1A B= =  and 1
R
R
β
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=− , 
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=  are substituted in moment and force re- 

sultants [1]-[3] [9] to formulate the Hyperbolic shell equations for TSDTZ. The moment and force resultant eq-
uations are given in [2] [3]. The stress resultant terms are shown in Figure 1. 

Therefore, the displacement mid surface for hyperbolic paraboloidal thick shells is rewritten as [2] [3]: 
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Figure 1. Surface to force and moment resultants of shell form composite structures [1]-[3].                            
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Thus, the Equations of motion (2) for hyperbolic paraboloidal thick shells reduces to [2] [3] 
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4. Numerical Results and Discussion  

To validate the third order shear deformation theory, the values of extensional ( )ijA , bending ( )ijD  and 
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coupling ( )ijB  stiffness parameters [2] [3] are given in Tables 1-3 using the MATLAB algorithm for lami- 

nated composite Hyperbolic thick shells. Thenit is compared with the first order shear deformation theory from 
the literature. There are small discrepancies are seen in the Tables 1-3, which is due to the third order shear de-
formation and the tolerance limitations. Tables 1-3 show the extensional stress, coupling, and bending stiffness 
parameters for [0/90] laminated hyperbolic thick shells. While comparing the various stiffness parameters with 
the existing literature and the present theory [1]-[5] [8]-[11], we see that the TSDTZ approximation is more ac-
curate in in comparison with first order shear deformation theory. 

5. Summary and Conclusion 
TSDTZ offers a more accurate representation of the stiffness parameters and the stress resultant equations. Most 
analyses performed here show that there is an improvement obtained when TSDTZ is used. Also, TSDTZ offers  

 

Table 1. Non-dimensional extensional stiffness matrix for [ ]0 90  laminated hyperbolic thick shells 1
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Table 2. Non-dimensional coupling stiffness matrix for [ ]0 90  laminated hyperbolic thick shells 1
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( )6,6  0 0.016767 −0.016767 0.01543  0.01543  

 

Table 3. Non-dimensional bending stiffness matrix for [ ]0 90  laminated hyperbolic thick shells 1
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( )2,2  0.697091 NA 0.590178 NA 0.62878  

( )6,6  0.041667 0.04217 0.04217 0.04166  0.04166  
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many other advantages in the accurate representations such as extensional, coupling, and stress stiffness para- 

meters, as shown in Tables 1-3 and is mainly due to the inclusion of the term 1 z
R

 + 
 

 in the mathematical 

formulation of third order shear deformation theory. 
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Nomenclature 
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