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Abstract 
 

Spline Smoothing is used to filter out noise or disturbance in an observation, its performance depends on 
the choice of smoothing parameters. There are many methods of estimating smoothing parameters; most 
popular among them are; Generalized Maximum Likelihood (GML), Generalized Cross-Validation 
(GCV), and Unbiased Risk (UBR), this methods tend to overfit smoothing parameters in the presence of 
autocorrelation error. A new Spline Smoothing estimation method is proposed and compare with three 
existing methods in order to eliminate the problem of over fitting associated with the presence of 
Autocorrelation in the error term. It is demonstrated through a simulation study performed by using a 
program written in R based on the predictive Mean Score Error criteria. The result indicated that the 
predictive mean square error (PMSE) of the four smoothing methods decreases as the smoothing 
parameters increases and decreases as the sample sizes increases. This study discovered that the proposed 
smoothing method is the best for time series observations with Autocorrelated error because it doesn’t 
over fit and works well for large sample sizes. This study will help researchers overcome the problem of 
over fitting associated with applying Smoothing spline method time series observation. 
 

 
Keywords: Autocorrelation; generalized maximum likelihood; generalized cross-validation; splines 

smoothing; time series and unbiased risks. 
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1 Introduction 
 
In non-parametric regression, smoothing is of great importance because it is used to filter out noise or 
disturbance in an observation; it is commonly used to estimate the mean function in a nonparametric 
regression model, it is also the most popular methods used for prediction in non-parametric regression 
models, the general spline smoothing model is given as: 
 

�� =  �(��)  +  ��                     (1) 
 

Where; yi is the observation values of the response variable, f is an unknown smoothing function, Xi is the 
observation values of the predictor variable and εi is zero mean Autocorrelated stationary process. The main 
objective of this research is to estimate f (.) when xi = ti but not necessarily equally spaced, with t1 < . . . < tn 
(time) and εi is assumed to be correlated [1]. Therefore, this research shall consider the spline smoothing for 
non-parametric estimation of a regression function in a time-series context with the model; 
 

�� =  �(��)  + ���                    (2) 
 
Where; Yi = observation values of the response variable, f = an unknown smoothing function, ti is the time 
for i = 1 . . . n, and eti = zero mean Autocorrelated stationary process. 
 
Smoothing spline arises as the solution to a nonparametric regression problem having the function f(x) with 
two continuous derivatives that minimizes the penalized sum of squares; 
 

�(�)  =  ����  −  �(��)�
�

 +  � � ��ǀ(��)�
�

��                                                                                    (3)
�

�

�

���

 

 

Where;  denotes a smoothing parameter, that is, the rate of exchange between residual error and roughness 
of the curve f, the parameter λ controls the trade-off between goodness-of-fit and the smoothness of the 
estimate. If λ is 0 then �ǀ(�) simply interpolates the data, if λ is very large, then �ǀ(�) will be selected so that 
�ǀ(�) is 0, which implies a globally linear least-squares fit to all data [2]. There are vast literatures on Spline 
Smoothing modeling of time series data in the presence Autocorrelated error; [1,2,3,4,5,6,7,8,9,10,11,12,13, 
14,15,16].  
 
The aim of this study is to propose a new Smoothing method (PSM) by modifying two of the existing spline 
smoothing methods (i.e. the Generalized Cross Validation (GCV) and Unbiased Risk (UBR)) and compare 
this modified smoothing methods with three existing estimation methods namely; Generalized Maximum 
Likelihood (GML), Generalized Cross Validation (GCV) and Unbiased Risk (UBR) for time series 
observations in the presence of Autocorrelated error in order to eliminate the problem of over fitting 
associated with the presence of Autocorrelation in the error term. Section one presents the introduction to the 
study. Section two reviews the existing spline smoothing method and the proposed selection method, Section 
3 presents the Monte Carlo simulation study, equation used for generating values in simulation experimental 
design and data generation, section four compares the four methods via a simulation study, and finally, the 
result discussion and conclusion were presented in last section. 
 

2 Parameter Estimation 
 
2.1 Generalized cross-validation (GCV) with autocorrelation structure 
 
The term generalized cross-validation (GCV) was coined by [17] and was applied by [18,19,20] introduced 
the Autocorrelation structure in GCV, this is given as; 
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���(�)  =  
(� − ��)����(� −  �)

[�����(� −  ��)]�
                                                                                                            (4)  

 
Where; (Sλ) = the ith diagonal element of smoother matrix, V = the correlation structure, y = (yl, . . . ,yn)T 
and f = (f(t1) ,. . . ,f(tn))T  
 

2.2 Generalized maximum likelihood (GML) estimation method with autocorrelation 
structure 

 
The Generalized Maximum Likelihood (GML) estimation method is an empirical Bayes type criteria 
developed by [21,22] while [3] proposed the GML methods for correlated observations with one smoothing 
parameter given by; 
 

 ���(�)  =  
�ᴵ�(� −  ��)

[�����(� −  ��)]
�

� � �

                                                                                                             (5) 

 
Where; det + (I – Sλ) is the product of the n – m nonzero eigenvalues of (I – Sλ), λ is Smoothing parameter, 
W is the correlation structure, Sλ is the diagonal element of smoother matrix, n is n1 + n2, Pairs of 
measurement/observations and m is number of zero eigenvalues. 
 

2.3 Unbiased risk (UBR) estimation method with autocorrelation structure 
 
The UBR method or CP criterion was suggested by [23] and had been applied successfully by [24,25,26,27], 
but [3] provides UBR method with a known Autocorrelation structure for selecting smoothing parameters 
for spline estimates with non-Gaussian data. It is written as; 
 

  ��� (�)  =  

�

�
��

�

�(� −  ��)��
�

��

�
����������(� − ��)��

�    � =  0,1,2                                                                              (6) 

 
Where; n is the pairs measurement/observations{��, ��}, W is the correlation structure, λ is Smoothing 
parameters, Sλ = is the ith diagonal element of smoother matrix. 
 

2.4 Proposed smoothing method (PSM) with autocorrelation structure 
 
A Spline Smoothing model is defined as; 
 

�� =  �(��) + ��                                                                                                                                (7) 
 

Where; Y is the observation values of the response variable, X is the predictor variable, f is Regression 

function and is error term. There is a number of option to consider when model (7) above, they include; 

Data transformation, additive terms e.g. quadratic or cubic term and Spline smoothing. This study is 
interested in Spline Smoothing because it considers non-linearity based on the regression curve by 
introducing a kink or bends in the yi, this kinks is produced by hinge function and the point of bend on the fit 
is called knots. Spline Smoothing is simpler to plot and easy to interpret when the relationship is between y 

and (x, x2). The number of knots is denoted by  , model (7) above can also take the form; 
 

�� =  ��(��) + ��(��
�) + �� (Polynomial regression)                  (8)         

 
The main purpose of the conversional regression analysis is to minimize the residual Sum of Square (RSS), 
if RSS is used to compare regression models, the largest model would be chosen even though its not the best 
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model. It is worthy to note that in Spline Smoothing, a method of selection known as Cross Validation (CV) 
was proposed by [28]. In place of RSS in the conventional simple regression analysis, the error term is 
therefore defined as 
 

� =  �� − ���  
��� =  ∑ ��

� = ∑ ��� − ����
��

���
�
���                    (9) 

 
Recall that; 
 
�� =  �(��), for the observed and ��� =  ��(��)for the fitted value when a number of knots are introduced, 

then; ���� =  
�

�
∑ (� − ���)

��
���  

 
Cross Validation method is defined in terms of variance, thus; 
 

����  =  
�

�
∑ �

�� �  ������

� � �(��)���
�

�

                  (10) 

 
The main of this proposed selection method was to minimize the variance as much as possible in order to 
have a precise estimate of the parameter of interest, 
 
Where; 
 
 �� is smoothen matrix, it is the squared diagonal matrix and its diagonal entries are denoted by; 
 

�� =  �(�! � +  ��ǀ)���� and �� (��)  =  �
�� (��)

.
�� (��)

�  =  �� �                                                          (11) 

 
Recall that;  
 

����[� − (��)��]  =  [� − (��)]                                                                                                                    (12) 
 

Where; I is an identity matrix and ����[� − (��)��]is a squared matrix with diagonal entries; [� − (��)��]. 
 
Remember that; �� =  �(��) and ��� =  ��(��)  =  ��(�), CV selection method is therefore given as;  
 

�� =  �

�
∑ �

��� ������

��  ����
��

��
���                   (13) 

 
�� − ��(��)  =  �� − ���� 
                   =  (1 − ��)��                  (14) 
 

Since the Euclidean distance makes use of the summation and trace of a matrix, a new spline smoothing 
selection method was proposed by [28] called Generalized Cross Validation (GCV) defined as; 
 

������ =  
�
�

‖(� � ��)�‖�

�
�
� �����(����)�

                               (15)    

 

GCV uses additives operation by considering Euclidean distance and trace of a matrix; 
 

 �����(� − ��)  =  ∑ (� − (��)��)�
���                                                                                                 (16) 
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Using Multiplicative operations, another Spline Smoothing selection method was proposed by [29] called 
Generalized Maximum Likelihood (GML) defined as;  

 

������  =  
�!(����)�

���(����)
�

�� �

                 (17) 

 
Where; m is number of zero eigenvalues, n – m = non-zero eigenvalues of (1 – Sλ) for correlated error terms 

such as   12  w . Where; W = the correlation structure 

 
GML becomes modified as; 

 

������  =  
�!�(����)�

���[�(����)]
�

�� �

                 (18) 

 
To extend GCV, Unbiased Risk method was proposed with correlation structure; 
  

���  (�)  =  

�

�
��

�

�(� − ��)��
�

��

�
����������(� − ��)��

�                                                                                                 (19) 

 

And from equation (15), GCV method for estimating spline smoothing (λ) in the presence of autocorrelation 

structure was given by, 

 

 ���(�)  =  
(� − ��)����(� −  �)

[��{1 − ��}]�
                                                                                                         (20) 

 
A new Spline Smoothing estimation method is proposed to allow for the presence of correlation structure 
when UBR (19) and GCV (20) methods were modified when k is set as 1, as seen below; 
 

Combining equations (19) and (20) and substituting k = 1, ��� (�)  =  
��� (�)

��� (�)
 �ℎ�� � =  1 

 

��� (�)  =  

�� � ���
�

�� �(� � �)

[�����(� � ��)]�

�

�
��

�
� (����)�

�

�
�

�
��������� �(� � ��)��

�

                                                                                                              (21) 

 
Now the behavior of the minimize λ in GCV and UBR methods under the substituted value of k = 1 yield.  

 

��� (�)  =  

�� � ���
�

�� �(� � �)

[�����(� � ��)]�

�

�
��

�
� (����)�

�

�
�

�
�����{��(� � ��)}�

�

                                                                                                                  (22) 

 
 
 
 



 
 
 

Adams and Ipinyomi; AJPAS, 4(4): 1-19, 2019; Article no.AJPAS.50700 
 
 
 

6 
 
 

Factorizing equation (22) 
 

��� (�)  =  

�� � ���
�

�� �(� � �)

[�����(� � ��)]�

�

�
��

�
�

 (����)�

�

�

�

�
[�����(� � ��)]�

                                                                                                                      (23) 

The Proposed Smoothing Method (PSM) we derived is the minimizer of V (λ) given by 
 

��� (�)  =  
�� −  ���

�
���(� −  �)

[�����(� −  ��)]�
 ×

�

�

�
[�����(� − ��)]�

�

�
��

�
� (� − ��)�

�                                                             (24) 

 

��� (�)  =  
�

�

�
�

�
�� −  ���

�

���(� −  �)

�

�
��

�
�

 (� − ��)�
�                                                                                                 (25)

  

��� (�)  =  

�

�
�� −  ���

�
���(� −  �)

��
�
� (� − ��)�

�                                                                                                       (26)

 
 

Where; n is Pairs of observations, λ is the Smoothing parameter, W and �� −  ���
�

���(� −  �) are the 
Autocorrelation structures and Sλ is the diagonal element of smoother matrix. 
 

3 Materials and Methods 
 
3.1 Equation used for generating values in simulation 
 
A simulation study is conducted to evaluate and compare the performance of the four estimation methods 
presented in previous sections. The model considered is    
 

  ��  =  
�����

�
 + �� � =  1, 2, . . . �, � =  �[1, 100]                                                                                  (27) 

 
Where; ε’s are generated by a first-order autoregressive process AR (1) with mean 0, standard deviations 0.8 
and 1.0 and first-order correlations (i.e. ρ = 0.2, 0.5 and 0.8) and its 95% Bayesian confidence interval. 
 

3.2 Experimental design and data generation 
 
The experimental plan applied in this research work was designed to have three time series sample Sizes (T) 
of 20, 60 and 100, three Autocorrelation levels, i.e.    = 0.2, 0.5 and 0.8, four smoothing functions were 
considered i.e. λ = 1, 2, 3 and 4, two standard deviation were considered, i.e. σ = 0.8 and 1.0. The data were 

generated for 1000 replications for each of the 722433  combinations of cases n, , λ, and σ. The 

criterion used is the PMSE values to evaluate f̂ computed according to each of the estimation given as;  

 

 ����(�) =  � �� ��(��) − ��(��)�

�

���

�

�                                                                                                  (28) 
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The Predictive Mean Square Error can be divided into two terms, the first term is the sum of square biases of 
the fitted values while the second is the sum of variances of the fitted values. 
 

Where; �(��) is the observed value and ��(��) = fitted/predicted/estimated value [30]. Simulation study was 
performed by using a program written in R, it was used to estimate all the model parameters, the criterion, 
the effect of autocorrelation on the estimated parameters and the performances of the four estimation 
methods i.e. Generalized Maximum Likelihood (GML), Generalized Crossed Validation (GCV), Unbiased 
Risk (UBR) and the Proposed Smoothing Method (PSM). 
 

4 Results 
 
In this study, the results of the proposed Spline smoothing estimation method was compared with three 
existing estimation methods namely; the Generalized Cross-Validation, Generalized Maximum Likelihood 
and Unbiased Risks, the Predictive mean square errors criterion was used to measure their efficiency.  
 

4.1 Performance of the four smoothing methods based on predictive mean square 
error criterion when σ = 0.8 

 
Table 1 presents the predictive mean square error for the four estimators, three sample sizes, four spline 
smoothing levels and three correlation error levels at 0.8 sigma level. It was discovered that for GCV and for 
sample size 20 the predictive mean square error of 4.938284 at λ = 1, decreases to 2.789043 at λ = 2 and 
further decreased to 2.018062 when λ = 4. The predictive mean square error increases as the level of 
autocorrelation increases from 4.938284 when α = 0.2 to 5.735483 when α = 0.5 and to 5.70041 when α = 
0.8 for smoothing function (λ) = 1 and sample size = 20. It was also discovered that the predictive mean 
square error decreases as the sample size increases; at n = 20 the PMSE decreased from 4.938284 to 
1.353605 at n = 60 and further deceases from 1.353605 to 0.394855 at n = 100 and for smoothing function 
(λ) = 1.  
 
The predictive mean square error (PMSE) of GML decreases from 3.788134 at λ = 1, to 3.624478 at λ = 3 
and then decreased to 3.615046 at λ = 4. At sample size 20 the predictive mean square error is 3.902353, it 
decreased to 2.328352 as the sample size increased to 60 and further decreased to 2.314015 as the sample 
size increased to 100. It is noticed that the PMSE of GML increases from 2.638143 to 2.804273 as the 
autocorrelation error level increases of 0.2 to 0.5, but decreases from 2.804273 to 2.625861 as the 
autocorrelation level increases from 0.5 to 0.8. For all the other increase in autocorrelation error levels, the 
PMSE increased correspondingly, thus there is efficiency in GML. For the Proposed Smoothing Method 
(PSM), it was discovered that the predictive mean square error increases as the autocorrelation level 
increases and decreases as the sample size increases. At sample size 20 the predictive mean square error of 
4.208490 at λ = 2 decreases to 4.202272 at λ = 3 and further decreases to 3.615946 when λ = 4. The 
predictive mean square error of PSM decreases as the sample size increases, for λ = 1 and autocorrelation 
level of 0.2. PSM decreased from 4.188747 at sample size = 20 to 2.853925 at sample size 60 and further 
decreased to 2.287803 at sample size 100. The predictive mean square error of PSM increases from 
2.853925 to 1.822216 as the autocorrelation error level increases of 0.2 to 0.5 for sample size is 60 and 
increases from 1.822216 and 1.812007 as the autocorrelation error level increases of 0.5 to 0.8 for sample 
size is 60. The predictive mean square error for UBR increases as the autocorrelation level increases and 
decreases as the smoothing levels and sample sizes increase. At sample size 20 the predictive mean square 
error of 3.777261 at λ = 1, decreases to 3.469432 at λ = 2, decreases to 3.416732 at λ = 3 but increased 
slightly to 3.98581 when λ = 4. The predictive mean square error of UBR decreases as the sample size 
increases, for λ = 2 and autocorrelation level of 0.5, UBR decreases from 3.469432 at sample size = 20 to 
1.88788 at sample size 60 and further decreased to 1.431244 at sample size 100. The predictive mean square 
error of UBR increases from 3.416732 to 3.526772 as the autocorrelation error level increases of 0.2 to 0.5 
for sample size is 20 and increases from 3.526772 and 3.611808 as the autocorrelation error level increases 
of 0.5 to 0.8 for sample size the same sample size. 
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Table 1. The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation ( ) = 0.3, 0.5 and 0.8 for n = 20, 60 and 100 
when standard deviation (σ) = 0.8 

 
 PMSE 

N = 20 N = 60 N = 100 
Λ Smoothing 

Methods 
 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

λ = 1 GCV 
GML 
PSM(k=1) 
UBR 

4.938284 
3.788134 
4.188747 
3.777261 

5.735483 
3.902353 
1.977449 
2.810875 

5.700411 
4.557857 
2.05909 
1.449087 

1.353605 
2.328352 
2.853925 
2.101405 

3.179886 
2.429546 
1.822216 
2.317046 

5.817303 
2.625861 
1.812007 
1.118518 

0.394855 
2.314015 
2.287803 
1.913073 

4.190077 
2.836043 
1.573442 
2.079789 

4.753061 
2.438085 
1.605743 
0.841755 

λ = 2 GCV 
GML 
PSM(k=1) 
UBR 

2.789043 
2.638143 
4.208498 
3.469432 

3.755684 
2.804237 
2.018938 
2.506771 

5.368908 
1.300494 
2.105152 
1.017353 

1.123143 
2.19448 
2.823294 
1.88788 

1.374032 
2.018002 
1.879530 
1.616574 

4.406313 
1.027948 
1.778426 
1.230349 

0.341562 
2.040446 
2.287803 
1.431244 

2.96876 
1.334802 
1.573403 
0.220508 

3.188995 
0.171129 
1.200836 
1.532589 

λ = 3 GCV 
GML 
PSM(k=1) 
UBR 

3.175146 
3.624478 
4.202272 
3.416732 

3.507623 
3.802802 
2.025768 
3.526772 

4.218419 
4.263339 
2.112142 
3.611808 

2.472227 
2.094332 
1.816911 
1.857928 

1.730359 
2.958588 
0.175471 
2.525618 

1.456264 
2.996486 
1.765224 
2.564013 

0.334902 
1.990265 
1.531958 
1.361115 

0.815361 
2.22264 
0.467133 
1.866935 

1.992452 
0.8030926 
0.124897 
3.321139 

λ = 4 GCV 
GML 
PSM(k=1) 
UBR 

2.018062 
3.615946 
4.11762 
3.398581 

3.42688 
2.800514 
2.028096 
3.512612 

2.169436 
1.250932 
2.114477 
4.927715 

1.094332 
2.175146 
1.814626 
1.857928 

0.173144 
1.938749 
1.701375 
1.94582 

2.74644 
5.985579 
1.760514 
3.615934 

0.332736 
1.973208 
1.500005 
1.337717 

2.765412 
1.984518 
1.430172 
1.815722 

2.928445 
5.983278 
1.098286 
3.257353 

 
 
 
 
 
 
 
 
 



 
 
 

Adams and Ipinyomi; AJPAS, 4(4): 1-19, 2019; Article no.AJPAS.50700 
 
 
 

9 
 
 

Table 2. The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation ( ) = 0.3, 0.5 and 0.8 for n = 20, 60 and 100 
when standard deviation (σ) = 1.0  

 
   PMSE   

N = 20 N = 60 N = 100 
Λ Smoothing 

Methods 
 
α = 0.2 

 
α = 0.5 

 
α = 0.8 

 
α = 0.2 

 
α = 0.5 

 
α = 0.8 

 
α = 0.2 

 
α = 0.5 

 
α = 0.8 

λ = 1 GCV 
GML 
PSM(k=1) 
UBR 

2.217985 
1.402249 
1.9762941 
3.946115 

4.652218 
2.213838 
1.878994 
2.170123 

5.219991 
2.854191 
1.62727 
2.854018 

1.5079261 
1.285324 
1.681525 
3.477279 

3.032906 
2.424851 
1.655205 
1.895938 

3.355379 
2.860878 
2.622758 
1.904192 

0.109678 
0.917754 
1.625184 
0.715411 

0.205153 
1.498209 
1.060796 
1.410622 

4.068174 
1.460676 
1.814121 
1.391461 

λ = 2 GCV 
GML 
PSM(k=1) 
UBR 

2.038837 
2.353263 
1.706005 
2.285086 

1.550266 
2.159928 
1.883573 
2.043898 

2.357644 
2.742754 
1.512748 
2.606053 

1.036064 
1.61744 
1.337262 
1.686028 

3.064901 
1.745815 
1.815278 
1.615925 

3.686213 
1.801702 
1.258637 
1.94976 

0.106917 
0.916592 
1.111343 
0.715436 

0.204841 
1.484834 
1.555058 
0.391479 

2.641265 
1.191663 
0.824054 
1.213843 

λ = 3 GCV 
GML 
PSM(k=1) 
UBR 

1.975886 
1.344602 
1.691873 
2.166318 

2.465147 
2.150393 
1.799777 
2.202126 

2.230474 
2.723054 
1.490825 
2.563679 

1.106586 
2.376657 
1.289702 
1.335866 

1.865407 
1.703152 
1.65212 
2.149228 

1.493562 
1.747526 
1.185653 
2.283664 

0.914299 
0.916174 
1.188291 
0.715459 

1.204822 
0.482901 
1.786081 
0.388746 

1.462472 
1.152826 
1.525496 
1.832608 

λ = 4 GCV 
GML 
PSM(k=1) 
UBR 

0.873763 
1.341634 
1.686857 
1.259853 

1.437364 
2.147087 
1.794844 
2.014616 

2.188967 
2.716225 
1.483121 
2.549091 

0.106479 
1.296255 
1.2739570 
1.221922 

2.800442 
2.050446 
1.659382 
1.578077 

1.430831 
1.895078 
1.159813 
2.412688 

0.956241 
0.916018 
1.104291 
0.715468 

0.204817 
0.482256 
1.454671 
0.387835 

1.404276 
1.139858 
1.259721 
1.540203 
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(a)                                                                   (b)                                                         (c)                                                         (d) 

 
Fig. 1. Plots of the observations (. . .) and estimates (---) with smoothing parameters chosen by GCV (a), GML (b), PSM (c), and UBR (d) for n = 20 
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  (a)                                                        (b)                                                          (c)                                                     (d) 

 
Fig. 2. Plots of the  observations (. . .) and estimates (---) with smoothing parameters chosen by GCV (a), GML (b), PSM (c),and UBR (d) for n = 60 
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  (a)                                                         (b)                                                        (c)                                                         (d) 

 
Fig. 3. Plots of the  observations (. . .) and estimates (---) with smoothing parameters chosen by GCV (a), GML (b), PSM (c),and UBR (d) for n = 100 
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Fig. 4. The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 0.2 and n = 20 
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Fig. 5. The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 0.2 and n = 60 
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Fig. 6. The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 0.2 and n = 100 
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Table 2 presents the predictive mean square error for the four estimators, three sample sizes, four spline 
smoothing levels, three correlation error levels and at 1.0 sigma level. It was discovered that for GCV, at α = 
0.5 and sample size 20 the predictive mean square error of 2.217985 at λ = 1, decreases to 2.038837 at λ = 2, 
decreases to 1.975886 at λ = 3 and further decreased to 0.873763 when λ = 4. The predictive mean square 
error increases as the level of autocorrelation increases from 2.217985 when α = 0.2 to 4.652218 when α = 
0.5 and to 5.219997 when α = 0.8 for smoothing function (λ) = 1 and sample size = 20. It was also 
discovered that for smoothing function (λ) = 2, the predictive mean square error decreases as the sample size 
increases; at n = 20 the PMSE decreased from 2.038837 to 1.036064 at n = 60 and further deceased to 
0.106917 at n = 100.  
 
The predictive mean square error (PMSE) of GML decreases as the smoothing parameter increases. For 
small sample size and at α = 0.8, the predictive mean square error decreased from 1.460676 at λ = 1 to 
1.191663 at λ = 2 then decreases to 1.152826 at λ = 3 and further decreased to 1.139958 at λ = 4. The 
predictive mean square error of GML decreases as the as the sample size increases. At sample size 20 the 
predictive mean square error is 1.402249, it decreased to 1.285324 as the sample size increased to 60 and 
further decreased to 0.917754 as the sample size increased to 100. It is noticed that the predictive mean 
square error of GML increases from 1.344602 to 2.150393 as the autocorrelation error level increases of 0.2 
to 0.5, and increases from 2.150393 to 2.723054 as the autocorrelation level increases from 0.5 to 0.8. Thus 
there is efficiency in GML, but it was observed that predictive mean square error decreased as the 
autocorrelation error level increases. 
 
For the Proposed Smoothing Method (PSM), it was discovered that the predictive mean square error 
decreases as the autocorrelation level, smoothing parameter and sample size increases. At sample size 20 the 
predictive mean square error of 4.188747 at λ = 1 increased to 4.208498 at λ = 2 but decreases to 4.02272 
when λ = 3 and further decreases to 4.117621 when λ = 4. The predictive mean square error of PSM 
decreases as the sample size increases, for λ = 2 and autocorrelation level of 0.2. PSM decreased from 
1.706005 at sample size = 20 to 1.337262 at sample size 60 and further decreased to 1.111343 at sample size 
100. The predictive mean square error of PSM decreases from 1.9762941 to 1.878994 as the autocorrelation 
error level increases of 0.2 to 0.5 for sample size is 20 and further decreases  from 1.878994 to 1.62727 as 
the autocorrelation error level increases of 0.5 to 0.8 for sample size is 20. 
  
The predictive mean square error for UBR increases as the autocorrelation level decreases as the smoothing 
level and sample size increases.  
 
At sample size 20 the predictive mean square error of 3.946115 at λ = 1, decreases to 2.285086 at λ = 2 to 
2.166318 at λ = 3 and further decreases to 1.259853 when λ = 4. The predictive mean square error of UBR 
decreases as the sample size increases, for λ = 4 and autocorrelation level of 0.8, UBR decreases from 
2.549091 at sample size = 20 to 2.412688 at sample size 60 and further decreased to 1.540203 at sample size 
100. The predictive mean square error of UBR increases from 2.166318 to 2.202126 as the autocorrelation 
error level increases of 0.2 to 0.5 for sample size is 20 and increases from 2.202126 to 2.563679 as the 
autocorrelation error level increases of 0.5 to 0.8 for sample size the same sample size, but it was observed 
that predictive mean square error decreased as the autocorrelation error level increases. 
 

Table 3. Summary of the predictive mean square error and ranks of the smoothing methods in the 
presence of autocorrelation error 

 
Autocorrelation Smoothing method 
levels GCV GML PSM (k=1) UBR 
α = 0.2  
α = 0.5  
α = 0.8  

1.08 
1.89 
2.63 

1.39 
1.71 
1.99 

1.47 
1.66 
1.27 

1.63 
1.48 
2.09 

Grand mean 
Rank 

1.87 
4 

1.70 
2 

1.47 
1 

1.73 
3 
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Table 4. Summary of the predictive mean square error and ranks of the smoothing methods based on 
sample size 

 
Sample Smoothing method 
size GCV GML PSM (k=1) UBR 
n = 20  
n = 60  
n = 100  

2.434 
2.041 
1.124 

2.179 
1.900 
1.047 

1.711 
1.549 
1.145 

2.326 
1.921 
0.951 

Grand mean 
Ranks 

1.867 
4 

1.709 
2 

1.468 
1 

1.732 
3 

 
Figs. 1 and 6 presents the predictive mean square error estimates of GCV, GML, PSM and in 1000 
replications. From these plots we can see that the PSM and UBR estimates have small PSMEs compare with 
GCV and GML. We conclude that all four methods estimate the smoothing parameters and the functions 
well but the PSM and UBR provide better estimates than GCV and GML in terms of mean-square error. The 
PSM method is more stable when the sample size is small, such as when N = 20 while UBR method 
performs slightly better when N = 60. In this case there were several replications where GCV and GML 
providing more estimates of smoothing parameters which lead to undersmoothing of the data. This behavior 
of the GCV method was investigated in Wahba and Wang (1993) and Wang (1998). 
 

5 Discussion and Conclusion 
 
In this study, Spline smoothing estimation method for time series observations in the presence of 
Autocorrelated errors were compared based on three sample sizes. The simulation result under the finite 
sampling properties of PMSE criterion shows that all smoothing methods were consistent but adversely 
affected by the presence of Autocorrelation in the error term, the smoothing methods ranks as follows, PSM, 
GML, UBR and GCV. The result suggested that PSM should be preferred when Autocorrelation level is 
mild and high (α = 0.5 – 0.8) and for low Autocorrelation levels in the observations, (i.e. α = 0.2 – 0.5) the 
Unbiased Risk (UBR) should be considered. It was also observed that GCV and GML were mostly affected 
by the presence of Autocorrelation and therefore had an asymptotically similar behavioural pattern. The 
study also discovered that the Proposed Smoothing method is preferred mostly at the large sample size and 
the proposed Smoothing method do not over fit, as shown in the figures above.  
 

Acknowledgement 
 
I wish to express my profound gratitude and appreciation to the University of Abuja, Nigeria, Tertiary 
Education Trust Fund (TETFUND) and NEEDS Assessment 2016/2017 intervention fund for sponsoring 
this research work.   
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Diggle PJ, Hutchinson MF. On spline smoothing with autocorrelated errors. Australian Journal of 

Statistics. 1989;31:166 –182. 
 
[2] Wabha G, Wang Y. Behaviour near zero of the distribution of GCV smoothing parameter estimates 

for splines. Statistics and Probability Letters. 1995;25:105–111. 
 



 
 
 

Adams and Ipinyomi; AJPAS, 4(4): 1-19, 2019; Article no.AJPAS.50700 
 
 
 

18 
 
 

[3] Yuedong W. Smoothing spline models with correlated random errors. Journal of American Statistical 
Association. 1998;441(93):341–348. 

 
[4] Yuedong W, Wensheng G, Brown MB. Spline smoothing for bivariate data with application to 

association between hormones. Statistica Sinica. 2000;10:377–397. 
 
[5] Opsomer J, Yuedong W, Yang Y. Nonparametric regression with correlated error. Statistical 

Sciences. 2001;6(2):134–153. 
 
[6] Carew JD, Wahba G, Xie X, Nordheim EV, Meyerand ME. Optimal spline smoothing of FMRI time 

series by generalized cross-validation. NeuroImage. 2003;18(4):950–961. 
 
[7] Hall P, Keilegom I. Using difference-based methods for inference in nonparametric regression with 

time series errors. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 
2003;65(2):443–456. 

 
[8] Francisco-Fernandez M, Opsomer JD. Smoothing parameter selection methods for nonparametric 

regression with spatially correlated errors. Canadian Journal of Statistics. 2005;33(2):279–295. 
 
[9] Hart JD, Lee C. Robustness of one-sided cross-validation to autocorrelation. Journal of Multivariate 

Analysis. 2005;92:77–96. 
 
[10] Krivobokova T, Kauermann G. A note on penalized spline smoothing with correlated errors. Journal 

of the American Statistical Association. 2007;102:1328–1337. 
 
[11] Shen H. On modeling and forecasting time series on smooth curve. Technometric. 2008;51(3):227–

238. 
 
[12] Kim T, Park B, Moon M, Kim C. Using bimodal kernel for inference in nonparametric regression 

with correlated errors. Journal of Multivariate Analysis. 2009;100(7):1487–1497. 
 
[13] Morton R, Kang EL, Henderson BL. Smoothing spline for trend estimation and prediction in time 

series. Environmetrics. 2009;20(3):249–259. 
 
[14] Wang H, Meyer MC, Opsomer JD. Constrained spline regression in the presence of AR (p) errors. 

Journal of Nonparametric Statistics. 2013;25:809–827. 
 
[15] Adams SO, Ipinyomi RA. A proposed spline smoothing estimation method for time series 

observations. International Journal of Mathematics and Statistics Invention (IJMSI). 2019;7(2):18–25. 
 
[16] Chen CS, Huang HC. An improved Cp criterion for spline smoothing. Journal of Statistical Planning 

and Inference. 2011;144(1):445–471. 
 
[17] Wahba G. Practical approximate solutions to linear operator equations when data are noisy. SIAM 

Journal of Numeric Analysis. 1977;14(4):651–667. 
 
[18] Hastie T, Tibshirani R. Generalized additive models. Statistical Models, CRC Press. 1990;43. 
 
[19] Aydin D, Memmedli M, Omay RE. Smoothing parameter selection for nonparametric regression 

using smoothing spline. European Journal of Pure and Applied Mathematics. 2013;6:222–38. 
 
[20] Wahba G. Bayesian confidence intervals for the cross-validated smoothing spline. Journal of Royal 

Statistical Society Service. B. 1983;45:133–150. 
 



 
 
 

Adams and Ipinyomi; AJPAS, 4(4): 1-19, 2019; Article no.AJPAS.50700 
 
 
 

19 
 
 

[21] Wecker WE, Ansley FC. The signal extraction approach to nonlinear regression and spline 
smoothing. Journal of America Statistical Association. 1983;78:81–89. 

 
[22] Wahba G. A comparison of GCV and GML for choosing the smoothing parameters in the generalized 

spline smoothing problem. The Annals of Statistics. 1985;4:1378–1402.  
 
[23] Mallows CL. Some comments on Cp. Technometrics. 1973;15(4):661–675. 
 
[24] Craven P, Wahba G. Smoothing noisy data with spline functions. Numerical Mathematics. 1979;31: 

377–403. 
 
[25] Gu Chong. Spline smoothing density estimation: A dimensionless automatic algorithm. Journal of 

America Statistical Association. 1993;78:81–89. 
 
[26] Wahba G, Wang Y, Gu C, Klein R, KIein B. Smoothing spline ANOVA for exponential families, 

with application to the Wisconsin epidemiological study of diabetic retinopathy. The Annals of 
Statistics. 1995;23:1865–1895. 

 
[27] Kohn R, Ansley CF, Wong C. Nonparametric spline regression with autoregressive moving average 

errors. Biometrika. 1992;79:44–50. 
 
[28] Wahba G. Convergence rates of thin plate smoothing splines when the data are noisy in T. Gasser and 

M. Rosenblatt (Eds), Smoothing Techniques for Curve Estimation, Springer, Verlag; 1979. 
 
[29] Wahba G, Wang Y, Gu C, Klein R, KIein B. Smoothing spline ANOVA for exponential families, 

with application to the Wisconsin epidemiological study of diabetic retinopathy. The Annals of 
Statistics. 1995;23:1865–1895. 

 
[30] Aydin D, Memmedli M, Omay RE. Smoothing parameter selection for nonparametric regression 

using smoothing spline. European Journal of Pure and Applied Mathematics. 2013;6:222–238. 
_______________________________________________________________________________________ 
© 2019 Adams and Ipinyomi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sdiarticle3.com/review-history/50700 


