

British Journal of Applied Science & Technology 8(2): 162-164, 2015, Article no.BJAST.2015.194 ISSN: 2231-0843

SCIENCEDOMAIN international www.sciencedomain.org

Isotropy of Some Potassium, Sodium and Rubidium Compounds

Fae`q A. A. Radwan^{1*}

¹Faculty of Engineering, Near East University, KKTC- Lefkosa, Mersin 10, Turkey.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJAST/2015/12563 <u>Editor(s):</u> (1) Mark Vimalan, Department of Physics, Syed Ammal Arts and Science College, India. <u>Reviewers:</u> (1) Anonymous, India. (2) S. Sandy Subala, Chemistry, St. Joseph University in Tanzania- Arusha Campus, USA. Complete Peer review History: <u>http://www.sciencedomain.org/review-history.php?iid=1070&id=5&aid=8588</u>

Original Research Article

Received 7th July 2014 Accepted 26th August 2014 Published 25th March 2015

ABSTRACT

The norm of elastic constant tensor and the norms of the irreducible parts of the elastic constants of potassium, Sodium and Rubidium compounds are calculated. The relation of the scalar parts norm and the other parts norms and the anisotropy of these compounds are presented. The norm ratios are used to study anisotropy of these compounds.

Keywords: Isotropy; norm; anisotropy; elastic constants.

1. INTRODUCTION

The decomposition procedure and the decomposition of elastic constant tensor is given in [1-6] also the definition of norm concept and the norm ratios and the relationship between the anisotropy and the norm ratios are given in [3-6]. As the ratio N_s/N becomes close to one the material becomes more isotropic, and as the

ratio N_n/N becomes close to one the material becomes more anisotropic as explained in [3-6].

2. CALCULATIONS

By using Table 1 and the decomposition of the elastic constant tensor [1-6], we have calculated the norms and the norm ratios as shown in Table 2.

*Corresponding author: E-mail: faeq.radwan@neu.edu.tr, frdwnk@gmail.com;

Cubic system, potassium compounds	<i>c</i> ₁₁	$c_{_{44}}$	c_{12}
Potassium cobalt flouride, KCoF ₃	130	35.2	51
Potassium cyanide, KCN	19.4	1.45	12.0
Potassium magnesium flouride, KMgF ₃	138	49.8	43.7
Potassium manganese flouride, KMnF ₃	115.3	27.2	39.6
Potassium niobate, KNbO ₃	255	90	80
Potassium nickel flouride, KNiF ₃	158	40.3	48.5
Potassium tantalate, KTaO ₃	431	109	130
Potassium zinc flouride, KZnF ₃	134	38.1	53
Sodium bromate (piezoel), NaBrO ₃	55.7	15.2	17.9
Sodium chlorate (piezoel), NaClO ₃	49.6	11.6	14.7
Sodium cyanide, NaCN	22.7	0.35	12.6
Sodium thioantimonate (Schlippe's Salt) Na ₃ SbS ₄ .9H ₂ O,	23.91	6.69	14.73
Rubidium cadmium flouride, RbCdF ₃	110	20.4	37
Rubidium cobalt flouride, RbCoF ₃	130	41.5	55
Rubidium manganese flouride, RbMnF ₃	117	31.9	42
Rubidium silver iodide, RbAg ₄ I ₅	16.5	4.89	9.34

Table 1. Elastic constants (GPa), [7]

	Table 2.	The norms	and norm	ratios
--	----------	-----------	----------	--------

Cubic system,					3.7	17	3.7
potassium	N_s	N_d	N_n	N	N_s	N_d	N_n
compounds	1 • 5	1 d	1 n	1 V	N	N	N
Potassium Niobate,	509.270	0	4.583	509.291	1.0000	0	0.0090
KNbO ₃							
Potassium zinc	272.732	0	4.399	272.767	0.9999	0	0.0161
Flouride, KZnF ₃							
Potassium magnesium	270.480	0	6.324	270.554	0.9997	0	0.0234
Flouride, KMgF ₃						_	
Potassium cobalt	262.332	0	7.882	262.450	0.9995	0	0.0300
flouride, KCoF ₃	000 700	0	10 500	004 500	0.0004	•	0.0004
Potassium	220.720	0	19.522	221.582	0.9961	0	0.0881
manganese flouride,							
KMnF ₃ Potassium nickel	297.291	0	26.487	298.469	0.9961	0	0.0887
flouride, KNiF ₃	297.291	0	20.407	290.409	0.9901	0	0.0007
Potassium cyanide,	44.094	0	4.124	44.287	0.9957	0	0.0931
KCN	44.004	0	7.127	44.207	0.3337	0	0.0351
Potassium tantalate,	806.852	0	76.071	810.430	0.9956	0	0.0939
KTaO ₃	0001002	· ·		0.01.00	0.0000	·	010000
Sodium bromate	106.924	0	6.782	107.139	0.9980	0	0.0633
(piezoel), NaBrO ₃							
Sodium	56.787	0	3.849	56.918	0.9977	0	0.0676
Thioantimonate							
(Schlippe's Salt)							
Na ₃ SbS ₄ .9H ₂ O,							
Sodium chlorate	91.534	0	10.723	92.160	0.9932	0	0.1164
(piezoel), NaClO ₃						_	
Sodium cyanide,	48.468	0	8.615	49.227	0.9846	0	0.1750
NaCN	070 070	0	7 4 4 0	074.000	0.0007	0	0.0004
Rubidium cobalt	273.970	0	7.149	274.063	0.9997	0	0.0261
Flouride, RbCoF ₃	230.699	0	10.265	230.927	0.9990	0	0.0445
Rubidium manganese Flouride, RbMnF ₃	230.099	0	10.200	230.921	0.9990	U	0.0440
Rubidium silver lodide.	38.0436	0	2.4013	38.119	0.9980	0	0.0630
RbAg₄I ₅	00.0400	U	2.7010	00.110	0.0000	0	0.0000
Rubidium cadmium	204.402	0	29.512	206.522	0.9897	0	0.1429
flouride, RbCdF ₃	_••	÷			0.000.	-	0

3. CONCLUSION

By examining the results which are given in table 2, we can say in general by considering the ratio

 $\frac{N_s}{N}$ that for potassium compounds, the

compound Potassium Niobate, $KNbO_3$ is the most isotropic compound, and the most anisotropic compound is Potassium Tantalate.

KTaO₃ because the value of
$$\frac{N_s}{N}$$
 is the smallest

and the value of $\frac{N_n}{N}$ is the largest for Potassium

Tantalate, $KTaO_3$, and for Sodium compounds the most isotropic compound is Sodium Bromate (piezoel), NaBrO₃, and the most anisotropic compound is Sodium Cyanide, NaCN because

the value of $\frac{N_s}{N}$ is the smallest and value of $\frac{N_n}{N}$

is the largest for Sodium Cyanide, NaCN, and for Ribidium compounds, the compound Rubidium Cobalt Flouride, RbCoF₃, is the most isotropic compound and most anisotropic compound is Rubidium Cadmium Flouride, RbCdF₃ because

the value of $\frac{N_s}{N}$ is the smallest and value of $\frac{N_n}{N}$

is the largest for Rubidium Cadmium Flouride, RbCdF₃. And we can say in general that the Potassium compounds are more isotropic than Ribidium compounds and Ribidium compounds are more isotropic than Sodium compounds. Also we can notice by considering the value of N that this value is the highest (810.430) in the case of the Potassium Tantalate, KTaO₃ compound so we can say that the compound Potassium Tantalate, KTaO₃ elastically is the strongest, and the in the case of Rubidium Silver Iodide, RbAg₄I₅ compound (38.119) the value of N is the

smallest so we can say that the compound Rubidium Silver lodide, $RbAg_4I_5$ elastically is the least strong compound.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

- Jerphagnon J, Chemla DS, Bonnevile R. The description of condensed matter using irreducible tensors. Adv. Phys. 1978;11: 1003-1017.
- Radwan, Fae'q AA. Norm ratios and anisotropy degree. The First International Conference in Mathematical Sciences, Applied Mathematics, ICM99, November 1999, United Arab Emirates University, Al Ain, United Arab Emirates. Pak. J. Appl. Sci. 1999;1(3):301-304.
- 3. Radwan FAA. Scalar irreducible parts of sixth rank tensor. Arab Gulf Journal of Scientific Research. 2001;19(3):163-166.
- Fae`q A. A. Radwan. Some properties of copper - gold and silver - gold alloys at different % of Gold. Journal: Lecture Notes in Engineering and Computer Science. 2011;2189(1):1221-1224.
- Fae'q A. A. Radwan. Isotropy of some types of bones. International Journal of Engineering Science and Technology (IJEST). 2011;3(4):3382-3386.
- Fae'q A. A. Radwan. Some properties of copper-nickel at different % of Ni', Pelagia Research Library, Der Chemica Sinica. 2014;5(1):34-38.
- Landolt-Börnstein, Group III. Crystal and Solid State Physics. Springer-Verlag. 2001;11:163-166.

© 2015 Radwan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=1070&id=5&aid=8588