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Abstract

It is well known that the Cauchy problem for elliptic partial differential equations is ill-posed.

The question, which arises, how a priori knowledge about solutions can bring about stability? A

parabolic transform is defined to discuss the stability of the Cauchy problem for some stochastic

partial differential equations under a priori knowledge about solutions. With the help of the

parabolic transform, existence results are established for general linear and nonlinear stochastic

partial differential equations, without any restrictions on the characteristic forms. Many physical

and engineering problems in areas like seismology, geophysics and biology require the solutions of

ill-posed problems. The Cauchy problem for general stochastic differential equations has many

different important applications with amazing range.

Keywords: Parabolic transform; cauchy problem for general stochastic partial differential equations;
stability of solutions.

AMS Subject Classifications: 34K30, 26 A 33, 60.H15.

1 Introduction

Let W (t) be a standard Brownian motion defined on the filtered probability space (Ω, F, FtP ),
where F is a σ-algebra of subsets of Ω, (Ft : 0 ≤ t ≤ T ) is a right σ-continuous, increasing family
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of subsets of sub σ- algebra of F and P is a probability measure defined on F .

Consider the stochastic partial differential equation.

du(x, t) = L1(t)u(x, t)dt+ L2(t)u(x, t)dW (t), (1.1)

with the initial condition
u(x, 0) = φ(x), (1.2)

where
L1(T ) =

∑
|q|≤m

aq(t)D
q, L2 =

∑
|q|≤m

bq(t)D
q,

Dq = Dq1
1 Dq2

2 · · ·D
qk
k , Dif(x) =

∂

∂xi
f(x),

Dif(y) =
∂

∂yi
f(y), q = q1 · · · qk,

q is a multi-ind |q| = q1 + · · ·+ qk, −∞ < xi <∞, i = 1, 2, · · · k, 0 ≤ t ≤ T , {aq(t), bq(t) : |q| ≤ m}
are families of continuous functions on [0, T ] and φ is an F0 stochastic process such that φ ∈ H,
almost surely, a.s., H is the set of all square integrable functions on the k-dimensional Euclidean
space Rk. In section 2, we shall study the correct formulation of the stochastic Cauchy problem
(1.1), (1.2), under priori knowledge about solutions, without any restrictions on the characteristic
forms of the operators L1(t) and L2(t), (see [1-3]), In section 3, we shall study under suitable
conditions, the existence and uniqueness of the solutions of the Cauchy problem (1.1), (1.2) and for
more general nonlinear stochastic partial differential equations of the form:

du = f(x, t, Bu)dt+ g(x, t, Bu)dW (t), (1.3)

with the initial condition
u(x, 0) = φ(x), (1.4)

where Bu = (Bu1, ..., Bur), B1u, ..., Bru are some of the partial derivatives Dqu, for |q| ≤ m.

It is supposed that: f, g : RkX[0, T ]XRr → R are continuous and satisfy the following conditions:

‖f(x, t, Bu)− f(x, t, Bu)‖ ≤ K
∑
|q|≤m

‖Dqu−Dqv‖, (1.5)

‖g(x, t, Bu)− g(x, t, Bu)‖ ≤ K
∑
|q|≤m

‖Dqu−Dqv‖, (1.6)

‖f(x, t, Bu)‖ ≤ K

1 +
∑
|q|≤m

‖Dqu‖

 |g(x, t, Bu)‖ ≤ K

1 +
∑
|q|≤m

‖Dqu‖

 , (1.7)

for all x in Rk, 0 ≤ t ≤ T , for some constant K > 0, ‖u(·)‖2 =
∫
u2(x)dx, where the integrals

with respect to x are taken over Rk. It is supposed that the derivatives Dqu, |q| ≤ m are in the
generalized sense of Sobolev.

2 Parabolic Transform and Stability

Consider the following Cauchy problem:

∂ψ(x, t)

∂t
= Lψ(x, t), (2.1)
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ψ(x, 0) = ψ0(x), (2.2)

where L = [D2
1 +D2

2 + · · ·+D2
k]2N+1, N is a sufficiently large positive integer, ψ0 ∈ H. The solution

of the Cauchy problem (2.1), (2.2) is given by:

ψ(x, t) =

∫
G(x− y, t)ψ0(y)dy,

where G is the fundamental solution of the Cauchy problem (2.1), (2.2). For sufficiently large N ,
We can find a constant K > 0 and 0 < γ < 1

2
such that

‖Dqψ(·, t)‖ ≤ Kt−γ‖ψ(·, t)‖, (2.3)

for all |q| ≤ m. It is clear that ∫
G(x, t)dx = 1, (2.4)

Let us define a parabolic transform v of a function u by

v(x, t) =

∫
G(x− y, ct)u(y, t)dy, (2.5)

where 0 < c < 1.

By a solution of the stochastic Cauchy problem (1.1), (1.2), we mean an Ft-adapted stochastic
process u, which have the following properties:

(i) ‖u(·, t)‖ is continuous on [0, T ], almost surely,

(ii) Dqu exists for every q, |q| ≤ m, in the sense of Sobolev, Dqu ∈ H,

(iii) E
[
‖Dqu(·, t)‖2

]
< ∞, for all |q| ≤ m, t ∈ [0, T ], where E(X) =

∫
Ω
X(w)dP , is the

expectation of a random variable X.

(iv) u satisfies the following equation:

u(x, t) = φ(x) +

∫ t

0

L1(s)u(x, s)ds+

∫ t

0

L2(s)u(x, s)dW (s). (2.6)

In the same manner, we define the solution of the stochastic Cauchy problem (1.3), (1.4).

It is supposed that, for every x ∈ Rk, the initial stochastic process φ is independent of the future
of Brownian motion W (t) beyond time t = 0, it is supposed also that Eb‖φ‖2c <∞.

We shall find an estimation of Eb‖u(·, t)‖2c.

Theorem 1. Let u be a solution of the Cauchy problem (1.1), (1.2). Suppose that

Eb‖φ‖2c < ε2, (2.7)

where ε > 0 is a sufficiently small number. If u satisfies the condition

Eb‖Lu(·, t)‖2c ≤M, (2.8)

where M > 0 is a constant independent of ε, then

Eb‖u(·, t)‖2c ≤ K

(ln 1
ε
)α
, (2.9)

for some constants K > 0, α > 0. The constants K and α are independent of ε.

420



El-Borai & El-Nadi; BJMCS, 9(5), 418-426, 2015; Article no.BJMCS.2015.213

Proof. Let v be the parabolic transform of u, defined by (2.5). Then

v(x, t) =

∫
G(x− y), ct)φ(y)dy +

∫ ∫ t

0

G(x− y, ct− cs)L1(s)v(y, s)dyds

+

∫ ∫ t

0

G(x− y, ct− cs)L2(s)v(y, s)dydW (s). (2.10)

Let h̃ denote the Fourier transform of a function h defined by

h̃ =

(
1

2π

) k
2
∫
h(x)e−ix·σdx, x · σ = x1σ1 + · · ·+ xkσk

It is clear that:

ṽ1(σ, t) =

∫ t

0

ρ1(σ, s)G̃(σ, ct− cs)ṽ(σ, t)ds,

ṽ2(σ, t) =

∫ t

0

ρ1(σ, s)G̃(σ, ct− cs)ṽ(σ, t)dW (s),

where ṽ1 is the Fourier transform of v1:

v1(x, t) =

∫ t

0

∫
L1(s)G(x− y, ct− cs)v(y, s)dyds,

and ṽ2 is the Fourier transform of v2:

v2(x, t) =

∫ t

0

∫
L2(s)G(x− y, ct− cs)v(y, s)dydW (s),

G̃(σ, ct) = e−ctρ(σ),

ρ(σ) = [σ2
1 + · · ·+ σ2

k]2N+1, ρ1(σ) = (2π)
k
2

∑
|q|≤m

aq(t)(iσ)q, ρ2(σ) = (2π)
k
2

∑
|q|≤m

bq(t)(iσ)q.

It is easy to see that

‖ṽ1(·, t)‖2 ≤ K

cγ

∫ t

0

‖ṽ1(·, s)‖2

(t− s)γ ds. (2.11)

It is clear that:

E
[
‖ṽ2(·, t)‖2

]
=

∫
E

[∫ t

0

ρ2(σ, s)G̃(σ, ct− cs)ṽ(σ, s)dW (s)

]2

dσ

=

∫ ∫ t

0

E
[
ρ2

2(σ, s)G̃2(σ, ct− cs)ṽ2(σ, s)
]
dsdσ.

Interchanging the order of integration and using Parseval’s identity, we get

E
[
‖v2(·, t)‖2

]
≤ K

cγ

∫ t

0

E
⌊
‖v(·, s)‖2

⌋
(t− s)γ ds (2.12)

From (2.10), (2.11) and (2.12), one gets,

E
[
‖v(·, t)‖2

]
≤ Kε2 +

K

cγ

∫ t

0

E
⌊
‖v(·, s)‖2

⌋
(t− s)γ ds (2.13)

for some constant K > 0, 0 < γ < 1
2
. Inequality (2.13) leads to

E
[
‖v(·, t)‖2

]
≤ Kε2

c2γ
+ exp

[
Kε2

c2γ

]
.
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Choose c2γ = 2KT

ln 1
ε

, we get

E
[
‖v(·, t)‖2

]
≤ ε1−

t
2T , (2.14)

for all 0 ≤ t ≤ T . Note that, u(x, t) = v(x, t) − t
∫ c

0

∫
G(x − y, θt)Lu(y, t)dydθ. The last identity

and (2.14) lead to the required result, [4-6].

3 Existence and Uniqueness of Solutions

In general the Cauchy problem (1.1),(1,2) or (1.3),(1,4) have no solutions, even in the deterministic
case. But we shall find a dense set S in H such that if φ(x) in S, then those Cauchy problems (1.1),
(1.2) and (1.3), (1.4) can be solved under suitable modifications of the nonlinear functions f and g.
Suppose that:

Dqφ · εH, |q| ≤ m,

almost surely. Let us solve first equation (2.10) by using the method of successive approximations.
To do this, we set

vn+1(x, t) =

∫
G(x− y, ct)φ(y)dy +

∫ ∫ t

0

L1(s)G(x− y, ct− cs)vn(y, s)dyds

+

∫ ∫ t

0

L2(s)G(x− y, ct− cs)vn(y, s)dydW (s).

The zero approximation v0(x, t) is taben to be zero. ThusE
[
‖ṽ1(·, t)‖2

]
≤ E

[
‖φ‖2

]
≤M , for some

constat M > 0.

Using similar steps as in theorem (2.1) and Martingale inequality, one gets

E

[
max

0≤t≤T
‖v∗n(·, t)− v∗n−1(·, t)‖2

]
≤ 4K

cγ

∫ T

0

‖vn(·, s)− vn−1(·, s)‖2

(T − s)γ ds

≤ 4Zn(T ).

where

v∗n+1 =

∫ ∫ t

0

L2(s)G(x− y, ct− cs)vn(y, s)dydW (s),

Zn(t) = M

[
K(1− γ)

cγ

]n
tn

Γ(n(1− γ) + 1)
.

Now, since

P

[
max

0≤t≤T
‖vn+1(·, t)− vn(·, t)‖2 > 1

2n

]
≤ 2nE[ max

0≤t≤T
‖vn+1(·, t)− vn(·, t)‖2]

≤ 2nZn(T ),

and
∞∑
n=1

2nZn(T ) <∞,

it follows that P [max0≤t≤T ‖vn+1(·, t) − vn(·, t)‖ > 1
2n

] = 0, infinitely often. Thus the series∑n
j=0 ‖vj+1(·, t)− vj(·, t)‖, uniformly converges on [0, T ].
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So the sequence {vn} converges in H, uniformly on [0.T ], to a stochastic process v, which satisfies
equation (2.10). We have, formally,

Dqv(x, t) =

∫
G(x− y, ct)Dqφ(y)dy

+

∫ t

0

L1(s)G(x− y, ct− cs)Dqv(y, s)dyds

+

∫ t

0

L2(s)G(x− y, ct− cs)Dqv(y, s)dydW (s).

Thus the generalized derivatives Dqv exist for all |q| ≤ m. It is clear also that

E[‖Dqv‖2] ≤ K

c2γ
E[‖φ‖2] exp

Kt

c2γ
,

for all |q| ≤ m, t ∈ [0, T ].

To prove the uniqueness, let us suppose that v and v∗ satisfies equation (2.10). We have

E[‖v(·, x)− v∗(·, t)‖2] ≤ K
∫ t

0

E[‖v(·, s)− v∗(·, s)‖2]

cγ(t− s)γ ,

Thus
E[‖v(·, t)− v∗(·, t)‖2] = 0,

So that,
v(x, t) = v∗(x, t), almostsurely,

But v and v∗ have continuous trajectories almost surely, so

P

[
max

0≤t≤T
‖vn(·, t)− vn−1(·, t)‖2 > 0

]
= 0.

This completes the proof of the existence and uniqueness of the solution of equation (2.10), (see
[6-11].

Set

φn(x) =

∫
G(x− y, 1

n
)φ(y)dy.

It is clear that
lim
n→∞

E[‖φn − φ‖2] = 0.

Let:

un(x, t) =

∫
G

(
x− y, 1

n
− t

nT

)
v(y,

t

nT
)dy.

for every n, un solves equation (1.1) with the initial condition

un(x, 0) = φn(x).

In this case it is enough to assume that φ ∈ H.

It is clear also that un satisfies the conditions I- IV.
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Let us try to solve the Cauchy problem (1.3) , (1.4). For this purpose, we set:

fn(x, t, Bu) =

∫
G(x− y, 1

n
)f(y, t, Bu(y, t))dy,

gn(x, t, Bu) =

∫
G(x− y, 1

n
)g(y, t, Bu(y, t))dy,

We shall prove the existence of the sequence {un} such that:

un(x, t) = φn(x) +

∫ t

0

fn(y, t, Bun(y, s))ds+

∫ t

0

gn(y, t, Bun(y, s))dW (s). (3.1)

Set

v(x, t) =

∫
G(x− y, c1t)u∗(y, t)dy,

where

u∗(x, t) = φ(x) +

∫ t

0

f(x, s,BV (x, s))ds+

∫ t

0

g(x, s,BV (x, s))dW (s),

V (x, t) =

∫
G(x− y, c2)u∗(y, t)dy, c2 > tc1, c1 > 0.

The semi group property leads to

V (x, t) =

∫
G(x− y, c2 − c1t)v(y, t)dy. (3.2)

The properties of G and the semi group property lead formally to

v(x, t) =

∫
G(x− y, c1t)φ(y)dy (3.3)

+

∫ ∫ t

0

G(x− y, c1t)f(y, s, BV (y, s))dyds (3.4)

+

∫ ∫ t

0

G(x− y, c1t)g(y, s, BV (y, s))dydW (s). (3.5)

The existence and uniqueness of the solution of the Cauchy problem (1.3), (1.4) can be proved by
the method of successive approximations. As usual we set

vn+1(x, t) =

∫
G(x− y, c1t)φ(y)dy

+

∫ ∫ t

0

G(x− y, c1t)f(y, s, BVn(y, s))dyds

+

∫ ∫ t

0

G(x− y, c1t)g(y, s, BVn(y, s))dydW (s),

where

Vn(x, t) =

∫
G(x− y, c2 − c1t)vn(y, t)dy.

The zero approximation v0 is given by

v0((x, t) =

∫
G(x− y, c1t)φ(y)dy.
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Using conditions (1.7) and (1.8), one gets

E
[
‖v1(·, t)− v0(·, t)‖2

]
≤ Kt.

Using (1.5) , (1.6), (3.2) and similar methods to the linear case, we can prove the existence and
uniqueness of v. Let

c2 =
1

n
, c1 =

1

Tn
, so

un(x, t) =

∫
G

(
x− y, 1

n
− t

nT

)
v(y, t)dy.

It is clear that, for every n ,un(x, t) solves equation (3.1), (Comp [12-20]).

4 Conclusion

Using a parapolic transfom, we have got suitable results on the correct formulation of the Cauchy
problem for general stochastic partial differential equations. With the help of the parabolic transform,
we can solve the Cauchy problem for general stochatic parial differential equatins without any
restrictions on the charectristic forms.
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