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Abstract 
In this article, we study necessary and sufficient conditions for a function, defined on the space of 
flags to be the projection curvature radius function for a convex body. This type of inverse prob-
lems has been studied by Christoffel, Minkwoski for the case of mean and Gauss curvatures. We 
suggest an algorithm of reconstruction of a convex body from its projection curvature radius func-
tion by finding a representation for the support function of the body. We lead the problem to a 
system of differential equations of second order on the sphere and solve it applying a consistency 
method suggested by the author of the article. 
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1. Introduction 
The problem of reconstruction of a convex body from the mean and Gauss curvatures of the boundary of the 
body goes back to Christoffel and Minkwoski [1]. Let F be a function defined on 2-dimensional unit sphere 2S . 
The following problems have been studied by E. B. Christoffel: what are necessary and sufficient conditions for 
F to be the mean curvature radius function for a convex body. The corresponding problem for Gauss curvature is 
considered by H. Minkovski [1]. W. Blaschke [2] provides a formula for reconstruction of a convex body B 
from the mean curvatures of its boundary. The formula is written in terms of spherical harmonics. 

A. D. Aleksandrov and A. V. Pogorelov generalize these problems for a class of symmetric functions 
( )1 2,G R R  of principal radii of curvatures (see [3]-[5]). 
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Let n⊂B R  be a convex body with sufficiently smooth boundary and let ( ) ( )1 1, , nR Rω ω−  signify the 
principal radii of curvature of the boundary of B at the point with outer normal direction 1Snω −∈ . In n-dimen- 
sional case, a Christoffel-Minkovski problem is posed and solved by Firay [6] and Berg [7] (see also [8]): what are 
necessary and sufficient conditions for a function F, defined on 1Sn−  to be function ( ) ( )

1 pi iR Rω ω∑   for a 
convex body, where 1 1p n≤ ≤ −  and the sum is extended over all increasing sequences 1, , pi i

 of indices 
chosen from the set 1, , 1i n= −

. 
R. Gardner and P. Milanfar [9] provide an algorithm for reconstruction of an origin-symmetric convex body 

K from the volumes of its projections. 
D. Ryabogin and A. Zvavich [10] reconstruct a convex body of revolution from the areas of its shadows by 

giving a precise formula for the support function. 
In this paper, we consider a similar problem posed for the projection curvature radius function of convex bo-

dies. We lead the problem to a system of differential equations of second order on the sphere and solve it apply-
ing a consistency method suggested by the author of the article. The solution of the system of differential equa-
tions is itself interesting. 

Let 3⊂B R  be a convex body with sufficiently smooth boundary and with positive Gaussian curvature at 
every point of the boundary ∂B . We need some notations. 

2S —the unit sphere in 3R , 2S Sω ⊂ —the great circle with pole at 2Sω∈ , ( )ωB —projection of B onto 
the plane containing the origin in 3R  and orthogonal to ω , ( ),R ω ϕ⊥ —curvature radius of ( )ω∂B  at the 
point with outer normal direction Sωϕ ∈  and call projection curvature radius of B. 

Let F be a positive continuously differentiable function defined on the space of “flags”
( ){ }2, : S , Sωω ϕ ω ϕ= ∈ ∈ . In this article, we consider: 

Problem 1. What are necessary and sufficient conditions for F to be the projection curvature radius function 
( ),R ω ϕ⊥  for a convex body? 
Problem 2. Reconstruction of that convex body by giving a precise formula for the support function. 
Note that one can lead the problem of reconstruction of a convex body by projection curvatures using repre-

sentation of the support function in terms of mean curvature radius function (see [7]). The approach of the 
present article is useful for practical point of view, because one can calculate curvatures of projections from the 
shadows of a convex body. Let’s note that it is impossible to calculate mean radius of curvature from the limited 
number of shadows of a convex body. Also let’s note that this is a different approach for such problems, because 
in the present article we lead the problem to a differential equation of spatial type on the sphere and solve it us-
ing a new method (so called consistency method). 

The most useful analytic description of compact convex sets is by the support function (see [11]). The support 
function of B is defined as 

( ) 3, , .sup
y

H x y x x
∈

= ∈
B

R  

Here ,⋅ ⋅  denotes the Euclidean scalar product in 3R . The support function of B is positively homogeneous 
and convex. Below, we consider the support function H of a convex body as a function on 2S  (because of the 
positive homogeneity of H the values on 2S  determine H completely). 

( )2SkC  denotes the space of k times continuously differentiable functions defined on 2S . A convex body B 
is k-smooth if its support function ( )2SkH C∈ . 

Given a function H defined on 2S , by ( )Hω ϕ , Sωϕ ∈  we denote the restriction of H onto the circle Sω  
for 2Sω∈ , and call the restriction function of H. 

Below, we show (Theorem 1) that Problem 1. is equivalent to the problem of existence of a function H de-
fined on 2S  such that ( )Hω ⋅  satisfies the differential equation 

( ) ( ) ( ), , for SH H Fω ω ωϕϕ
ϕ ϕ ω ϕ ϕ′′+ = ∈                              (1) 

for every 2Sω∈ . 
Definition 1. If for a given F there exists H defined on 2S  that satisfies Equation (1), then H is called a solu-

tion of Equation (1). 
In Equation (1), ( )Hω ϕ  is a function defined on the space of an ordered pair orthogonal unit vectors, say 

1 2,e e , (in integral geometry such a pair is a flag and the concept of a flag was first systematically employed by 
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R.V. Ambartzumian in [12]). 
There are two equivalent representations of an ordered pair orthogonal unit vectors 1 2,e e , dual each other: 

( ) ( ), and , ,ω ϕ Ω Φ                                    (2) 

where 2Sω∈  is the spatial direction of the first vector 1e , and ϕ  is the planar direction in Sω  coincides 
with the direction of 2e , while 2SΩ∈  is the spatial direction of the second vector 2e , and Φ  is the planar 
direction in SΩ  coincides with the direction of 1e . The second representation we will write by capital letters. 

Given a flag function ( ),g ω ϕ , we denote by *g  the image of g defined by 

( ) ( )* , , ,g g ω ϕΩ Φ =                                    (3) 

where ( ) ( )*, ,ω ϕ = Ω Φ  (dual each other). 
Let G be a function defined on  . For every 2Sω∈ , Equation (1) reduces to a differential equation on the 

circle Sω . 
Definition 2. If ( ),G ω ⋅  is a solution of that equation for every 2Sω∈ , then G is called a flag solution of 

Equation (1). 
Definition 3. If a flag solution ( ),G ω ϕ  satisfies 

( ) ( )* *,G GΩ Φ = Ω                                    (4) 

(no dependence on the variable Φ ), then G is called a consistent flag solution. 
There is an important principle: each consistent flag solution G of Equation (1) produces a solution of Equa-

tion (1) via the map 

( ) ( ) ( ) ( )* *, , ,G G G Hω ϕ → Ω Φ = Ω = Ω                         (5) 

and vice versa: the restriction functions of any solution of Equation (1) onto the great circles is a consistent flag 
solution. 

Hence, the problem of finding a solution reduces to finding a consistent flag solution. 
To solve the latter problem, the present paper applies the consistency method first used in [13]-[15] in an 

integral equations context. 
We denote: [ ],e Ω Φ —the plane containing the origin of 3R , direction 2SΩ∈ , Φ  determines rotation of 

the plane around Ω, [ ],Ω ΦB —projection of ∈B  onto the plane [ ],e Ω Φ , ( )* ,R Ω Φ —curvature radius of 
[ ],∂ Ω ΦB  at the point with outer normal direction 2SΩ∈ . It is easy to see that 

( ) ( )* , , ,R R ω ϕ⊥Ω Φ =  

where ( ),Ω Φ  is dual to ( ),ω ϕ . 
Note that in the Problem 1. uniqueness (up to a translation) follows from the classical uniqueness result on 

Christoffel problem, since 

( ) ( ) ( )2π *
1 2 0

1 , d .
π

R R RΩ + Ω = Ω Φ Φ∫                                (6) 

Equation (1) has the following geometrical interpretation. 
It is known (see [11]) that 2 times continuously differentiable homogeneous function H defined on 

3R , is 
convex if and only if 

( ) ( ) 20 for every S and ,H H Sω ω ωϕϕ
ϕ ϕ ω ϕ′′+ ≥ ∈ ∈                     (7) 

where ( )Hω ⋅  is the restriction of H onto Sω . 
So in case 0F > , it follows from (7), that if H is a solution of Equation (1) then its homogeneous extension 

is convex. 
It is known from convexity theory that if a homogeneous function H is convex then there is a unique convex 

body 3⊂B R  with support function H and ( ),F ω ϕ  is the projection curvature radius function of B (see 
[11]). 

The support function of each parallel shifts (translation) of that body B will again be a solution of Equation 
(1). By uniqueness, every two solutions of Equation (1) differ by a summand ,a ⋅  defined on 2S , where 
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3a∈R . Thus we have the following theorem. 
Theorem 1 Let F be a positive function defined on  . If Equation (1) has a solution H then there exists a 

convex body B with projection curvature radius function F, whose support function is H. Every solution of Equ-
ation (1) has the form ( ) ,H a⋅ + ⋅ , where 3a∈R , being the support function of the convex body a+B . 

The converse statement is also true. The support function H of a 2-smooth convex body B satisfies Equation 
(1) for F R= , where R is the projection curvature radius function of B (see [16]). 

The purpose of the present paper is to find a necessary and sufficient condition that ensures a positive answer 
to both Problems 1,2 and suggest an algorithm of construction of the body B by finding a representation of the 
support function in terms of projection curvature radius function. This happens to be a solution of Equation (1). 

Throughout the paper (in particular, in Theorem 2 that follows) we use usual spherical coordinates ,ν τ  for 
points 2S  based on a choice of a North Pole and a reference point 0τ =  on the equator. The point with coor-
dinates ,ν τ  we will denote by ( ),ν τ , the points ( )0,τ  lie on the equator. On Sω  we choose anticlockwise 
direction as positive. On the plane ω⊥  containing Sω  we consider the Cartesian x and y-axes where the direc-
tion of the y-axis y  is taken to be the projection of the North Pole onto ω⊥ . The direction of the x-axis x  
we take as the reference direction on Sω  and call it the East direction. Now we describe the main result. 

Theorem 2 Let B be a 3-smooth convex body with positive Gaussian curvature at every point of ∂B  and R 
is the projection curvature radius function of B. Then for 2SΩ∈  chosen as the North pole 

( ) ( )( )

( )( ) ( )( )

( )( )

π2π
2

0 0

π
2π 32

π2 0
2

π 2π 2π 32
2 20 0 0

1 0, , cos d d
4π

1 0, , π 2 cos 2sin d d
8π

1 sin d d , , sin d
2π cos

H R

R

R

τ ϕ ϕ ϕ τ

τ ϕ ϕ ϕ ϕ ϕ τ

ν ν τ ν τ ϕ ϕ ϕ
ν

⊥

⊥

−

⊥

 
Ω =  

 
 

+ + − 
 

−

∫ ∫

∫ ∫

∫ ∫ ∫

              (8) 

is a solution of Equation (1) for F R= . On Sω  we measure ϕ  from the East direction. 
Remark, that the order of integration in the last integral of (8) cannot be changed. 
Obviously Theorem 2 suggests a practical algorithm of reconstruction of convex body from projection curva-

ture radius function R by calculation of support function H. 
We turn to Problem 1. Let R be the projection curvature radius function of a convex body B. Then F R≡  

necessarily satisfies the following conditions: 
a) For every 2Sω∈  and any reference point on Sω  

( ) ( )2π 2π

0 0
, sin d , cos d 0.F Fω ϕ ϕ ϕ ω ϕ ϕ ϕ= =∫ ∫                   (9) 

This follows from Equation (1), see also [16]. 
b) For every direction 2SΩ∈  chosen as the North pole 

( )( )2π *
0 0

, , d 0,F
ν

ν τ τ
=

′  = ∫ y                                    (10) 

where the function F* is the image of F (see (3)) and y  is the direction of the y-axis on ( ),ν τ ⊥
 (Theorem 5). 

Let F be a positive 2 times differentiable function defined on  . Using (8), we construct a function F  de-
fined on 2S : 

( ) ( )( )

( )( ) ( )( )

( )( )

π2π
2

0 0

π
2π 32

π2 0
2

π 2π 2π 32
2 20 0 0

1 0, , cos d d
4π

1 0, , π 2 cos 2sin d d
8π

1 sin d d , , sin d
2π cos

F F

F

F

τ ϕ ϕ ϕ τ

τ ϕ ϕ ϕ ϕ ϕ τ

ν ν τ ν τ ϕ ϕ ϕ
ν

−

 
Ω =  

 
 

+ + − 
 

−

∫ ∫

∫ ∫

∫ ∫ ∫

                  (11) 

Note that the last integral converges if the condition (10) is satisfied. 
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Theorem 3 A positive 2 times differentiable function F defined on   represents the projection curvature 
radius function of some convex body B if and only if F satisfies the conditions (9), (10) and the extension (to 

3R ) of the function F defined by (11) is convex. 

2. The Consistency Condition 
We fix 2Sω∈  and try to solve Equation (1) as a differential equation of second order on the circle Sω . We 
start with two results from [16]. 

a) For any smooth convex domain D in the plane 

( ) ( ) ( )
0

sin d ,h R
ϕ

ϕ ψ ϕ ψ ψ= −∫                              (12) 

where ( )h ϕ  is the support function of D with respect to a point s D∈∂ . In (12) we measure ϕ  from the 
normal direction at s, ( )R ψ  is the curvature radius of D∂  at the point with normal direction ψ . 

b) (12) is a solution of the following differential equation 

( ) ( ) ( ).R h hϕ ϕ ϕ′′= +                                      (13) 

One can easy verify that (also it follows from (13) and (12)) 

( ) ( ) ( )
0

, , sin d ,G F
ϕ

ω ϕ ω ψ ϕ ψ ψ= −∫                                 (14) 

is a flag solution of Equation (1). 
Theorem 4 Every flag solution of Equation (1) has the form 

( ) ( ) ( ) ( ) ( )
0

, , sin d cos sing F C S
ϕ

ω ϕ ω ψ ϕ ψ ψ ω ϕ ω ϕ= − + +∫                   (15) 

where nC  and nS  are some real coefficients. 
Proof of Theorem 4. Every continuous flag solution of Equation (1) is a sum of 0G g+ , where 0g  is a flag 

solution of the corresponding homogeneous equation: 

( ) ( ) 0, S ,H Hω ω ωϕϕ
ϕ ϕ ϕ′′+ = ∈                                    (16) 

for every 2Sω∈ . We look for the general flag solution of Equation (16) in the form of a Fourier series 

( ) ( ) ( )0
0,1,2,

, cos sin .n n
n

g C n S nω ϕ ω ϕ ω ϕ
=

= +  ∑


                           (17) 

After substitution of (17) into (16) we obtain that ( )0 ,g ω ϕ  satisfies (16) if and only if 

( ) ( ) ( )0 1 1, cos sin .g C Sω ϕ ω ϕ ω ϕ= +  

Now we try to find functions C and S in (15) from the condition that g satisfies (4). We write ( ),g ω ϕ  in 
dual coordinates i.e. ( ) ( )*, ,g gω ϕ = Ω Φ  and require that ( )* ,g Ω Φ  should not depend on Φ  for every 

2SΩ∈ , i.e. for every 2SΩ∈  

( )( ) ( ) ( ) ( )( )* , , cos sin 0,g G C Sω ϕ ω ϕ ω ϕ
ΦΦ

′ ′Ω Φ = + + =               (18) 

where ( ),G ω ϕ  was defined in (14). 

Here and below ( ) Φ′⋅  denotes the derivative corresponding to right screw rotation around Ω. Differentiation  
with use of expressions (see [14]) 

sin , tan sin , cos ,
cos

ϕτ ϕ ν ϕ ν ϕ
νΦ Φ Φ′ ′ ′= = − = −                          (19) 

after a natural grouping of the summands in (18), yields the Fourier series of ( )( ),G ω ϕ
Φ
′− . By uniqueness of  

the Fourier coefficients 
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( )( )
( )( )

( ) ( )2π

0

1tan , cos 2 d
cos π

S
C C Aτ

ν

ω
ω ν ω ω ϕ ϕ ϕ

ν

′
′ + + = ∫  

( )( )
( )( )

( ) ( )2π

0

1tan , d
cos 2π

S
C C Aτ

ν

ω
ω ν ω ω ϕ ϕ

ν

′
′ − − = ∫  

( )( )
( )( )

( ) ( )2π

0

1tan , sin 2 d ,
cos π

C
S S Aτ

ν

ω
ω ν ω ω ϕ ϕ ϕ

ν

′
′ − + = ∫                   (20) 

where 

( ) ( ) ( ) ( ) ( )
0

, , sin , cos d .A F F
ϕ

ω ϕ ω ψ ϕ ψ ω ψ ϕ ψ ϕ ψΦΦ
 ′ ′= − + −  ∫                   (21) 

3. Averaging 
Let H be a solution of Equation (1), i.e. restriction of H onto the great circles is a consistent flag solution of Eq-
uation (1). By Theorem 1 there exists a convex body ∈B  with projection curvature radius function R F= , 
whose support function is H. 

To calculate ( )H Ω  for a 2SΩ∈  we take Ω for the North Pole of 2S . Returning to the Formula (15) for 
every ( )0, Sω τ Ω= ∈  we have 

( ) ( ) ( )
π
2

0

π, sin d ,
2

H R Sω ψ ψ ψ ω⊥  Ω = − + 
 ∫                   (22) 

We integrate both sides of (22) with respect to uniform angular measure dτ  over [ )0,2π  to get 

( ) ( )( ) ( )( )
π2π 2π
2

0 0 0
2π 0, , cos d d 0, d .H R Sτ ψ ψ ψ τ τ τ⊥Ω = +∫ ∫ ∫                   (23) 

Now the problem is to calculate 

( )( ) ( )2π

0
0, d 0 .S Sτ τ =∫                                    (24) 

We are going to integrate both sides of (20) and (21) with respect to dτ  over [ )0,2π . For ( ),ω ν τ= ,  

where 
π0,
2

ν  ∈  
 and ( )0,2πτ ∈  we denote 

( ) ( )( )2π

0
, d ,S Sν ν τ τ= ∫                                    (25) 

( ) ( ) ( ) ( ) ( )2π 2π

0 0 0
π d , sin , cos d sin 2 d .A R R

ϕ
ν τ ω ψ ϕ ψ ω ψ ϕ ψ ϕ ψ ϕ ϕ⊥ ⊥

ΦΦ

  ′ ′= − + −    
∫ ∫ ∫       (26) 

Integrating both sides of (20) and (21) and taking into account that 

( )( )2π

0
, d 0C

τ
ν τ τ′ =∫  

for [ )0,π 2ν ∈  we get 

( ) ( ) ( )tan ,S S Aν ν ν ν′ + =                                 (27) 

i.e. a differential equation for the unknown coefficient ( )S ν . 
We have to find ( )0S  given by (24). It follows from (27) that 

( ) ( )
.

cos cos
S Aν ν

ν ν
 

=  
 

                                   (28) 
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Integrating both sides of (5.1) with respect to dν  over [ )0,π 2  we obtain 

( ) ( ) ( )π
2

0π
2

0 d .
cos cos
S A

S
ν ν

ν
ν ν

= − ∫                                        (29) 

Now, we are going to calculate 
( )

π
2

cos
S ν

ν
. 

It follows from (15) that 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2π 2π

0 0 0

2π 2π 2π 2π

0 0 0 0

π , ) sin d sin d d

1sin d d , 2π cos sin d d .
2

S H R

H R

ϕ
ω

ω

ν ϕ ω ψ ϕ ψ ψ ϕ ϕ τ

ϕ ϕ ϕ τ ω ψ ψ ψ ψ ψ τ

⊥

⊥

 = − −  

= − − +

∫ ∫ ∫

∫ ∫ ∫ ∫
        (30) 

Let Sωϕ ∈  be the direction that corresponds to [ )0,2πϕ ∈ , for ( ),ω ν τ= . As a point of 2S , let ϕ  have 
spherical coordinates ,u t  with respect to Ω. By the sinus theorem of spherical geometry 

cos sin sin .uν ϕ =                                       (31) 

From (31), we get 

( ) π
2

sin .u ν ϕ
=

′ = −                                          (32) 

Fixing τ  and using (32) we write a Taylor formula at a neighborhood of the point π 2ν = : 

( ) ( ) ( )( ) ( )( ),
π π0, 0, sin .
2 2

H H H oνν τ ϕ ϕ τ ϕ τ ϕ ν ν   ′= + + + − + −   
   

                  (33) 

Similarly, for [ )0,2πψ ∈  we get 

( )( ) π, , , ,
2

π π π, , sin .
2 2 2

R R

R oν

ν τ ψ τ ψ τ

τ ψ τ ψ ν ν

⊥
⊥

⊥

  = +     
      ′+ + − + −             

                     (34) 

Substituting (33) and (34) into (30) and taking into account the easily establish equalities 

( )( )2π 2π

0 0
0, sin d d 0H ϕ τ ϕ ϕ τ+ =∫ ∫  

and 

( )( )2π 2π

0 0

π , , 2π cos sin d d 0
2

R τ ψ τ ψ ψ ψ ψ τ
⊥   + − + =     

∫ ∫                   (35) 

we obtain 

( ) ( )( )

( )( )

( )( ) ( )( )

2π 2π 2
0 0π

2

2π 2π

0 0

2π 2π *
0 0 =0

1lim 0, sin d d
cos π

1 π , , sin 2π cos sin d d
2π 2

30, d , , d .
4

S
H

R

H R

ν
ν

ν

ν ν

ν
ϕ τ ϕ ϕ τ

ν

τ ψ τ ψ ψ ψ ψ ψ τ

τ τ ν τ τ

→

⊥

′= +

  ′− + − +     
′ ′= −  

∫ ∫

∫ ∫

∫ ∫ y

             (36) 

Theorem 5 For every 3-smooth convex body ∈B  and any direction 2SΩ∈ , we have 
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( )( )2π *
0 0

, , d 0,R
ν

ν τ τ
=

′  = ∫ y                                  (37) 

where y  is the direction of the y-axis on ( ),ν τ ⊥
. 

Proof of Theorem 5. Using spherical geometry, one can prove that (see also (1)) 

( )( ) ( )( ) ( )( )

( )( )

[ ]

*

0 0

2
0

0

, , , ,

1, tan
cos

,

R H H

H H H

H

ϕϕν ν

ττ ν
ν

ττ ν

ν τ ν τ ν τ

ν τ ν
ν

= =

=

=

′   ′′= +   

 ′′ ′= + −  

′′′=

y

                     (38) 

where H is the support function of B. Integrating (38), we get 

( )( ) [ ]2π 2π*
00 00

, , d d 0.R Hττ νν
ν τ τ τ

==

′ ′  ′′= = ∫ ∫y  

4. A Representation for Support Functions of Convex Bodies 
Let ∈B  be a convex body and 3Q∈R . By QH  we denote the support function of B with respect to Q . 

Theorem 6 Given a 2-smooth convex body ∈B , there exists a point * 3O ∈R  such that for every 
2SΩ∈  chosen as the North pole 

( )( )*

2π

0 0
, d 0.

O
H

ν
ν τ τ

=
  = ∫                                          (39) 

Proof of Theorem 6. For a given B and a point 3Q∈R , by QK  we denote the following function defined 
on 2S  

( ) ( )( )2π

0 0
, d .Q QK H

ν
ν τ τ

=
 Ω =  ∫  

Clearly, QK  is a continuous odd function with maximum ( )K Q : 

( ) ( )
2S

max .QK Q K
Ω∈

= Ω  

It is easy to see that ( )K Q →∞  for Q →∞ . Since ( )K Q  is continuous, so there is a point *O  for 
which 

( ) ( )* min .K O K Q=  

Let *Ω  be a direction of maximum now assumed to be unique, i.e. 

( ) ( ) ( )* *2

* *

S
max .

O O
K O K K

Ω∈
= Ω = Ω  

If ( )* 0K O =  the theorem is proved. For the case ( )* 0K O a= >  let O** be the point for which 
* ** *ε= ΩO O . It is easy to demonstrate that ( ) ( ) ( )** *

*,
O O

H H εΩ = Ω − Ω Ω , hence for a small 0ε >  we find 

that ( )** 2πK O a ε= − , contrary to the definition of *O . So ( )* 0K O = . For the case where there are two or  

more directions of maximum one can apply a similar argument. 
Now we take the point O* of the convex body B for the origin of 3R . Below *O

H , we will simply denote by 
H. 

By Theorem 6 and Theorem 5, we have the boundary condition (see (36)) 

( )
π
2

0.
cos
S ν

ν
=                                              (40) 

Substituting (29) into (23) we get 
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( ) ( )( ) ( )

( )( )
( ) ( ) ( ) ( )

π π2π
2 2

0 0 0

π π2π
2 2

0 0 0

2π 2π

0 0 0

2π 0, , cos d d d
cos

1 d0, , cos d d
π cos

, sin , cos d sin 2 d d .

A
H R

R

R R
ϕ

ν
τ ψ ψ ψ τ ν

ν
ντ ψ ψ ψ τ
ν

ω ψ ϕ ψ ω ψ ϕ ψ ϕ ψ ϕ ϕ τ

⊥

⊥

⊥ ⊥
ΦΦ

Ω = −

= −

  ′ ′× − + −    

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

          (41) 

Using expressions (19) and integrating by dϕ  yields 

( ) ( )( )
( ) ( )

π2π
2

0 0

π 2π 2π
2

0 0 0

2π 0, , cos d d

1 d d , , tan d ,
π cos

H R

R I R II
ν

τ ψ ψ ψ τ

ν τ ω ψ ω ψ ν ψ
ν

⊥

⊥ ⊥

Ω =

 ′+ +  

∫ ∫

∫ ∫ ∫
               (42) 

where 

( ) ( ) ( )2
2π 3

sin 1 sin2π cos
sin 2 cos sin d sin ,

4 4
II

ψ

ψ ψψ ψ
ϕ ϕ ψ ϕ ϕ ψ

 +−
 = − = + −
  

∫  

and 

( ) ( ) ( )2
2π sin 1 sin2π cos

sin 2 sin cos d .
4 4

I
ψ

ψ ψψ ψ
ϕ ϕ ψ ϕ ϕ

 +−
 = − = +
  

∫  

Integrating by parts (42) we get 

( ) ( )( ) ( )

( )( ) ( )( )

3π π2π 2π 2π
2 2

20 0 0 0 0

π π2π 2π
2 2

0 0 0 0π
2

1 sin sin2π 0, , cos d d d d , d
π cos

1 1d 0, , d lim d , , d .
π π cosa

H R R

R I R a I
a

ν ψτ ψ ψ ψ τ ν τ ω ψ ψ
ν

τ τ ψ ψ τ τ ψ ψ

⊥ ⊥

⊥ ⊥

→

Ω = −

− +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
           (43) 

Using (34), Theorem 5 and taking into account that 
2π

0
d 0I ψ =∫  

we get 

( ) ( )( ) ( )

( )( )

3π π2π 2π 2π
2 2

20 0 0 0 0

π 2π
2

0 0

1 sin sin2π 0, , cos d d d d , d
π cos

1 d 0, , d .
π

H R R

R I

ν ψτ ψ ψ ψ τ ν τ ω ψ ψ
ν

τ τ ψ ψ

⊥ ⊥

⊥

Ω = −

−

∫ ∫ ∫ ∫ ∫

∫ ∫
        (44) 

From (44), using (9) we obtain (8). Theorem 2 is proved. 

5. Proof of Theorem 3 
Necessity: if F is the projection curvature radius function of a convex body ∈B , then it satisfies (9) (see 
[16]), the condition (10) (Theorem 5) and F defined by (11) is convex since it is the support function of B 
(Theorem 2). 

Sufficiency: let F be a positive 2 times differentiable function defined on   satisfies the conditions (9), (10). 
We construct the function F on 2S  defined by (11). There exists a convex body B with support function F since 
its extension is a convex function. Also Theorem 2 implies that F is the projection curvature radius of B. 

Funding 
This work was partially supported by State Committee Science MES RA, in frame of the research project SCS 



R. Aramyan 
 

 
95 

13-1A244. 

References 
[1] Minkowski, H. (1911) Theorie der konvexen Korper, insbesondere Begrundung ihresb Oberflachenbergriffs. Ges. Abh., 

2, Leipzig, Teubner, 131-229. 
[2] Blaschke, W. (1923) Vorlesungen uber Differentialgeometrie. II. Affine Differentialgeometrie, Springer-Verlag, Ber-

lin. 
[3] Pogorelov, A.V. (1969) Exterior Geometry of Convex Surfaces [in Russian]. Nauka, Moscow. 
[4] Alexandrov, A.D. (1956) Uniqueness Theorems for Surfaces in the Large [in Russian]. Vesti Leningrad State Univer-

sity, 19, 25-40. 
[5] Bakelman, I.Ya., Verner, A.L. and Kantor, B.E. (1973) Differential Geometry in the Large [in Russian]. Nauka, 

Moskow. 
[6] Firey, W.J. (1970) Intermediate Christoffel-Minkowski Problems for Figures of Revolution. Israel Journal of Mathe-

matics, 8, 384-390. http://dx.doi.org/10.1007/BF02798684 
[7] Berg, C. (1969) Corps convexes et potentiels spheriques. Matematisk-fysiske Meddelelser Udgivet af. Det Kongelige 

Danske Videnskabernes Selska, 37, 64. 
[8] Wiel, W. and Schneider, R. (1983) Zonoids and Related Topics. In: Gruber, P. and Wills, J., Eds., Convexity and Its 

Applications, Birkhauser, Basel, 296-317. 
[9] Gardner R.J. and Milanfar, P. (2003) Reconstruction of Convex Bodies from Brightness Functions. Discrete & Com-

putational Geometry, 29, 279-303. http://dx.doi.org/10.1007/s00454-002-0759-2 
[10] Ryabogin, D. and Zvavich, A. (2004) Reconstruction of Convex Bodies of Revolution from the Areas of Their Sha-

dows. Archiv der Mathematik, 5, 450-460. http://dx.doi.org/10.1007/s00454-002-0759-2 
[11] Leichtweiz, K. (1980) Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin.  

http://dx.doi.org/10.1007/978-3-642-95335-4 
[12] Ambartzumian, R.V. (1990) Factorization Calculus and Geometrical Probability. Cambridge University Press, Cam-

bridge. http://dx.doi.org/10.1017/CBO9781139086561  
[13] Aramyan, R.H. (2001) An Approach to Generalized Funk Equations I [in Russian]. Izvestiya Akademii Nauk Armenii. 

Matematika [English Translation: Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)], 
36, 47-58. 

[14] Aramyan, R.H. (2010) Generalized Radon Transform on the Sphere. Analysis International Mathematical Journal of 
Analysis and Its Applications, 30, 271-284. 

[15] Aramyan, R.H. (2010) Solution of an Integral Equation by Consistency Method. Lithuanian Mathematical Journal, 50, 
133-139. 

[16] Blaschke, W. (1956) Kreis und Kugel, (Veit, Leipzig). 2nd Edition, De Gruyter, Berlin. 

http://dx.doi.org/10.1007/BF02798684
http://dx.doi.org/10.1007/s00454-002-0759-2
http://dx.doi.org/10.1007/s00454-002-0759-2
http://dx.doi.org/10.1007/978-3-642-95335-4
http://dx.doi.org/10.1017/CBO9781139086561

	Reconstruction of Three Dimensional Convex Bodies from the Curvatures of Their Shadows
	Abstract
	Keywords
	1. Introduction
	2. The Consistency Condition
	3. Averaging
	4. A Representation for Support Functions of Convex Bodies
	5. Proof of Theorem 3
	Funding
	References

