Derivatives Involving I-Function of Two Variables and General Class of Polynomials

Y. Pragathi Kumar ${ }^{1}$, L. Prakasa Rao ${ }^{2}$ and B. Satyanarayana ${ }^{2 *}$
${ }^{l}$ Department of Mathematics, College of Natural and Computational Sciences, Adigrat University, Adigrat, Ethiopia.
${ }^{2}$ Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, Andhra Pradesh, India.

Article Information

DOI: 10.9734/BJMCS/2015/17700
Editor(s):
(1) Qiankun Song, Department of Mathematics, Chongqing Jiaotong University, China.
(2) Tian-Xiao He, Department of Mathematics and Computer Science, Illinois Wesleyan University, USA.

Reviewers:
(1) Abdallah Tamerabet, Mathematical department and Industrial Safety Department, BATNA University, Algeria. (2) Anonymous, Neijiang Normal University, China.
(3) Anonymous, Universidad Michoacana, México.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=1146\&id=6\&aid=9664

Short Research Article

Received: 24 March 2015
Accepted: 28 April 2015
Published: 08 June 2015

Abstract

This paper presents some derivative formulas of I-function of two variables involving general class of polynomials. The special cases of our derivatives yield interesting results.

Keywords: I-function; Mellin-Barnes contour integral; general class of polynomials.

1 Introduction

The well known H-function of one variable defined by Fox [1] and proved the H -function as a symmetric Fourier kernel to Meijers's G-function [2]. The H-function is often called Fox's H-function. Later on many researchers studied and developed H-function. In 1997, Rathie [3] introduced a new function in the literature namely the I-function which is useful in Mathematics, Physics and other branches of applied mathematics. In 2012, Shantha et al. [4] defined and studied I-function of two variables and in 2013, Shantha et al. [5] evaluated some differentiation formulas for I-function of two variables. In the present paper we establish derivative formulae of I-function of two variables involving general class of polynomials.

We shall utilize the following formulae and notations in the present investigation. The I-function of two variables defined by Shantha et al. [4] (and also see [6]) in following manner.

[^0](1.1) $I\left[z_{1}, z_{2}\right]$
\[

$$
\begin{aligned}
& \left.=I_{p_{1}, q_{1}: p_{2}, q_{2} ; p_{3}, q_{3}, m_{3}, n_{2} ; m_{1}}^{z_{1}} \left\lvert\, \begin{array}{l}
\left(a_{j} ; \alpha_{j}, A_{j} ; \xi_{j}\right)_{1, p_{1}}:\left(c_{j}, C_{j} ; U_{j}\right)_{1, p_{2}} ;\left(e_{j}, E_{j} ; P_{j}\right)_{1, p_{3}} \\
\left.z_{j} ; \beta_{j}, B_{j} ; \eta_{j}\right)_{1, q_{1}}:\left(d_{j}, D_{j} ; V_{j}\right)_{1, q_{2}} ;\left(f_{j}, F_{j} ; Q_{j}\right)_{1, q_{3}}
\end{array}\right.\right] \\
& =\frac{1}{(2 \pi i)^{2}} \int_{L_{S}} \int_{L_{t}} \phi(s, t) \theta_{1}(s) \theta_{2}(t) z_{1}^{s} z_{2} d s d t
\end{aligned}
$$
\]

Where

$$
\begin{aligned}
& \phi(s, t)=\frac{\prod_{j=1}^{n_{1}} \Gamma^{\xi_{j}}\left(1-a_{j}+\alpha_{j} s+A_{j} t\right)}{\prod_{j=n_{1}+1}^{p_{1}} \Gamma^{\xi}{ }^{\xi}\left(a_{j}-\alpha_{j} s-A_{j} t\right) \prod_{j=1}^{q_{1}} \Gamma^{\eta_{j}}\left(1-b_{j}+\beta_{j} s+B_{j} t\right)} \\
& \theta_{1}(s)=\frac{\prod_{j=1}^{n_{2}} \Gamma^{U}{ }^{U_{j}}\left(1-c_{j}+C_{j} s\right) \prod_{j=1}^{m_{2}} \Gamma^{V_{j}}\left(d_{j}-D_{j} s\right)}{\prod_{j=n_{2}+1}^{p_{2}} \Gamma^{U_{j}}{ }^{\left(c_{j}-C_{j} s\right)} \prod_{j=m_{2}+1}^{q_{2}} \Gamma^{V_{j}}\left(1-d_{j}+D_{j} s\right)} \\
& \theta_{2}(t)=\frac{\prod_{j=1}^{n_{3}} \Gamma^{P_{j}}\left(1-e_{j}+E_{j} t\right) \prod_{j=1}^{m_{3}} \Gamma^{Q_{j}}\left(f_{j}-F_{j} t\right)}{\prod_{j=n_{3}+1}^{p_{3}} \Gamma^{P_{j}}\left(e_{j}-E_{j} t\right) \prod_{j=m_{3}+1}^{q_{3}} \Gamma^{Q_{j}}\left(1-f_{j}+F_{j} t\right)}
\end{aligned}
$$

where $n_{j} p_{j}, q_{j}(j=1,2,3), m_{j}(j=2,3)$ are non negative integers such that $0 \leq n_{j} \leq p_{j}, q_{l} \geq 0,0 \leq m_{j} \leq q_{j}(j=$ 2,3) (not all zero simultaneously), $\alpha_{j}, A_{j}\left(j=1, \ldots ., \quad p_{1}\right) ; \beta_{j}, B_{j}\left(j=1, \ldots ., q_{1}\right), C_{j}\left(j=1, \ldots ., p_{2}\right), D_{j}(j=1, \ldots .$, $\left.q_{2}\right), E_{j}\left(j=1, \ldots, p_{3}\right), F_{j}\left(j=1, \ldots \ldots, q_{3}\right)$ are positive quantities, $a_{j} \quad\left(j=1, \ldots ., p_{1}\right), b_{j}\left(j=1, \ldots, q_{1}\right), c_{j}(j=1, \ldots$, $\left.p_{2}\right), d_{j}\left(j=1, \ldots \ldots, q_{2}\right), e_{j}\left(j=1, \ldots ., p_{3}\right)$ and $f_{j}\left(j=1, \ldots ., q_{3}\right)$ are complex numbers. The exponents $\xi_{j}, \eta_{j}, U_{j}, V_{j}$, P_{j}, Q_{j} may take non integer values.
L_{s} and L_{t} are suitable contours of Mellin-Barnes type. More over, the contour L_{s} is in the complex s-plane

$$
\Gamma^{V_{j}}\left(d_{j}-D_{j} s\right)\left(j=1, \ldots \ldots, m_{2}\right) \text { lie to the }
$$ and runs from $\sigma_{1}-i \infty$ to $\sigma_{l}+i \infty\left(\sigma_{1}\right.$ real), so that all the poles of

right of L_{s} and all poles of $\Gamma^{U}{ }_{j}\left(1-c_{j}+C_{j} s\right)\left(j=1, \ldots ., n_{2}\right), \Gamma^{\xi}{ }_{j}\left(1-a_{j}+\alpha_{j} s+A_{j} t\right)\left(j=1, \ldots, n_{l}\right)$ lie to the left of L_{s}. Similar conditions for L_{t} follows in complex t -plane. The detailed conditions of this function can be found in Shantha et al. [4].

The class of polynomials [7] (and also see [8])
(1.2) $S_{n}^{m}[x]=\sum_{k=0}^{[n / m]} \frac{(-n) m k}{k!} A_{n, k} x^{k}, \mathrm{n}=0,1,2, \ldots$

Where m is an arbitrary positive integer and the coefficients $A_{n, k}(n, k \geq 0)$ are arbitrary constants. And also used the following notations.
(1.3) $\quad D_{x}=\frac{d}{d x}$
(1.4) $D_{x}^{r} f(x)=\frac{d^{r}}{d x^{r}} f(x)$
(1.5) $\quad\left(x D_{x}\right)^{r} f(x)=\left(x \frac{d}{d x}\right)^{r} f(x)$
(1.6) $\quad\left(D_{x} x\right)^{r} f(x)=\left(\frac{d}{d x} x\right)^{r} f(x)$.

2 Main Results

In this section we derive the following theorems.
Theorem 1. Prove that

$$
\begin{align*}
& D_{x}^{r}\left\{S_{n}^{m}\left[a x^{\lambda}\right] I\left[z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right]\right\} \tag{2.1}\\
& =\sum_{k=0}^{[n / m](-n) m k} \frac{{ }^{n} m}{k!} A_{n, k} a^{k} x^{\lambda k-r} \\
& I_{p_{1}, q_{1}+1: p_{2}, q_{2} ; p_{3}, q_{3}}^{0, n_{1}+1: m_{2}, n_{2} ; m_{3}, n_{3}}\left[\begin{array}{l}
z_{1} x^{h_{1}} \\
z_{2} x^{h_{2}}
\end{array} \left\lvert\, \begin{array}{l}
\left(-\lambda k ; h_{1}, h_{2} ; 1\right),\left(a_{j} ; \alpha_{j}, A_{j} ; \xi_{j}\right)_{1, p_{1}}: \\
\left(b_{j} ; \beta_{j}, B_{j} ; \eta_{j}\right)_{1, q_{1}},\left(r-\lambda k ; h_{1}, h_{2} ; 1\right):
\end{array}\right.\right. \\
& \left(c_{j}, C_{j} ; U_{j}\right)_{1, p_{2}} ;\left(e_{j}, E_{j} ; P_{j}\right)_{1, p_{3}} \\
& \left.\left(d_{j}, D_{j} ; V_{j}\right)_{1, q_{2}} ;\left(f_{j}, F_{j} ; Q_{j}\right)_{1, q_{3}}\right]
\end{align*}
$$

Where λ complex number and h_{1}, h_{2} are real and positive.
Proof. To prove this theorem, we consider

$$
D_{x}^{r}\left\{S_{n}^{m}\left[a x^{\lambda}\right] I\left[z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right]\right\}
$$

And express I-function of two variables as contour integral (1.1), the general class of polynomials as series (1.2) and evaluating the derivative with help of the notation (1.4), we get

$$
\begin{align*}
& D_{x}^{r}\left\{S _ { n } ^ { m } [a x ^ { \lambda }] \left[\left[z_{1} x^{h_{1}}, z_{2} x^{\left.h_{2}\right]}\right\}\right.\right. \tag{2.4}\\
& =\sum_{k=0}^{[n / m](-n)} \frac{m k}{k!} A_{n, k} a^{k} \frac{1}{(2 \pi i)^{2}} \int_{L_{s}} \int_{L_{t}}\left\{\phi(s, t) \theta_{1}(s) \theta_{2}(t) z_{1} s_{z_{2}}^{t}\right. \\
& \times \prod_{j=0}^{r-1}\left(\lambda k+h_{1} s+h_{2} t-j\right) x x_{1}^{\left.\lambda k+h_{1} s+h_{2} t-r\right\} d s d t}
\end{align*}
$$

using the expression

$$
\begin{equation*}
\prod_{j=0}^{r-1}\left(\lambda k+h_{1} s+h_{2} t-j\right)=\frac{\Gamma\left(1+\lambda k+h_{1} s+h_{2} t\right)}{\Gamma\left(1+\lambda k+h_{1} s+h_{2} t-r\right)} \tag{2.5}
\end{equation*}
$$

in (2.4) and simplifying with the help of (1.1), we obtain the result (2.1).

Theorem 2. Prove that

$$
\begin{align*}
& \left(x D_{x}-k_{1}\right)\left(x D_{x}-k_{2}\right) \ldots \ldots\left(x D_{x}-k_{r}\right)\left\{S_{n}^{m}\left[a x^{\lambda}\right]\left[\left[z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right]\right\}\right. \tag{2.6}\\
& =\sum_{k=0}^{[n / m](-n) m k} \frac{k!}{k!} A_{n, k}\left(a x^{2}\right)^{k} \\
& I_{p_{1}, q_{1}+r: p_{2}, q_{2} ; p_{3}, q_{3}}^{0, n_{1}+r: m_{2}, n_{2} ; m_{3}, n_{3}}\left[\begin{array}{l}
z_{1} x_{1}^{h_{1}} \\
\left.z_{2} x^{h_{2}}\left(k_{j}-\lambda k ; h_{1}, h_{2} ; 1\right)_{1, r},\left(a_{j} ; \alpha_{j}, A_{j} ; \xi_{j}\right)_{1, p_{1}}: B_{j} ; \eta_{j}\right)_{1, q_{1}},\left(1+k_{j}-\lambda k ; h_{1}, h_{2} ; 1\right)_{1, r}
\end{array}:\right. \\
& \left(c_{j}, C_{j} ; U_{j}\right)_{1, p_{2}} ;\left(e_{j}, E_{j} ; P_{j}\right)_{1, p_{3}} \\
& \left(d_{j}, D_{j} ; V_{j}\right)_{1, q_{2}} ;\left(f_{j}, F_{j} ; Q_{j}\right)_{1, q_{3}}
\end{align*}
$$

Where λ, k_{j} are complex numbers and h_{1}, h_{2} are real and positive.
Proof. To prove this theorem, we consider

$$
\left(x D_{x}-k_{1}\right)\left(x D_{x}-k_{2}\right) \ldots \ldots .\left(x D_{x}-k_{r}\right)\left\{S_{n}^{m}\left[a x^{\lambda}\right]\left[\left[z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right]\right\}\right.
$$

Express I-function of two variables with the contour integral (1.1), the general class of polynomials as series (1.2) and evaluating the derivatives with help of the notation (1.5), we have

$$
\begin{align*}
& \left.\left(x D_{x}-k_{1}\right)\left(x D_{x}-k_{2}\right) \ldots . . x D_{x}-k_{r}\right)\left\{S_{n}^{m}[a x\right. \tag{2.7}\\
= & \sum_{k=0}^{[n / m](-n) m k} \frac{m}{k!} A_{1} x^{h_{1}}, z_{2} x^{h_{2}} a^{k} \frac{1}{(2 \pi i)^{2}} \int_{L_{S}} \int_{t}\left\{\phi(s, t) \theta_{1}(s) \theta_{2}(t) z_{1}^{s} z_{2} t\right. \\
\times & \left.\prod_{j=1}^{r}\left(\lambda k-k_{j}+h_{1} s+h_{2} t\right) x^{\lambda k+h_{1} s+h_{2} t}\right\} d s d t
\end{align*}
$$

By using
(2.8) $\prod_{j=1}^{r}\left(\lambda k-k_{j}+h_{1} s+h_{2} t\right)=\prod_{j=1}^{r} \frac{\Gamma\left(1+\lambda k-k_{j}+h_{1} s+h_{2} t\right)}{\Gamma\left(\lambda k-k_{j}+h_{1} s+h_{2} t\right)}$ in (2.7) and simplifying with the help of (1.1), we have the result (2.6).

Theorem 3. Prove that

$$
\begin{equation*}
\left(D_{x} x-k_{1}\right)\left(D_{x} x-k_{2}\right) \ldots\left(D_{x} x-k_{r}\right)\left\{S_{n}^{m}\left[a x^{\lambda}\right]\left[\left[z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right]\right\}\right. \tag{2.9}
\end{equation*}
$$

$$
=\sum_{k=0}^{[n / m](-n) m k} \frac{(a)}{k!} A_{n, k}\left(a x^{\lambda}\right)^{k}
$$

$I_{p_{1}, q_{1}+r: p_{2}, q_{2} ; p_{3}, q_{3}}^{0, n_{1}+r: m_{2}, n_{2} ; m_{3}, n_{3}}\left[\begin{array}{l}z_{1} x^{h_{1}} \\ z_{2} x^{h_{2}}\end{array} \left\lvert\, \begin{array}{c}\left(k_{j}-\lambda k-1 ; h_{1}, h_{2} ; 1\right)_{1, r},\left(a_{j} ; \alpha_{j}, A_{j} ; \xi_{j}\right)_{1, p_{1}}: \\ \left(b_{j} ; \beta_{j}, B_{j} ; \eta_{j}\right)_{1, q_{1}},\left(k_{j}-\lambda k ; h_{1}, h_{2} ; 1\right)_{1, r}:\end{array}\right.\right.$
$\left(c_{j}, C_{j} ; U_{j}\right)_{1, p_{2}} ;\left(e_{j}, E_{j} ; P_{j}\right)_{1, p_{3}}$ $\left.\left(d_{j}, D_{j} ; V_{j}\right)_{1, q_{2}} ;\left(f_{j}, F_{j} ; Q_{j}\right)_{1, q_{3}}\right]$

Where λ, k_{j} are complex numbers and h_{1}, h_{2} are real and positive.
Proof. Proof of (2.9) is same as that of (2.1) and (2.6).

3 Special Cases

(i) By writing $k_{1}=k_{2}=\ldots \ldots .=k_{r}=0$ in (2.6), we get
$\left(x D_{x}\right)^{r}\left\{S_{n}^{m}\left[a x^{\lambda}\right]\left[\left[z_{1} x^{h_{1}}, z_{2} x^{h_{2}}\right]\right\}\right.$
$=\sum_{k=0}^{[n / m](-n) m k} \frac{k!}{k!} A_{n, k}\left(a x^{\lambda}\right)^{k}$
$I_{p_{1}, q_{1}+r: p_{2}, q_{2} ; p_{3}, q_{3}}^{0, n_{1}+r: m_{2}, n_{2} ; m_{3}, n_{3}}\left[\begin{array}{l}z_{1} x^{h_{1}} \\ z_{2} x^{h_{2}}\end{array} \left\lvert\, \begin{array}{l}\left(-\lambda k ; h_{1}, h_{2} ; 1\right)_{1, r},\left(a_{j} ; \alpha_{j}, A_{j} ; \xi_{j}\right)_{1, p_{1}}: \\ \left(b_{j} ; \beta_{j}, B_{j} ; \eta_{j}\right)_{1, q_{1}},\left(1-\lambda k ; h_{1}, h_{2} ; 1\right)_{1, r}:\end{array}\right.\right.$
$\left.\left(c_{j}, C_{j} ; U_{j}\right)_{1, p_{2}} ;\left(e_{j}, E_{j} ; P_{j}\right)_{1, p_{3}}\right]$
$\left.\left(d_{j}, D_{j} ; V_{j}\right)_{1, q_{2}} ;\left(f_{j}, F_{j} ; Q_{j}\right)_{1, q_{3}}\right]$
Where λ is complex number and h_{1}, h_{2} are real and positive.
(ii) when $k_{1}=k_{2}=\ldots . .=k_{r}=0$ in (2.9), we get

$$
\begin{align*}
& \left(D_{x} x\right)^{r}\left\{S _ { n } ^ { m } [a x ^ { \lambda }] \left[\left[z_{1} x^{\left.h_{1}, z_{2} x^{x_{2}}\right]}\right\}\right.\right. \tag{3.2}\\
& =\sum_{k=0}^{[n / m](-n)_{m k}} \frac{}{k!} A_{n, k}\left(a x^{\lambda}\right)^{k} \\
& I_{p_{1}, q_{1}+r: p_{2}, q_{2} ; p_{3}, q_{3}}^{0, n_{1}+r: m_{2}, n_{2} ; m_{3}, n_{3}}\left[\begin{array}{l}
z_{1} x^{h_{1}} \\
z_{2} x^{h_{2}}
\end{array} \left\lvert\, \begin{array}{l}
\left(-\lambda k-1 ; h_{1}, h_{2} ; 1\right)_{1, r},\left(a_{j} ; \alpha_{j}, A_{j} ; \xi_{j}\right)_{1, p_{1}}: \\
\left(b_{j} ; \beta_{j}, B_{j} ; \eta_{j}\right)_{1, q_{1}},\left(-\lambda k ; h_{1}, h_{2} ; 1\right)_{1, r}:
\end{array}\right.\right. \\
& \left(c_{j}, C_{j} ; U_{j}\right)_{1, p_{2}} ;\left(e_{j}, E_{j} ; P_{j}\right)_{1, p_{3}} \\
& \left.\left(d_{j}, D_{j} ; V_{j}\right)_{1, q_{2}} ;\left(f_{j}, F_{j} ; Q_{j}\right)_{1, q_{3}}\right]
\end{align*}
$$

Where λ is complex number and h_{1}, h_{2} are real and positive.
(iii) Taking $\lambda=0, a=1$ in (2.1),(2.6) and (2.9), we obtain three derivative formulae established by Shantha et al. ((3.1), (3.2), (3.3) of [5]).
(iv) If $\lambda=0, a=1, p_{I}=q_{1}=n_{I}=0$, and $z_{2} \rightarrow 0$ in (2.1), (2.6) and (2.9), gives corresponding results involving I-function established by Vyas and Rathie [9].
(v) By using $\xi_{j}=\eta_{j}=U_{j}=V_{j}=P_{j}=Q_{j}=1$ in (2.1), (2.6) and (2.9), then we get derivative formulae involving H -function of two variables and general class of polynomials.
(vi) If we take $\lambda=0, a=1, \xi_{j}=\eta_{j}=U_{j}=V_{j}=P_{j}=Q_{j}=1, p_{l}=q_{l}=n_{l}=0$ and $z_{2} \rightarrow 0$ in (2.1), (2.6) and (2.9), we obtain differentiation formulae for H -function established by Gupta et al. [10] and Nair [11].

It may be of interest to conclude that our Theorems 1,2 and 3 have more applications than what we have indicated here rather briefly.

4 Conclusion

Thus the generalized derivatives of product of general class of polynomials and I-function of two variables transformed as I-function of two variables but expression involving more terms. Also one can find same formulae involving general class of polynomial, I-function of r-variables.

Acknowledgements

The authors are thankful to the worthy referees for making useful suggestions for improvement of the paper.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Fox C. The G and H-functions as symmetrical Fourier kernals. Trans. Amer. Math. Soc. 1961;98:395429.
[2] Erdelyi A. Higher transcendental functions. McGraw-Hill Book Company, New York. 1953;1.
[3] Rathie Arjun K. A new generalization of generalized hypergeometric functions. Le Mathematiche. 1997;52(Fasc. 2):297-310.
[4] Shantha Kumari K, Vasudevan Nambisan TM, Arjun K. Rathie. A study of I-function of two variables, arXiv:1212.6717v1[math.CV]; 2012.
[5] Shantha Kumari K, Vasudevan Nambisan TM. On certain derivatives of the I-function of two variables. International journal of Science, Environment. 2013;2:772-778.
[6] Satyanarayana B, Prakas Rao L, Pragathi Kumar Y. Expansion formulas for I-function. Journal of Progressive Research in Mathematics. 2015;3(2):161-1661.
[7] Sharma RP. On a new theorem involving the H-function and general class of polynomials. Kyungpook Math. J. 2003;43:489-494.
[8] Satyanarayana B, Pragathi Kumar Y. Integral transform involving the product of a general class of polynomials, Struve's function, H-function of one and r variables. Appl. Math. Sci. 2011;5(57):28312838.
[9] Vishwa Mohan Vyas, Rathie Arjun K. A study of I-fimctopm - II. Vijnana Parishad Anusandhan Patrika. 1998;414:253-257.
[10] Gupta KC, Jain UC. On the derivative of the H-function. Proc. Nat. Acad. Sci. India. Sect. 1968;38:189-192.
[11] Nair VC. Differentiation formulae for the H-Function I. Math. Student. 1972;40:74-78.
© 2015 Kumar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: drbsn63@yahoo.co.in;

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
 www.sciencedomain.org/review-history.php? iid $=1146$ \&id=6\&aid=9664

