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Abstract 
 

This paper presents some derivative formulas of I-function of two variables involving general class of 
polynomials. The special cases of our derivatives yield interesting results. 

 

Keywords: I-function; Mellin-Barnes contour integral; general class of polynomials. 
 

1 Introduction 
 
The well known H-function of one variable defined by Fox [1] and proved the H-function as a symmetric 
Fourier kernel to Meijers’s G-function [2]. The H-function is often called Fox’s H-function. Later on many 
researchers studied and developed H-function. In 1997, Rathie [3] introduced a new function in the literature 
namely the I-function which is useful in Mathematics, Physics and other branches of applied mathematics. In 
2012, Shantha et al. [4] defined and studied I-function of two variables and in 2013, Shantha et al. [5] 
evaluated some differentiation formulas for I-function of two variables.  In the present paper we establish 
derivative formulae of I-function of two variables involving general class of polynomials.   
 
We shall utilize the following formulae and notations in the present investigation. The I-function of two 
variables defined by Shantha et al. [4] (and also see [6]) in following manner. 

Short Research Article 



 
 
 

Kumar et al.; BJMCS, 9(5): 446-452, 2015; Article no.BJMCS.2015.216 
 
 
 

447 
 
 

(1.1) ]2,1[ zzI

 

 











321

321

2

133221

332211 ,1);,(;,1);,(:,1);,;(

,1);,(;,1);,(:,1);,;(
,;,:,0
,;,:,

qQjFjfqVjDjdqjBjjb

pPjEjepUjCjcpAjja

z

znmnmn
qpqpqp

I
jjj

jjjj




 

=  

s
L

t
L

dtdstzsztsts
i

212 )()(
1

),(
2)2(

1



 

 
Where 
 

 












 





 









 


1

1

1

1

1 1
1

1
1

,
p

nj

q

j
tjBsjjbjtjAsjjaj

n

j
tjAsjja

j

ts










  


















2

2

2

2

2

1 1
)1()(

2

1 1
)()1(

)(1 p

nj

q

mj
sjDjd

jV
sjCjc

jU

n

j

m

j
sjDjd

jV
sjCjc

jU

s

   


















3

3

3

3

3

1 1
)1()(

3

1 1
)()1(

)(2 p

nj

q

mj
tjFjf

jQ
tjEje

jP

n

j

m

j
tjFjf

jQ
tjEje

jP

t

  

 

where  nj,pj,qj(j = 1,2,3), mj(j = 2,3) are non negative integers such that  0  ≤  nj  ≤  pj,  q1 ≥ 0, 0≤  mj  ≤ qj  (j = 

2,3)  (not all zero simultaneously), j, Aj (j = 1, ….,   p1); j, Bj (j = 1,…..,q1), C j(j = 1,…., p2), Dj (j = 1,…., 

q2), Ej (j = 1,…., p3), Fj (j = 1,…., q3) are positive quantities,  aj       (j = 1,…., p1), bj (j = 1,….,q1), cj (j = 1,…., 

p2), dj (j = 1,….., q2), ej (j = 1,…., p3) and fj (j = 1,…., q3) are complex numbers. The exponents j, j, Uj, Vj, 

Pj, Qj may take non integer values. 

 

Ls and Lt are suitable contours of Mellin-Barnes type. More over, the contour Ls is in the complex s-plane 

and runs from 1-i to 1+i (1 real), so that all the poles of  

)( sjDjdjV
  (j = 1,…..,m2) lie to the 

right of Ls and all poles of )1( sjCjcjU
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(j = 1,…., n1) lie 

to the left of Ls. Similar conditions for Lt follows in complex t-plane. The detailed conditions of this function 
can be found in Shantha et al. [4]. 
 
The class of polynomials [7] (and also see [8]) 
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Where m is an arbitrary positive integer and the coefficients An,k (n, k ≥ 0) are arbitrary constants. And also 
used the following notations. 
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2 Main Results 
 
In this section we derive the following theorems. 
 
Theorem 1.  Prove that 
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Where  complex number and 21 , hh  are real and positive. 

 
Proof. To prove this theorem, we consider 
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And express I-function of two variables as contour integral (1.1), the general class of polynomials as series 
(1.2) and evaluating the derivative with help of the notation (1.4), we get 
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in (2.4) and simplifying with the help of (1.1), we obtain the result (2.1). 
 
Theorem 2.  Prove that  
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Where , kj are complex numbers and 21 , hh  are real and positive. 

 
Proof. To prove this theorem, we consider 
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Express I-function of two variables with the contour integral (1.1), the general class of polynomials as series 
(1.2) and evaluating the derivatives with help of the notation (1.5), we have 
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By using  
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we have the result (2.6). 
 
Theorem 3. Prove that  
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Where , kj are complex numbers and 21 , hh  are real and positive. 

 
Proof. Proof of (2.9) is same as that of (2.1) and (2.6). 
 

3 Special Cases 
 

(i)    By writing k1= k2 = ……. = kr = 0 in (2.6), we get 
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Where  is complex number and 21 , hh  are real and positive. 

 
(ii)  when k1= k2= ….. = kr = 0 in (2.9), we get 
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Where  is complex number and 21 , hh  are real and positive. 

 
(iii)   Taking   = 0, a = 1 in (2.1),(2.6) and (2.9), we obtain three derivative formulae established by 

Shantha  et al. ((3.1), (3.2), (3.3) of [5]). 
(iv) If  = 0, a = 1, p1=q1=n1=0, and z20 in (2.1), (2.6) and (2.9), gives corresponding results 

involving I-function established by Vyas and Rathie [9]. 
(v) By using j = j = Uj = Vj = Pj = Qj = 1 in (2.1), (2.6) and (2.9), then we get derivative formulae 

involving H-function of two variables and general class of polynomials. 
(vi) If we take  = 0, a = 1,j = j = Uj = Vj = Pj = Qj = 1 , p1=q1=n1=0 and z20 in (2.1), (2.6) and 

(2.9), we obtain differentiation formulae for H-function established by Gupta et al. [10] and Nair 
[11]. 

 
It may be of interest to conclude that our Theorems 1, 2 and 3 have more applications than what we have 
indicated here rather briefly. 
 

4 Conclusion 
 
Thus the generalized derivatives of product of general class of polynomials and I-function of two variables 
transformed as I-function of two variables but expression involving more terms. Also one can find same 
formulae involving general class of polynomial, I-function of r-variables. 
 

Acknowledgements 
 
The authors are thankful to the worthy referees for making useful suggestions for improvement of the paper. 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Fox C. The G and H-functions as symmetrical Fourier kernals. Trans. Amer. Math. Soc. 1961;98:395-

429. 
 
[2] Erdelyi A. Higher transcendental functions. McGraw-Hill Book Company, New York. 1953;1. 
 



 
 
 

Kumar et al.; BJMCS, 9(5): 446-452, 2015; Article no.BJMCS.2015.216 
 
 
 

452 
 
 

[3] Rathie Arjun K. A new generalization of generalized hypergeometric functions. Le Mathematiche. 
1997;52(Fasc. 2):297-310. 

 
[4] Shantha Kumari K, Vasudevan Nambisan TM, Arjun K. Rathie. A study of I-function of two 

variables, arXiv:1212.6717v1[math.CV]; 2012. 
 
[5] Shantha Kumari K, Vasudevan Nambisan TM. On certain derivatives of the I-function of two 

variables. International journal of Science, Environment. 2013;2:772-778.  
 
[6] Satyanarayana B,  Prakas Rao L, Pragathi Kumar Y. Expansion formulas for I-function. Journal of 

Progressive Research in Mathematics. 2015;3(2):161-1661. 
 
[7] Sharma RP. On a new theorem involving the H-function and general class of polynomials.   

Kyungpook Math. J. 2003;43:489-494. 
 
[8] Satyanarayana B, Pragathi Kumar Y. Integral transform involving the product of a general class of 

polynomials, Struve’s function, H-function of one and r variables. Appl. Math. Sci. 2011;5(57):2831-
2838. 

 
[9] Vishwa Mohan Vyas, Rathie Arjun K. A study of I-fimctopm – II. Vijnana Parishad Anusandhan 

Patrika. 1998;414:253-257. 
 
[10] Gupta KC, Jain UC. On the derivative of the H-function. Proc. Nat. Acad. Sci. India. Sect. 

1968;38:189-192. 
 
[11] Nair VC. Differentiation formulae for the H-Function I. Math. Student. 1972;40:74-78. 
_______________________________________________________________________________________ 
© 2015 Kumar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
www.sciencedomain.org/review-history.php?iid= 1146&id=6&aid=9664 


