Reconstruction of Three Dimensional Convex Bodies from the Curvatures of Their Shadows

Rafik Aramyan ${ }^{1,2}$
${ }^{1}$ Russian-Armenian (Slavonic) University, Yerevan, Armenia
${ }^{2}$ Institute of Mathematics Armenian Academy of Sciences, Yerevan, Armenia
Email: rafikaramyan@yahoo.com

Received 22 February 2015; accepted 22 May 2015; published 25 May 2015
Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this article, we study necessary and sufficient conditions for a function, defined on the space of flags to be the projection curvature radius function for a convex body. This type of inverse problems has been studied by Christoffel, Minkwoski for the case of mean and Gauss curvatures. We suggest an algorithm of reconstruction of a convex body from its projection curvature radius function by finding a representation for the support function of the body. We lead the problem to a system of differential equations of second order on the sphere and solve it applying a consistency method suggested by the author of the article.

Keywords

Integral Geometry, Convex Body, Projection Curvature, Support Function

1. Introduction

The problem of reconstruction of a convex body from the mean and Gauss curvatures of the boundary of the body goes back to Christoffel and Minkwoski [1]. Let F be a function defined on 2-dimensional unit sphere S^{2}. The following problems have been studied by E. B. Christoffel: what are necessary and sufficient conditions for F to be the mean curvature radius function for a convex body. The corresponding problem for Gauss curvature is considered by H. Minkovski [1]. W. Blaschke [2] provides a formula for reconstruction of a convex body B from the mean curvatures of its boundary. The formula is written in terms of spherical harmonics.
A. D. Aleksandrov and A. V. Pogorelov generalize these problems for a class of symmetric functions $G\left(R_{1}, R_{2}\right)$ of principal radii of curvatures (see [3]-[5]).

Let $\mathbf{B} \subset \mathbf{R}^{n}$ be a convex body with sufficiently smooth boundary and let $R_{1}(\omega), \cdots, R_{n-1}(\omega)$ signify the principal radii of curvature of the boundary of \mathbf{B} at the point with outer normal direction $\omega \in \mathrm{S}^{n-1}$. In n-dimensional case, a Christoffel-Minkovski problem is posed and solved by Firay [6] and Berg [7] (see also [8]): what are necessary and sufficient conditions for a function F, defined on S^{n-1} to be function $\sum R_{i_{1}}(\omega) \cdots R_{i_{p}}(\omega)$ for a convex body, where $1 \leq p \leq n-1$ and the sum is extended over all increasing sequences i_{1}, \cdots, i_{p} of indices chosen from the set $i=1, \cdots, n-1$.
R. Gardner and P. Milanfar [9] provide an algorithm for reconstruction of an origin-symmetric convex body K from the volumes of its projections.
D. Ryabogin and A. Zvavich [10] reconstruct a convex body of revolution from the areas of its shadows by giving a precise formula for the support function.

In this paper, we consider a similar problem posed for the projection curvature radius function of convex bodies. We lead the problem to a system of differential equations of second order on the sphere and solve it applying a consistency method suggested by the author of the article. The solution of the system of differential equations is itself interesting.

Let $\mathbf{B} \subset \mathbf{R}^{3}$ be a convex body with sufficiently smooth boundary and with positive Gaussian curvature at every point of the boundary $\partial \mathbf{B}$. We need some notations.
S^{2}-the unit sphere in $\mathbf{R}^{3}, S_{\omega} \subset S^{2}$-the great circle with pole at $\omega \in S^{2}, \mathbf{B}(\omega)$-projection of \mathbf{B} onto the plane containing the origin in \mathbf{R}^{3} and orthogonal to $\omega, R\left(\omega^{\perp}, \varphi\right)$-curvature radius of $\partial \mathbf{B}(\omega)$ at the point with outer normal direction $\varphi \in \mathrm{S}_{\omega}$ and call projection curvature radius of \mathbf{B}.
Let F be a positive continuously differentiable function defined on the space of "flags" $\mathcal{F}=\left\{(\omega, \varphi): \omega \in \mathrm{S}^{2}, \varphi \in \mathrm{~S}_{\omega}\right\}$. In this article, we consider:

Problem 1. What are necessary and sufficient conditions for F to be the projection curvature radius function $R\left(\omega^{\perp}, \varphi\right)$ for a convex body?
Problem 2. Reconstruction of that convex body by giving a precise formula for the support function.
Note that one can lead the problem of reconstruction of a convex body by projection curvatures using representation of the support function in terms of mean curvature radius function (see [7]). The approach of the present article is useful for practical point of view, because one can calculate curvatures of projections from the shadows of a convex body. Let's note that it is impossible to calculate mean radius of curvature from the limited number of shadows of a convex body. Also let's note that this is a different approach for such problems, because in the present article we lead the problem to a differential equation of spatial type on the sphere and solve it using a new method (so called consistency method).

The most useful analytic description of compact convex sets is by the support function (see [11]). The support function of \mathbf{B} is defined as

$$
H(x)=\sup _{y \in \mathbf{B}}\langle y, x\rangle, x \in \mathbf{R}^{3} .
$$

Here $\langle\cdot, \cdot\rangle$ denotes the Euclidean scalar product in \mathbf{R}^{3}. The support function of \mathbf{B} is positively homogeneous and convex. Below, we consider the support function H of a convex body as a function on S^{2} (because of the positive homogeneity of H the values on S^{2} determine H completely).
$C^{k}\left(S^{2}\right)$ denotes the space of k times continuously differentiable functions defined on S^{2}. A convex body \mathbf{B} is k-smooth if its support function $H \in C^{k}\left(\mathrm{~S}^{2}\right)$.

Given a function H defined on S^{2}, by $H_{\omega}(\varphi), \varphi \in \mathrm{S}_{\omega}$ we denote the restriction of H onto the circle S_{ω} for $\omega \in \mathrm{S}^{2}$, and call the restriction function of H.

Below, we show (Theorem 1) that Problem 1. is equivalent to the problem of existence of a function H defined on S^{2} such that $H_{\omega}(\cdot)$ satisfies the differential equation

$$
\begin{equation*}
H_{\omega}(\varphi)+\left[H_{\omega}(\varphi)\right]_{\varphi \varphi}^{\prime \prime}=F(\omega, \varphi) \text {, for } \varphi \in \mathrm{S}_{\omega} \tag{1}
\end{equation*}
$$

for every $\omega \in S^{2}$.
Definition 1. If for a given F there exists H defined on S^{2} that satisfies Equation (1), then H is called a solution of Equation (1).

In Equation (1), $H_{\omega}(\varphi)$ is a function defined on the space of an ordered pair orthogonal unit vectors, say e_{1}, e_{2}, (in integral geometry such a pair is a flag and the concept of a flag was first systematically employed by

R.V. Ambartzumian in [12]).

There are two equivalent representations of an ordered pair orthogonal unit vectors e_{1}, e_{2}, dual each other:

$$
\begin{equation*}
(\omega, \varphi) \text { and }(\Omega, \Phi) \tag{2}
\end{equation*}
$$

where $\omega \in \mathrm{S}^{2}$ is the spatial direction of the first vector e_{1}, and φ is the planar direction in S_{ω} coincides with the direction of e_{2}, while $\Omega \in \mathrm{S}^{2}$ is the spatial direction of the second vector e_{2}, and Φ is the planar direction in S_{Ω} coincides with the direction of e_{1}. The second representation we will write by capital letters.

Given a flag function $g(\omega, \varphi)$, we denote by g^{*} the image of g defined by

$$
\begin{equation*}
g^{*}(\Omega, \Phi)=g(\omega, \varphi) \tag{3}
\end{equation*}
$$

where $(\omega, \varphi)^{*}=(\Omega, \Phi)$ (dual each other).
Let G be a function defined on \mathcal{F}. For every $\omega \in \mathrm{S}^{2}$, Equation (1) reduces to a differential equation on the circle S_{ω}.

Definition 2. If $G(\omega, \cdot)$ is a solution of that equation for every $\omega \in \mathrm{S}^{2}$, then G is called a flag solution of Equation (1).

Definition 3. If a flag solution $G(\omega, \varphi)$ satisfies

$$
\begin{equation*}
G^{*}(\Omega, \Phi)=G^{*}(\Omega) \tag{4}
\end{equation*}
$$

(no dependence on the variable Φ), then G is called a consistent flag solution.
There is an important principle: each consistent flag solution G of Equation (1) produces a solution of Equation (1) via the map

$$
\begin{equation*}
G(\omega, \varphi) \rightarrow G^{*}(\Omega, \Phi)=G^{*}(\Omega)=H(\Omega) \tag{5}
\end{equation*}
$$

and vice versa: the restriction functions of any solution of Equation (1) onto the great circles is a consistent flag solution.

Hence, the problem of finding a solution reduces to finding a consistent flag solution.
To solve the latter problem, the present paper applies the consistency method first used in [13]-[15] in an integral equations context.

We denote: $e[\Omega, \Phi]$-the plane containing the origin of \mathbf{R}^{3}, direction $\Omega \in \mathrm{S}^{2}$, Φ determines rotation of the plane around $\Omega, \mathbf{B}[\Omega, \Phi]$ projection of $\mathbf{B} \in \mathcal{B}$ onto the plane $e[\Omega, \Phi], R^{*}(\Omega, \Phi)$-curvature radius of $\partial \mathbf{B}[\Omega, \Phi]$ at the point with outer normal direction $\Omega \in \mathrm{S}^{2}$. It is easy to see that

$$
R^{*}(\Omega, \Phi)=R\left(\omega^{\perp}, \varphi\right)
$$

where (Ω, Φ) is dual to (ω, φ).
Note that in the Problem 1. uniqueness (up to a translation) follows from the classical uniqueness result on Christoffel problem, since

$$
\begin{equation*}
R_{1}(\Omega)+R_{2}(\Omega)=\frac{1}{\pi} \int_{0}^{2 \pi} R^{*}(\Omega, \Phi) \mathrm{d} \Phi \tag{6}
\end{equation*}
$$

Equation (1) has the following geometrical interpretation.
It is known (see [11]) that 2 times continuously differentiable homogeneous function H defined on \mathbf{R}^{3}, is convex if and only if

$$
\begin{equation*}
H_{\omega}(\varphi)+\left[H_{\omega}(\varphi)\right]_{\varphi \varphi}^{\prime \prime} \geq 0 \text { for every } \omega \in \mathrm{S}^{2} \text { and } \varphi \in S_{\omega} \tag{7}
\end{equation*}
$$

where $H_{\omega}(\cdot)$ is the restriction of H onto S_{ω}.
So in case $F>0$, it follows from (7), that if H is a solution of Equation (1) then its homogeneous extension is convex.

It is known from convexity theory that if a homogeneous function H is convex then there is a unique convex body $\mathbf{B} \subset \mathbf{R}^{3}$ with support function H and $F(\omega, \varphi)$ is the projection curvature radius function of \mathbf{B} (see [11]).

The support function of each parallel shifts (translation) of that body \mathbf{B} will again be a solution of Equation (1). By uniqueness, every two solutions of Equation (1) differ by a summand $\langle a, \cdot\rangle$ defined on S^{2}, where
$a \in \mathbf{R}^{3}$. Thus we have the following theorem.
Theorem 1 Let F be a positive function defined on \mathcal{F}. If Equation (1) has a solution H then there exists a convex body \mathbf{B} with projection curvature radius function F, whose support function is H. Every solution of Equation (1) has the form $H(\cdot)+\langle a, \cdot\rangle$, where $a \in \mathbf{R}^{3}$, being the support function of the convex body $\mathbf{B}+a$.

The converse statement is also true. The support function H of a 2 -smooth convex body \mathbf{B} satisfies Equation (1) for $F=R$, where R is the projection curvature radius function of \mathbf{B} (see [16]).

The purpose of the present paper is to find a necessary and sufficient condition that ensures a positive answer to both Problems 1,2 and suggest an algorithm of construction of the body \mathbf{B} by finding a representation of the support function in terms of projection curvature radius function. This happens to be a solution of Equation (1).

Throughout the paper (in particular, in Theorem 2 that follows) we use usual spherical coordinates v, τ for points S^{2} based on a choice of a North Pole and a reference point $\tau=0$ on the equator. The point with coordinates v, τ we will denote by (v, τ), the points $(0, \tau)$ lie on the equator. On S_{ω} we choose anticlockwise direction as positive. On the plane ω^{\perp} containing S_{ω} we consider the Cartesian x and y-axes where the direction of the y-axis \vec{y} is taken to be the projection of the North Pole onto ω^{\perp}. The direction of the x -axis x we take as the reference direction on S_{ω} and call it the East direction. Now we describe the main result.

Theorem 2 Let \mathbf{B} be a 3-smooth convex body with positive Gaussian curvature at every point of $\partial \mathbf{B}$ and R is the projection curvature radius function of \mathbf{B}. Then for $\Omega \in \mathrm{S}^{2}$ chosen as the North pole

$$
\begin{align*}
H(\Omega)= & \frac{1}{4 \pi} \int_{0}^{2 \pi}\left[\int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \varphi\right) \cos \varphi \mathrm{d} \varphi\right] \mathrm{d} \tau \\
& +\frac{1}{8 \pi^{2}} \int_{0}^{2 \pi}\left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \varphi\right)\left((\pi+2 \varphi) \cos \varphi-2 \sin ^{3} \varphi\right) \mathrm{d} \varphi\right] \mathrm{d} \tau \tag{8}\\
& -\frac{1}{2 \pi^{2}} \int_{0}^{\frac{\pi}{2}} \frac{\sin v}{\cos ^{2} v} \mathrm{~d} v \int_{0}^{2 \pi} \mathrm{~d} \tau \int_{0}^{2 \pi} R\left((v, \tau)^{\perp}, \varphi\right) \sin ^{3} \varphi \mathrm{~d} \varphi
\end{align*}
$$

is a solution of Equation (1) for $F=R$. On S_{ω} we measure φ from the East direction.
Remark, that the order of integration in the last integral of (8) cannot be changed.
Obviously Theorem 2 suggests a practical algorithm of reconstruction of convex body from projection curvature radius function R by calculation of support function H.

We turn to Problem 1. Let R be the projection curvature radius function of a convex body \mathbf{B}. Then $F \equiv R$ necessarily satisfies the following conditions:
a) For every $\omega \in S^{2}$ and any reference point on S_{ω}

$$
\begin{equation*}
\int_{0}^{2 \pi} F(\omega, \varphi) \sin \varphi \mathrm{d} \varphi=\int_{0}^{2 \pi} F(\omega, \varphi) \cos \varphi \mathrm{d} \varphi=0 \tag{9}
\end{equation*}
$$

This follows from Equation (1), see also [16].
b) For every direction $\Omega \in S^{2}$ chosen as the North pole

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[F^{*}((v, \tau), \boldsymbol{y})\right]_{v=0}^{\prime} \mathrm{d} \tau=0 \tag{10}
\end{equation*}
$$

where the function F^{*} is the image of F (see (3)) and \boldsymbol{y} is the direction of the y-axis on $(v, \tau)^{\perp}$ (Theorem 5).
Let F be a positive 2 times differentiable function defined on \mathcal{F}. Using (8), we construct a function \bar{F} defined on S^{2} :

$$
\begin{align*}
\bar{F}(\Omega)= & \frac{1}{4 \pi} \int_{0}^{2 \pi}\left[\int_{0}^{\frac{\pi}{2}} F((0, \tau), \varphi) \cos \varphi \mathrm{d} \varphi\right] \mathrm{d} \tau \\
& +\frac{1}{8 \pi^{2}} \int_{0}^{2 \pi}\left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} F((0, \tau), \varphi)\left((\pi+2 \varphi) \cos \varphi-2 \sin ^{3} \varphi\right) \mathrm{d} \varphi\right] \mathrm{d} \tau \tag{11}\\
& -\frac{1}{2 \pi^{2}} \int_{0}^{\frac{\pi}{2}} \frac{\sin v}{\cos ^{2} v} \mathrm{~d} v \int_{0}^{2 \pi} \mathrm{~d} \tau \int_{0}^{2 \pi} F((v, \tau), \varphi) \sin ^{3} \varphi \mathrm{~d} \varphi
\end{align*}
$$

Note that the last integral converges if the condition (10) is satisfied.

Theorem 3 A positive 2 times differentiable function F defined on \mathcal{F} represents the projection curvature radius function of some convex body \mathbf{B} if and only if F satisfies the conditions (9), (10) and the extension (to \mathbf{R}^{3}) of the function F defined by (11) is convex.

2. The Consistency Condition

We fix $\omega \in \mathrm{S}^{2}$ and try to solve Equation (1) as a differential equation of second order on the circle S_{ω}. We start with two results from [16].
a) For any smooth convex domain D in the plane

$$
\begin{equation*}
h(\varphi)=\int_{0}^{\varphi} R(\psi) \sin (\varphi-\psi) \mathrm{d} \psi \tag{12}
\end{equation*}
$$

where $h(\varphi)$ is the support function of D with respect to a point $s \in \partial D$. In (12) we measure φ from the normal direction at $s, R(\psi)$ is the curvature radius of ∂D at the point with normal direction ψ.
b) (12) is a solution of the following differential equation

$$
\begin{equation*}
R(\varphi)=h(\varphi)+h^{\prime \prime}(\varphi) \tag{13}
\end{equation*}
$$

One can easy verify that (also it follows from (13) and (12))

$$
\begin{equation*}
G(\omega, \varphi)=\int_{0}^{\varphi} F(\omega, \psi) \sin (\varphi-\psi) \mathrm{d} \psi, \tag{14}
\end{equation*}
$$

is a flag solution of Equation (1).
Theorem 4 Every flag solution of Equation (1) has the form

$$
\begin{equation*}
g(\omega, \varphi)=\int_{0}^{\varphi} F(\omega, \psi) \sin (\varphi-\psi) \mathrm{d} \psi+C(\omega) \cos \varphi+S(\omega) \sin \varphi \tag{15}
\end{equation*}
$$

where C_{n} and S_{n} are some real coefficients.
Proof of Theorem 4. Every continuous flag solution of Equation (1) is a sum of $G+g_{0}$, where g_{0} is a flag solution of the corresponding homogeneous equation:

$$
\begin{equation*}
H_{\omega}(\varphi)+\left[H_{\omega}(\varphi)\right]_{\varphi \varphi}^{\prime \prime}=0, \varphi \in \mathrm{~S}_{\omega} \tag{16}
\end{equation*}
$$

for every $\omega \in \mathrm{S}^{2}$. We look for the general flag solution of Equation (16) in the form of a Fourier series

$$
\begin{equation*}
g_{0}(\omega, \varphi)=\sum_{n=0,1,2, \cdots}\left[C_{n}(\omega) \cos n \varphi+S_{n}(\omega) \sin n \varphi\right] . \tag{17}
\end{equation*}
$$

After substitution of (17) into (16) we obtain that $g_{0}(\omega, \varphi)$ satisfies (16) if and only if

$$
g_{0}(\omega, \varphi)=C_{1}(\omega) \cos \varphi+S_{1}(\omega) \sin \varphi .
$$

Now we try to find functions C and S in (15) from the condition that g satisfies (4). We write $g(\omega, \varphi)$ in dual coordinates i.e. $g(\omega, \varphi)=g^{*}(\Omega, \Phi)$ and require that $g^{*}(\Omega, \Phi)$ should not depend on Φ for every $\Omega \in S^{2}$, i.e. for every $\Omega \in S^{2}$

$$
\begin{equation*}
\left(g^{*}(\Omega, \Phi)\right)_{\Phi}^{\prime}=(G(\omega, \varphi)+C(\omega) \cos \varphi+S(\omega) \sin \varphi)_{\Phi}^{\prime}=0 \tag{18}
\end{equation*}
$$

where $G(\omega, \varphi)$ was defined in (14).
Here and below $(\cdot)_{\Phi}^{\prime}$ denotes the derivative corresponding to right screw rotation around Ω. Differentiation with use of expressions (see [14])

$$
\begin{equation*}
\tau_{\Phi}^{\prime}=\frac{\sin \varphi}{\cos v}, \varphi_{\Phi}^{\prime}=-\tan v \sin \varphi, v_{\Phi}^{\prime}=-\cos \varphi \tag{19}
\end{equation*}
$$

after a natural grouping of the summands in (18), yields the Fourier series of $-(G(\omega, \varphi))_{\Phi}^{\prime}$. By uniqueness of the Fourier coefficients

$$
\begin{gather*}
(C(\omega))_{v}^{\prime}+\frac{(S(\omega))_{\tau}^{\prime}}{\cos v}+\tan v C(\omega)=\frac{1}{\pi} \int_{0}^{2 \pi} A(\omega, \varphi) \cos 2 \varphi \mathrm{~d} \varphi \\
(C(\omega))_{v}^{\prime}-\frac{(S(\omega))_{\tau}^{\prime}}{\cos v}-\tan v C(\omega)=\frac{1}{2 \pi} \int_{0}^{2 \pi} A(\omega, \varphi) \mathrm{d} \varphi \\
(S(\omega))_{v}^{\prime}-\frac{(C(\omega))_{\tau}^{\prime}}{\cos v}+\tan v S(\omega)=\frac{1}{\pi} \int_{0}^{2 \pi} A(\omega, \varphi) \sin 2 \varphi \mathrm{~d} \varphi, \tag{20}
\end{gather*}
$$

where

$$
\begin{equation*}
A(\omega, \varphi)=\int_{0}^{\varphi}\left[F(\omega, \psi)_{\Phi}^{\prime} \sin (\varphi-\psi)+F(\omega, \psi) \cos (\varphi-\psi) \varphi_{\Phi}^{\prime}\right] \mathrm{d} \psi \tag{21}
\end{equation*}
$$

3. Averaging

Let H be a solution of Equation (1), i.e. restriction of H onto the great circles is a consistent flag solution of Equation (1). By Theorem 1 there exists a convex body $\mathbf{B} \in \mathcal{B}$ with projection curvature radius function $R=F$, whose support function is H.

To calculate $H(\Omega)$ for a $\Omega \in \mathrm{S}^{2}$ we take Ω for the North Pole of S^{2}. Returning to the Formula (15) for every $\omega=(0, \tau) \in \mathrm{S}_{\Omega}$ we have

$$
\begin{equation*}
H(\Omega)=\int_{0}^{\frac{\pi}{2}} R\left(\omega^{\perp}, \psi\right) \sin \left(\frac{\pi}{2}-\psi\right) \mathrm{d} \psi+S(\omega) \tag{22}
\end{equation*}
$$

We integrate both sides of (22) with respect to uniform angular measure $\mathrm{d} \tau$ over $[0,2 \pi)$ to get

$$
\begin{equation*}
2 \pi H(\Omega)=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \psi\right) \cos \psi \mathrm{d} \psi \mathrm{~d} \tau+\int_{0}^{2 \pi} S((0, \tau)) \mathrm{d} \tau \tag{23}
\end{equation*}
$$

Now the problem is to calculate

$$
\begin{equation*}
\int_{0}^{2 \pi} S((0, \tau)) \mathrm{d} \tau=\bar{S}(0) \tag{24}
\end{equation*}
$$

We are going to integrate both sides of (20) and (21) with respect to $\mathrm{d} \tau$ over $[0,2 \pi)$. For $\omega=(v, \tau)$, where $v \in\left[0, \frac{\pi}{2}\right)$ and $\tau \in(0,2 \pi)$ we denote

$$
\begin{gather*}
\bar{S}(v)=\int_{0}^{2 \pi} S((v, \tau)) \mathrm{d} \tau \tag{25}\\
\pi A(v)=\int_{0}^{2 \pi} \mathrm{~d} \tau \int_{0}^{2 \pi}\left[\int_{0}^{\varphi}\left[R\left(\omega^{\perp}, \psi\right)_{\Phi}^{\prime} \sin (\varphi-\psi)+R\left(\omega^{\perp}, \psi\right) \cos (\varphi-\psi) \varphi_{\Phi}^{\prime}\right] \mathrm{d} \psi\right] \sin 2 \varphi \mathrm{~d} \varphi \tag{26}
\end{gather*}
$$

Integrating both sides of (20) and (21) and taking into account that

$$
\int_{0}^{2 \pi}(C(v, \tau))_{\tau}^{\prime} \mathrm{d} \tau=0
$$

for $v \in[0, \pi / 2)$ we get

$$
\begin{equation*}
\overline{S^{\prime}}(v)+\tan v \bar{S}(v)=A(v) \tag{27}
\end{equation*}
$$

i.e. a differential equation for the unknown coefficient $\bar{S}(v)$.

We have to find $\bar{S}(0)$ given by (24). It follows from (27) that

$$
\begin{equation*}
\left(\frac{\bar{S}(v)}{\cos v}\right)=\frac{A(v)}{\cos v} \tag{28}
\end{equation*}
$$

Integrating both sides of (5.1) with respect to $\mathrm{d} v$ over $[0, \pi / 2)$ we obtain

$$
\begin{equation*}
\bar{S}(0)=\left.\frac{\bar{S}(v)}{\cos v}\right|_{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \frac{A(v)}{\cos v} \mathrm{~d} v \tag{29}
\end{equation*}
$$

Now, we are going to calculate $\left.\frac{\bar{S}(v)}{\cos v}\right|_{\frac{\pi}{2}}$.
It follows from (15) that

$$
\begin{align*}
\pi \bar{S}(v) & \left.=\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left[H_{\omega}(\varphi)-\int_{0}^{\varphi} R\left(\omega^{\perp}, \psi\right)\right) \sin (\varphi-\psi) \mathrm{d} \psi\right] \sin \varphi \mathrm{d} \varphi \mathrm{~d} \tau \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} H_{\omega}(\varphi) \sin \varphi \mathrm{d} \varphi \mathrm{~d} \tau-\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} R\left(\omega^{\perp}, \psi\right)((2 \pi-\psi) \cos \psi+\sin \psi) \mathrm{d} \psi \mathrm{~d} \tau \tag{30}
\end{align*}
$$

Let $\varphi \in \mathrm{S}_{\omega}$ be the direction that corresponds to $\varphi \in[0,2 \pi)$, for $\omega=(v, \tau)$. As a point of S^{2}, let φ have spherical coordinates u, t with respect to Ω. By the sinus theorem of spherical geometry

$$
\begin{equation*}
\cos v \sin \varphi=\sin u \tag{31}
\end{equation*}
$$

From (31), we get

$$
\begin{equation*}
(u)_{v=\frac{\pi}{2}}^{\prime}=-\sin \varphi . \tag{32}
\end{equation*}
$$

Fixing τ and using (32) we write a Taylor formula at a neighborhood of the point $v=\pi / 2$:

$$
\begin{equation*}
H_{(v, \tau)}(\varphi)=H((0, \varphi+\tau))+H_{v}^{\prime}((0, \varphi+\tau)) \sin \varphi\left(\frac{\pi}{2}-v\right)+o\left(\frac{\pi}{2}-v\right) \tag{33}
\end{equation*}
$$

Similarly, for $\psi \in[0,2 \pi)$ we get

$$
\begin{align*}
R\left((v, \tau)^{\perp}, \psi\right) & =R\left(\left(\frac{\pi}{2}, \tau\right)^{\perp}, \psi+\tau\right) \tag{34}\\
& +R_{v}^{\prime}\left(\left(\frac{\pi}{2}, \tau\right)^{\perp}, \psi+\tau\right) \sin \psi\left(\frac{\pi}{2}-v\right)+o\left(\frac{\pi}{2}-v\right)
\end{align*}
$$

Substituting (33) and (34) into (30) and taking into account the easily establish equalities

$$
\int_{0}^{2 \pi} \int_{0}^{2 \pi} H((0, \varphi+\tau)) \sin \varphi \mathrm{d} \varphi \mathrm{~d} \tau=0
$$

and

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} R\left(\left(\frac{\pi}{2}, \tau\right)^{\perp}, \psi+\tau\right)((2 \pi-\psi) \cos \psi+\sin \psi) \mathrm{d} \psi \mathrm{~d} \tau=0 \tag{35}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\lim _{v \rightarrow \frac{\pi}{2}} \frac{\bar{S}(v)}{\cos v}= & \frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} H_{v}^{\prime}((0, \varphi+\tau)) \sin ^{2} \varphi \mathrm{~d} \varphi \mathrm{~d} \tau \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} R_{v}^{\prime}\left(\left(\frac{\pi}{2}, \tau\right)^{\perp}, \psi+\tau\right) \sin \psi((2 \pi-\psi) \cos \psi+\sin \psi) \mathrm{d} \psi \mathrm{~d} \tau \tag{36}\\
= & \int_{0}^{2 \pi} H_{v}^{\prime}((0, \tau)) \mathrm{d} \tau-\frac{3}{4} \int_{0}^{2 \pi}\left[R^{*}((v, \tau), \boldsymbol{y})\right]_{v=0}^{\prime} \mathrm{d} \tau
\end{align*}
$$

Theorem 5 For every 3-smooth convex body $\mathbf{B} \in \mathcal{B}$ and any direction $\Omega \in \mathrm{S}^{2}$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[R^{*}((v, \tau), y)\right]_{v=0}^{\prime} \mathrm{d} \tau=0 \tag{37}
\end{equation*}
$$

where \boldsymbol{y} is the direction of the y-axis on $(v, \tau)^{\perp}$.
Proof of Theorem 5. Using spherical geometry, one can prove that (see also (1))

$$
\begin{align*}
{\left[R^{*}((v, \tau), y)\right]_{v=0}^{\prime} } & =\left[H((v, \tau))+H_{\varphi \varphi}^{\prime \prime}((v, \tau))\right]_{v=0} \\
& =\left[H((v, \tau))+H_{\tau \tau}^{\prime \prime} \frac{1}{\cos ^{2} v}-H_{v}^{\prime} \tan v\right]_{v=0} \tag{38}\\
& =\left[H_{\tau \tau}^{\prime \prime}\right]_{v=0}^{\prime}
\end{align*}
$$

where H is the support function of \mathbf{B}. Integrating (38), we get

$$
\int_{0}^{2 \pi}\left[R^{*}((v, \tau), y)\right]_{v=0}^{\prime} \mathrm{d} \tau=\int_{0}^{2 \pi}\left[H_{\tau \tau}^{\prime \prime}\right]_{v=0}^{\prime} \mathrm{d} \tau=0
$$

4. A Representation for Support Functions of Convex Bodies

Let $\mathbf{B} \in \mathcal{B}$ be a convex body and $Q \in \mathbf{R}^{3}$. By H_{Q} we denote the support function of \mathbf{B} with respect to Q.
Theorem 6 Given a 2-smooth convex body $\mathbf{B} \in \mathcal{B}$, there exists a point $O^{*} \in \mathbf{R}^{3}$ such that for every $\Omega \in \mathrm{S}^{2}$ chosen as the North pole

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[H_{o^{*}}((v, \tau))\right]_{v=0} \mathrm{~d} \tau=0 \tag{39}
\end{equation*}
$$

Proof of Theorem 6. For a given \mathbf{B} and a point $Q \in \mathbf{R}^{3}$, by K_{Q} we denote the following function defined on S^{2}

$$
K_{Q}(\Omega)=\int_{0}^{2 \pi}\left[H_{Q}((v, \tau))\right]_{v=0} \mathrm{~d} \tau
$$

Clearly, K_{Q} is a continuous odd function with maximum $\bar{K}(Q)$:

$$
\bar{K}(Q)=\max _{\Omega \in \mathrm{S}^{2}} K_{Q}(\Omega)
$$

It is easy to see that $\bar{K}(Q) \rightarrow \infty$ for $|Q| \rightarrow \infty$. Since $\bar{K}(Q)$ is continuous, so there is a point O^{*} for which

$$
\bar{K}\left(O^{*}\right)=\min \bar{K}(Q)
$$

Let Ω^{*} be a direction of maximum now assumed to be unique, i.e.

$$
\bar{K}\left(O^{*}\right)=\max _{\Omega \in \mathrm{S}^{2}} K_{o^{*}}(\Omega)=K_{o^{*}}\left(\Omega^{*}\right)
$$

If $\bar{K}\left(O^{*}\right)=0$ the theorem is proved. For the case $\bar{K}\left(O^{*}\right)=a>0$ let $O^{* *}$ be the point for which $\boldsymbol{O}^{*} \boldsymbol{O}^{* * *}=\varepsilon \Omega^{*}$. It is easy to demonstrate that $H_{0^{*+}}(\Omega)=H_{0^{*}}(\Omega)-\varepsilon\left(\Omega, \Omega^{*}\right)$, hence for a small $\varepsilon>0$ we find that $\bar{K}\left(O^{* *}\right)=a-2 \pi \varepsilon$, contrary to the definition of O^{*}. So $\bar{K}\left(O^{*}\right)=0$. For the case where there are two or more directions of maximum one can apply a similar argument.

Now we take the point O^{*} of the convex body \mathbf{B} for the origin of \mathbf{R}^{3}. Below $H_{0^{*}}$, we will simply denote by H.

By Theorem 6 and Theorem 5, we have the boundary condition (see (36))

$$
\begin{equation*}
\left.\frac{\bar{S}(v)}{\cos v}\right|_{\frac{\pi}{2}}=0 \tag{40}
\end{equation*}
$$

Substituting (29) into (23) we get

$$
\begin{align*}
2 \pi H(\Omega)= & \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \psi\right) \cos \psi \mathrm{d} \psi \mathrm{~d} \tau-\int_{0}^{\frac{\pi}{2}} \frac{A(v)}{\cos v} \mathrm{~d} v \\
= & \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \psi\right) \cos \psi \mathrm{d} \psi \mathrm{~d} \tau-\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} v}{\cos v} \tag{41}\\
& \times \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left[\int_{0}^{\varphi}\left[R\left(\omega^{\perp}, \psi\right)_{\Phi}^{\prime} \sin (\varphi-\psi)+R\left(\omega^{\perp}, \psi\right) \cos (\varphi-\psi) \varphi_{\Phi}^{\prime}\right] \mathrm{d} \psi\right] \sin 2 \varphi \mathrm{~d} \varphi \mathrm{~d} \tau .
\end{align*}
$$

Using expressions (19) and integrating by $\mathrm{d} \varphi$ yields

$$
\begin{align*}
2 \pi H(\Omega)= & \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \psi\right) \cos \psi \mathrm{d} \psi \mathrm{~d} \tau \\
& +\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} v}{\cos v} \int_{0}^{2 \pi} \mathrm{~d} \tau \int_{0}^{2 \pi}\left[R\left(\omega^{\perp}, \psi\right)_{v}^{\prime} I+R\left(\omega^{\perp}, \psi\right) \tan v I I\right] \mathrm{d} \psi \tag{42}
\end{align*}
$$

where

$$
I I=\int_{\psi}^{2 \pi} \sin 2 \varphi \cos (\varphi-\psi) \sin \varphi \mathrm{d} \varphi=\left[\frac{(2 \pi-\psi) \cos \psi}{4}+\frac{\sin \psi\left(1+\sin ^{2} \psi\right)}{4}-\sin ^{3} \psi\right],
$$

and

$$
I=\int_{\psi}^{2 \pi} \sin 2 \varphi \sin (\varphi-\psi) \cos \varphi \mathrm{d} \varphi=\left[\frac{(2 \pi-\psi) \cos \psi}{4}+\frac{\sin \psi\left(1+\sin ^{2} \psi\right)}{4}\right] .
$$

Integrating by parts (42) we get

$$
\begin{align*}
2 \pi H(\Omega)= & \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \psi\right) \cos \psi \mathrm{d} \psi \mathrm{~d} \tau-\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \mathrm{~d} v \int_{0}^{2 \pi} \mathrm{~d} \tau \int_{0}^{2 \pi} R\left(\omega^{\perp}, \psi\right) \frac{\sin v \sin ^{3} \psi}{\cos ^{2} v} \mathrm{~d} \psi \\
& -\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \mathrm{~d} \tau \int_{0}^{2 \pi} R\left((0, \tau)^{\perp}, \psi\right) I \mathrm{~d} \psi+\lim _{a \rightarrow \frac{\pi}{2}} \frac{1}{\pi \cos a} \int_{0}^{\frac{\pi}{2}} \mathrm{~d} \tau \int_{0}^{2 \pi} R\left((a, \tau)^{\perp}, \psi\right) I \mathrm{~d} \psi . \tag{43}
\end{align*}
$$

Using (34), Theorem 5 and taking into account that

$$
\int_{0}^{2 \pi} I \mathrm{~d} \psi=0
$$

we get

$$
\begin{align*}
2 \pi H(\Omega)= & \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} R\left((0, \tau)^{\perp}, \psi\right) \cos \psi \mathrm{d} \psi \mathrm{~d} \tau-\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \mathrm{~d} v \int_{0}^{2 \pi} \mathrm{~d} \tau \int_{0}^{2 \pi} R\left(\omega^{\perp}, \psi\right) \frac{\sin v \sin ^{3} \psi}{\cos ^{2} v} \mathrm{~d} \psi \tag{44}\\
& -\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \mathrm{~d} \tau \int_{0}^{2 \pi} R\left((0, \tau)^{\perp}, \psi\right) I \mathrm{~d} \psi .
\end{align*}
$$

From (44), using (9) we obtain (8). Theorem 2 is proved.

5. Proof of Theorem 3

Necessity: if F is the projection curvature radius function of a convex body $\mathbf{B} \in \mathcal{B}$, then it satisfies (9) (see [16]), the condition (10) (Theorem 5) and F defined by (11) is convex since it is the support function of \mathbf{B} (Theorem 2).

Sufficiency: let F be a positive 2 times differentiable function defined on \mathcal{F} satisfies the conditions (9), (10). We construct the function F on S^{2} defined by (11). There exists a convex body \mathbf{B} with support function F since its extension is a convex function. Also Theorem 2 implies that F is the projection curvature radius of \mathbf{B}.

Funding

This work was partially supported by State Committee Science MES RA, in frame of the research project SCS

13-1A244.

References

[1] Minkowski, H. (1911) Theorie der konvexen Korper, insbesondere Begrundung ihresb Oberflachenbergriffs. Ges. Abh., 2, Leipzig, Teubner, 131-229.
[2] Blaschke, W. (1923) Vorlesungen uber Differentialgeometrie. II. Affine Differentialgeometrie, Springer-Verlag, Berlin.
[3] Pogorelov, A.V. (1969) Exterior Geometry of Convex Surfaces [in Russian]. Nauka, Moscow.
[4] Alexandrov, A.D. (1956) Uniqueness Theorems for Surfaces in the Large [in Russian]. Vesti Leningrad State University, 19, 25-40.
[5] Bakelman, I.Ya., Verner, A.L. and Kantor, B.E. (1973) Differential Geometry in the Large [in Russian]. Nauka, Moskow.
[6] Firey, W.J. (1970) Intermediate Christoffel-Minkowski Problems for Figures of Revolution. Israel Journal of Mathematics, 8, 384-390. http://dx.doi.org/10.1007/BF02798684
[7] Berg, C. (1969) Corps convexes et potentiels spheriques. Matematisk-fysiske Meddelelser Udgivet af. Det Kongelige Danske Videnskabernes Selska, 37, 64.
[8] Wiel, W. and Schneider, R. (1983) Zonoids and Related Topics. In: Gruber, P. and Wills, J., Eds., Convexity and Its Applications, Birkhauser, Basel, 296-317.
[9] Gardner R.J. and Milanfar, P. (2003) Reconstruction of Convex Bodies from Brightness Functions. Discrete \& Computational Geometry, 29, 279-303. http://dx.doi.org/10.1007/s00454-002-0759-2
[10] Ryabogin, D. and Zvavich, A. (2004) Reconstruction of Convex Bodies of Revolution from the Areas of Their Shadows. Archiv der Mathematik, 5, 450-460. http://dx.doi.org/10.1007/s00454-002-0759-2
[11] Leichtweiz, K. (1980) Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin. http://dx.doi.org/10.1007/978-3-642-95335-4
[12] Ambartzumian, R.V. (1990) Factorization Calculus and Geometrical Probability. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9781139086561
[13] Aramyan, R.H. (2001) An Approach to Generalized Funk Equations I [in Russian]. Izvestiya Akademii Nauk Armenii. Matematika [English Translation: Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)], 36, 47-58.
[14] Aramyan, R.H. (2010) Generalized Radon Transform on the Sphere. Analysis International Mathematical Journal of Analysis and Its Applications, 30, 271-284.
[15] Aramyan, R.H. (2010) Solution of an Integral Equation by Consistency Method. Lithuanian Mathematical Journal, 50, 133-139.
[16] Blaschke, W. (1956) Kreis und Kugel, (Veit, Leipzig). 2nd Edition, De Gruyter, Berlin.

