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Abstract 
 

In this paper category of multisets (Mul) is presented and various operations of category of sets such as 
points, products, sums, etc., were introduced in Mul and related results were proved. It is further shown 
that the product of two objects is unique as is the case for the sum, and the terminal object helps in 
separating arbitrary arrows. Thus, similar to category of sets if two arrows agree on points, they are the 
same arrows. 
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1 Introduction  
 
Categories were first introduced in the course of formulating algebraic topology, specifically with Samuel 
Eilenberg’s observation that Saunders Maclane’s calculations on a specific case of a group extension 
coincided precisely with Norman Steenrod’s calculation of the homology of a solenoid (see [1] for details). 
Eilenberg and Maclane’s effort to make sense of this coincidence across apparently distinct areas of 
mathematical inquiry gave rise to introducing category theory. The central notion at work was that of 
natural transformations. In order to provide a broad mathematical perspective, the notion of functor was 
introduced for which they borrowed the term category from the philosophical writings of Aristotle, Kant and 
reiterated in C. S. Peirce (see [2] for details).  
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Emmy Noether (one of Maclane’s teachers), in formalizing abstract processes, realized that understanding of 
a mathematical structure in its proper perspective could be better achieved through a proper understanding of 
the processes preserving that structure. Maclane and Eilenberg proposed an axiomatic formalization of the 
relation between structures and the processes preserving them, which is considered as a first sustained 
formalization of Noether’s intuitive notion of the concept of category (see [2] for details).  
  
Category theory is based on the idea that the structure of a class of mathematical objects can be best 
understood by analyzing (instead of the objects themselves) the functions between them. Consider as an 

example, groups. A group is a set of elements endowed with a binary operation �, a urinary operation −� 
(inversing) and a special element ℓ such that the well known properties are satisfied. If we take a set of 
elements S, we can consider it either as a set or as a group, depending on whether we assume that the above 
mentioned operations are defined or not.                                                
 

Category theory takes different view of the problem. Let �  be the class of all groups. A mapping �: � ® � 

is a function between elements of �  considered as sets with the additional requirement that the following 
properties be satisfied. 
 
�(� � �) =  �(�) � �(�),�(ℓ) =  ℓ,�(�−�) =  �(�)−�. This characterization of the functions that 
transform a group in to another is enough to characterize the structure of the groups themselves; a group is 
simply seen as a set belonging to a class for which functions like this are the morphisms. This example 
shows the basic idea of category theory; the structure of a certain class of a mathematical object can be 
studied conveniently by studying the properties of the functions that transform a member of the class into 
another. 
 
A category is an algebraic structure consisting of a collection of objects, linked together by a collection of 
arrows (morphisms) that have two basic properties: the ability to compose the arrows associatively and the 
existence of an identity arrow for each object. Objects and arrows may be comprehended as abstract entities 
of any kind. The theory generalizes all of mathematics in terms of objects and arrows independent of what 
the objects and arrows represent.  
                    
In fact many branches of modern mathematics could be conveniently described in terms of categories; for 
example, category of sets, category of relations, category of groups, etc., and most importantly, doing so 
often reveals deep insights and similarities between seemingly different areas of mathematics                                
(see [3,4,5,6,7,8,9] for details). 
                            
In view of the fact that a computer is not good at viewing concrete diagrams, category theory is being 
extensively used in computer science mainly because it offers a constructive mathematical structure to 
describe an object. 
      
With these developments, category theory became an autonomous field of research (see [10] for the 
development of the theory of categories).              
 
In addition, we invariably encounter with systems which contain objects with repeated elements or attributes 
(for example, groups of people, systems of elementary particles, etc., having two or more elements with the 
same property). We need a (formal) mathematical structure to model this kind of data. In the recent years 
such mathematical structures have been developed which are in general called multiset-based structures. 
Note that a multiset is a well defined collection of objects in which repetition of elements is considered 
significant. Accordingly, sets are merely special instances of multisets.      
                  
Applications of multiset abound, especially in mathematics and computer science, (see [11,12] for details). 
In this paper we attempt to present category of multisets. 
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2 Categories    
 
A   Category � consists of the following 
 

(i)    A Class ��(�) of objects.   

(ii)   A class ℎ�� (�) of morphisms or maps or arrows. 

(iii)  A binary operation called composition of morphisms, such that for any three objects �,� and �, we 

have ℎ�� (�,�) � ℎ�� (�,�)  ® ℎ�� (�,�), (i.e., the composite of �: � ® � and �: � ® � 

is written � � �: � ® � or ��: � ® �), governed by two axioms  
 

(a)  Associativity: if �: � ® �,�: � ® � and ℎ: � ® � then ℎ � (� � �) =  (ℎ � �) � �, and 

(b)  Identity: For every object �, there exists a morphism 1� ∶ � ® � called the identity       

morphism for �, such that for every morphism �: � ® �, we have 1� � � =  � =  � � 1�  . 
 

The type of objects depends upon a chosen mathematical structure. For example, in set theory the objects are 
sets, in group theory the objects are groups and in graph theory the objects are graphs.                                                  
 

Morphisms are structure-preserving maps. It is an abstraction derived from structure preserving mappings 
between two mathematical structures. Morphism is an arrow linking an object called the domain to another 
object called the codomain. The notion of morphism can connotes differently depending on the type of space 
chosen. In set theory morphisms are functions, in group theory they are group homomorphisms and in graph 
theory they are graph homomorphisms.   
 

2.1 Properties of Morphisms  
 

A morphism �: � ® � in a category � is called   
 

(i) A monomorphism if it is left cancellable i.e., for every pair of morphisms �,ℎ: � ® � if  
� � � =  � � ℎ Þ � =  ℎ.  

(ii) A split monomorphism (or section or coretraction) if it is left invertible i.e., there exists a 
morphism �: � ® � such that  � � � =  1�. In that case � is called a retract of �.     

(iii) An epimorphism if it is right cancellable i.e., for every pair of morphisms  �,ℎ: � ® �,
� � � =  ℎ � � Þ � =  ℎ;   

(iv) A split epimorphism (or retraction) if it is right invertible i.e., there exists a morphism 
�: � ® � such that � � � =  1�.    

(v) A bimorphism if it is both a monomorphism and an epimorphism.  
(vi) An isomorphism if it is both split monomorphism and split epimorphism i.e., if it is 

invertible (see [4] for details).  
 

3 Multisets   
 
Let us recall that a standard (or ordinary) set is a well defined collection of disjoint elements. In course of 
time, especially in order that set theoretic tools could be made applicable to solve problems which would 
require some generalizations of too restrictive conditions intrinsic to ordinary sets, various nonstandard set 
theories have appeared. In particular, if multiple but finite occurrences of any element of a set are allowed, 
we get a generalization of the notion of a set which is called a Multiset (mset, for short).    
 

As suggested in [13], collections admitting objects with finite multiplicities could be viewed in two different 
ways: Sets with distinguishable repeated elements (e.g., people or vehicles sharing a common property), 
called multisets; and sets with indistinguishable repeated elements (e.g., soup of elementary particles), called 
multinumbers. However, in the literature of multisets, Monro’s terminology is usually reversed. Syropoulos 
[14], in particular, calls the former Real multiset and the latter multiset.  
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It is important to emphasize that both the concepts viz. real multisets and multisets are associated with a set 
equipped with an equivalence relation or a function, respectively. However, taking developments pertaining 
to admitting multiple occurrences of an object in a system, it is the notion of multiset which has mostly been 
exploited. In this paper, particularly to develop category of multisets, emphasis is on the notion of multisets 
associated with a set and an equivalence relation. 
 
A Multiset is an unordered collection of objects in which, unlike a standard (Cantorian) set, duplicates or 
multiples of objects are admitted. In other words, an mset is a collection in which objects may appear more 
than once and each individual occurrence of an object is called its element. All duplicates of an object in an 
mset are indistinguishable. The objects of an mset are the distinguishable or distinct elements of the mset. 
The distinction made between the terms object and element does enrich the multiset language.  
 
The use of square brackets to represent an mset is quasi-general. Thus, an mset containing one occurrence of 

�, two occurrences of �, and three occurrences of � is notationally written as [[�,�,�,�,�,�]] or 

[�,�,�,�,�,�] or [�,�,�]�,�,� or [�,2�,3�] or [�. 1,�. 2,�. 3] or [1/�,2/�,3/�] or [��,��,��] or 

[�� �� ��]. For convenience, the curly brackets are also used in place of the square brackets. 
 

For various application purposes, we may regard a multiset [�,�,�] as being really of the form [�,�′,�] 
where � and �′ are different objects of the same sort and � is of different sort from that of � and �′. In this 
regard, when elements of multisets are considered, elements of distinct sorts will generally be denoted by 
distinct letters and elements of the same sort will be denoted by the same letter with dashes distinguishing 
different elements of that sort (see [13] for details). 
 

Formally, a multiset � is a pair (��,r), where �� is a set and  an equivalence relation on ��. The set �� 

is called the field of the multiset. Elements of �� in the same equivalence class will be said to be of the same 
sort, elements in different equivalence classes will be said to be of different sorts. For example, an mset 

[��,�,��,�] is the multiset [�,�′,�,�,�′,�′′,�], where all are seen to behave as different objects; but �,�′ 
are of the same sort and �,�′,�′′ are also of the same sort but different from that of �,�′, while �,� are each 
of different sorts from the others. In other words, various equivalence classes determine the sorts. Whenever 

a multiset � is mentioned, its field will usually be denoted ��. The pair (��,f), where �� is a set and  

denote the empty relation on ��, is actually an ordinary set. 
 

3.1 Multiset Functions  
 

Let � =  (��,r) and � =  (��,s) be multisets. A multiset function (or morphism) from � to �, written 

as �: � ® �, is a function �: �� ® �� which respects sorts i.e., if �,�′Î �� and �r�′, then �(�)s�(�′). 
For example, �: [�,�,�] ® [�,�′,�] defined by 

�(�) =  �′,�(�) =  �,�(�) =  �;  �: [�,�′,�] ® [�,�′,�,�,�] defined by �(�) =  �,�(�) =
 �,�(�′) =  �′; and �(�) =  �(�′) =  �,�(�) =  � are all multiset functions, while 

ℎ: [�,�′,�] ® [�,�′,�] defined by ℎ(�) =  �′,ℎ(�′) =  � and ℎ(�) =  � is not an mset function since 

�,�′Î �� and �r�′ but is not the case ℎ(�)sℎ(�′). 
 

Let � =  (f
�
,f), where f

�
 is an empty set and  an empty relation on f

�
. Then, � is said to be an empty 

multiset. That is, an empty set together with an empty equivalence relation defined on it determine an empty 
multiset. 
 

4 Category of Multisets 
 
Multisets (considered as objects) and multiset functions (considered as morphisms) together determine the 
category of multisets, denoted Mul. That is, in Mul, the objects are multisets and the morphisms are multiset 
functions. 
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Typically, multisets can themselves be regarded as categories such that if � is a multiset and �,�Î�, there 

is an arrow from � to � if � and � are of the same sort, and no arrows from � to � if � and � are of different 
sorts.     
                                                                                        
Theorem 4.1: In Mul, the monomorphisms are exactly the injective functions.   
 

 Proof: Suppose �: � ® � is injective and � � � =  � � ℎ for �,ℎ: � ® �. Then for every 

�Î�,(� � �)(�) =  (� � ℎ)(�) Þ �(�(�)) =  �(ℎ(�)) Þ �(�) =  ℎ(�) since � is injective. Thus 

� =  ℎ i.e., � is a monomorphism. 
 

Theorem 4.2: If �: � ® � and �: � ® � are injective, then � � � is also injective. That is, the composite 
of two injective arrows is also injective.   
  

Proof: let ��,��Î� such that (� � �)(��) =  (� � �)(��) and hence �(�(��)) =  �(�(��)). Now, 

since � is injective, �(��) =  �(��) and since � is injective, ��  =  ��.Þ � � � is injective.  
  
Theorem 4.3: In Mul, a split monomorphism is a monomorphism. 
 

Proof: Let �: � ® � be a split monomorphism (i.e., ∃ �: � ® � such that � � � =  1�) and suppose 

� � � =  � � ℎ for �,ℎ: � ® �. We are to show that � =  ℎ. Now for each �Î�,�(�)=
 (1� � �)(�)=  �(� � �)� ��(�)=  �� � (� � �)�(�)=  �� � (� � ℎ)�(�)=  �(� � �)� ℎ�(�)=

 (1� � ℎ)(�)=  ℎ(�)Þ � =  ℎ. Since � =  ℎ,� is a monomorphism.   
 
Theorem 4.4: The composite of two monomorphisms in Mul is a monomorphism. 
 

Proof: Let �: � ® � and �: � ® � be monomorphisms. We are to show that if (� � �) � � =
 (� � �) � ℎ for �,ℎ: �® �, then � =  ℎ i.e., � � � is a monomorphism. 
 
Now for each  

�Î�,�(� � �)� ��(�)=  �(� � �)� ℎ�(�)Þ �(� � �)��(�)=  �(� � �)ℎ�(�)Þ � ����(�)�� =

 � ���ℎ(�)��. Since p and f are monomorphisms, we have �(�) =  ℎ(�) i.e., � =  ℎ. Hence � � � is a 

monomorphism.  
 
Theorem 4.5: In Mul, a surjective arrow is an epimorphism. 
 

Proof: Let �: � ® � be surjective and � � � =  ℎ � � for �,ℎ: � ® �. Now, in order to show that � is 

an epimorphism, we need to show that � =  ℎ. As for every �Î�,(� � �)(�) =  (� � ℎ)(�) i.e., 

�(�(�)) =  ℎ(�(�)), we have � =  ℎ.    
                
Theorem 4.6: In Mul, a split epimorphism is an epimorphism.  
 

Proof: Let �: � ® � be a split epimorphism i.e., ∃ �: � ® � such that � � � =  1�.  Let � � � =
 ℎ � � for �,ℎ: � ® �. We are to show that � =  ℎ.   
 

Now, for each �Î�, we have  
 

�(�)=  (� � 1�)(�)=  �� � (� � �)�(�)=  �(� � �)� ��(�)=  �(ℎ � �)� ��(�)

=  �ℎ � (� � �)�(�)=  (ℎ � 1�)(�)=  ℎ(�). 
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Hence, � =  ℎ i.e., � is an epimorphism. 
 
Theorem 4.7: In Mul, the composite of two epimorphisms is an epimorphism.     
 

Proof: Let �: � ® �,�: � ® � be epimorphisms and � � (� � �) =  ℎ � (� � �). We need to show that 

� =  ℎ for every pair �,ℎ: � ® �. Now, for each �Î�, we have 

(� � (� � �))(�) =  (ℎ � (� � �))(�) which implies �(�(�(�))) =  ℎ(�(�(�))), and since � and � 

are epimorphisms; � =  ℎ.  
 
Theorem 4.8: In Mul, the composite of two bimorphisms is a bimorphism.   
 

Proof: Let �: � ® �,�: � ® � be bimorphisms. We have, � � � =  � � ℎ Þ � =  ℎ for 

�,ℎ: � ® �;  � � � =  ℎ � � Þ � =  ℎ for �,ℎ: � ® �; � � � =  � � ℎ Þ � =  ℎ for 

�,ℎ: � ® �; and � � � =  ℎ � �  Þ � =  ℎ for �,ℎ: � ® �.  We need to show that (� � �) � � =
 (� � �) � ℎ  Þ  � =  ℎ for �,ℎ: � ® �, and  � � (� � �) =  ℎ � (� � �) Þ  � =  ℎ for 

�,ℎ: � ® �.  
 

Now, for each �Î�,((� � �) � �)(�) =  (� � (� � �))(�) =  (� � (� � ℎ))(�) �. �. ,�(�(�(�))) =
 �(�(ℎ(�))). Since � and � are bimorphisms, we have �(�) =  ℎ(�) i.e., � =  ℎ.  
 

Moreover, for each �Î�,(� � (� � �))(�) =  ((� � �) � �)(�) =  ((ℎ � �) � �)(�) i.e., 

�(�(�(�))) =  ℎ(�(�(�))). Since � and � are bimorphisms, we have � =  ℎ. Hence, � � � is a 
bimorphism.  

 
Theorem 4.9: In Mul, every isomorphism is a bimorphism.   
 

Proof: Let �: � ® � be an isomorphism i.e., ∃ �: � ® � such that � � � =  1�,� � � =  1� and 

suppose � � � =  � � ℎ for �,ℎ: � ® �;  � � � =  ℎ � � for �,ℎ: � ® �: We need to show that 

� =  ℎ in both the cases. 
 
Now, for each  

�Î�,�(�) =  (1� � �)(�) =  ((� � �) � �)(�) =  (� � (� � �))(�) =  (� � (� � ℎ))(�) =
 ((� � �) � ℎ)(�) =  (1� � ℎ)(�) =  ℎ(�)  i.e., � =  ℎ.  
 
Also, for each  

�Î�,�(�) =  (� � 1�)(�) =  (� � (� � �))(�) =  ((� � �) � �)(�) =  ((ℎ � �) � �)(�) =
 (ℎ � (� � �))(�) =  (ℎ � 1�)(�) =  ℎ(�) i.e., � =  ℎ. Hence � is a bimorphism.    
  
Moreover, the converse of this theorem need not hold in Mul.  
 

Definition 4.1 Dual of a Mul    
 
The dual of a Mul, denoted Mulop, is a category in which 
 

(i)  Objects and arrows are those of Mul;  

(ii)  If �: � ® � is in Mul, then �: � ® � is in Mulop i.e., the source and target are reversed;  

(iii)  If ℎ =  ��� in Mul, then ℎ =  ��� in Mulop; and   

(iv) The identity arrows in Mul and Mulop are the same.                                     
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Definition 4.2 Objects in Mul       
 
An object  in a category � is said to be an initial object of � if for every object � of � there is a unique 

morphism I ® �. In this definition, the nature of a particular object  is described in terms of its relation to 

all other objects � in the category. Since for every object � in Mul there is a unique morphism � ® �, the 

empty multiset � can be regarded as an initial object in Mul.     
    

Also, an object � in a category � is said to be a terminal object of � if for each object � of � there is 

exactly one morphism � ® �. In Mul, an object satisfying this universal mapping property is an one-

element multiset, denoted �. Indeed, for each object � of Mul, there is a unique morphism � ® �. Hence, 
any singleton mset is a terminal object in Mul. As we may have more than one singleton, they must be 
isomorphic. 
 
Since a zero object is an object that is both initial and terminal, there is no zero object in Mul.  
 
Thus the category of multisets has a unique initial object, but many terminal objects which are isomorphic to 
each other. The proof follows:   
 
Theorem 4.10: All singletons in Mul are isomorphic. 
 

Proof: Suppose � and �¢ are singletons. Thus, there are morphisms �: � ® �¢ and                          

ℎ: �¢ ® �. The composite � � ℎ is an arrow �¢ ® �¢ which is the identity 1�¢. Since �¢ is a singleton, 

there is only one arrow �¢ ® �¢, and hence, � � ℎ =  1�¢ 
Similarly, ℎ � � =  1�.  
 

Definition 4.3 Points of an Object in Mul  
 
A point of an object � in a category � is an arrow � ® �, where � is terminal. Hence, in the category Mul, 

the points of an object � are precisely the elements of �. Suppose � =  [�,�¢,�] is an object in the 

category Mul, then � has three points and, each point of � can be seen to point to exactly one element of � 

and every element of � is the value of exactly one point of �. Moreover, if �: � ® � and � is a point of �, 

then �� is a point of �. The terminal object in Mul has one point. The terminal object � in Mul helps in 

separating arbitrary arrows. For the parallel arrows �,�: � ® �, if for each point � of � we have �� =
 ��, then � =  �. Thus, if two arrows agree on points, they are the same arrows. For example, given 

�: � ® � and �: � ® �, if �� =  �� for every point �: � ® �, then we can conclude that � =  �. In 

other words, if � ¹ �, then there exists at least one point �: � ® � for which �� ¹ ��. Similar to Set, two 
arrows in Mul are equal if they have the same domain and codomain and if they have the same value at 
every element of their domain.   
 

Definition 4.4 Product of Objects in Mul 
 

An object �x�, together with a pair of maps �x� 
��
��  �,�x� 

��
��  �, is called the product of the objects � 

and � if for every object � and each pair of maps � 
��
��  �,� 

��
��  �, there is a unique map � 

�
→ �x� such 

that ��  =  ���,��  =  ���. Diagramatically, it can be put as shown in Fig. 1 below. 
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Since � is uniquely determined by �� and ��, we can denote it by á��,��ñ. The maps   �� and �� are called 
projection maps for the product or simply projections, (i.e., projections of the product to its factors). 
 

In Mul, each point of the product of the objects �,� can be uniquely represented in the form á�,�ñ, where � 

is a point of � and � is a point of �. That is, the points of the product of two objects are the pairs of points, 
one from each factor. We recall that if two arrows agree on points, they are the same i.e., an arrow is 
completely determined by the values of its points. Therefore, as soon as we know the points of the objects, 
we can determine their product.  
 

Theorem 4.11: In Mul, if an object � and the functions ��: � ® � and ��: � ® � have the product 

property, then � is isomorphic to �x� and, there is exactly one isomorphism �: � ® �x� with ��  =
�� � � and �� =  �� � �. Diagramatically, it can be put as shown in Fig. 2 below. 
  
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Isomorphism between two objects having product properties 

 

Proof: Using the product property of �,�� and ��, we define �: �x� ® �. Let �: � ® �x� with 

��  =  �� � � and ��  =  �� � �, and �: �x� ® � with ��  =  �� � � and ��  =  �� � �. For a unique 

isomorphism between them, we need to show that � � � =  1� and � � � =  1��� hold.  We have, 

�� � ( � � �) =  (�� � �) � � =  �� � � =  �� and, �� � (� � �) =  (�� � �) � � =  �� � � =
 ��. Since, 1�: � ® � is the only arrow that will compose with �� and �� to give �� and �� respectively 

� � � must be the identity arrow i.e., � � � =  1�. Similarly, since �� � (� � �) =  (�� � �) � � =
 �� � � =  �� and, �� � (� � �) =  (�� � �) � � =  �� � � =  ��; we have � � � =  1���.  
 
Theorem 4.12: In Mul, every object A is isomorphic to the product Ax1, where 1 is terminal.      
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Fig. 1. Product of two objects 
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Proof: An object �, with ��: � ® � and ��: � ® � as projections, has the product property, i.e., � with 

��: � ® � and ��: � ® � as projections such that ��  =  �� � �,��  =  �� � � as in Fig. 3(a) below. 
 

Clearly �x�, with ��: �x� ® � and ��: �x� ® � as projections, has the product property i.e., an mset 

�x� with ��: �x� ® � and ��: ��� ® � as projections such that ��  =  �� � �,��  =  �� � � as in                   
Fig. 3(b) below.  
 

 
Taking the aforesaid facts and Fig. 4 below into consideration, it follows from theorem 4.11 � is isomorphic 

to �x�, where � is terminal in Mul. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Isomorphism between an object and its product with a terminal object 
 

4.1  Dual of Product-Projections 
 
Dualizing the notion of product-projections, we get: 
 

An object � + � together with a pair of maps �  
��
→  � + �,� 

��
→  � +� in a category is said to be a 

coproduct of � and � if for each pair of maps � 
��
��  �,� 

��
��  �, there is a unique map  � + � 

�
→  � such 

that ��  =  � � ��  and  ��  =  � � ��. 
 
That is, the following in Fig. 5 commutes. 

Fig. 3. Objects having product properties 
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Thus, ��  =  � � �� and ��  =  � � ��, where �� and �� are called injections for the coproduct.   Recall that 
in Mul, the coproduct is called the sum. The functorial extension of this operation from objects to all 
functions follows just as in the case of the product operation. Also, Sums have the property that any point of 

� + � comes via injection from a point of exactly one of �,�.   
 

Theorem 4.13: There is exactly one isomorphism with injections between any two Sums of the objects � 

and � in Mul.  
 

Proof: Suppose �, with ��: � ® � and ��: � ® � as injections, has the sum property like that of � + �, 

�� and ��, then there is an isomorphism �: � + � ® � such that ��  =  � � �� and ��  =  � � ��. Using the 
Sum property we define ℎ: � ® � + � with ��  =  ℎ � �� and ��  =  ℎ � ��. Diagramatically, it can be put as 
in Fig. 6 below. 
      

 
 

Fig. 6. Isomorphism between two sums of objects A and B 
 

We need to show that � � ℎ =  1� and, ℎ � � =  1��� . 
 

Since, (� � ℎ)� ��  =  � � (ℎ � ��)=  � � ��  =  ��and (� � ℎ) � ��  =  � � (ℎ � ��) =  � � ��  =  ��; and also 
1� � ��  =  �� and 1� � ��  =  ��; by the uniqueness property, we have � � ℎ =  1�. Similarly, ℎ � � =

 1���. 
 

5 Conclusions  
 
It is shown that Multisets as objects and multiset functions as morphisms determine a category denoted Mul. 
In Mul, the monomorphisms are exactly the injective functions while the epimorphisms are the surjective 
functions and every split monomorphism is a monomorphism and every split epimorphism is an 
epimorphism. It is also proved that the composite of two monomorphisms, epimorphisms and biomorphisms 
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Fig. 5. Coproduct of two objects 



 
 
 

Isah and Tella; BJMCS, 9(5): 427-437, 2015; Article no.BJMCS.2015.214 
 
 
 

437 
 
 

are monomorphisms, epimorphisms and biomorphisms, respectively. It is further illustrated that similar to 
Set if two arrows agree on points, they are the same arrows.  
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