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ABSTRACT 
 

In this paper, we investigated the influence of electric field on the ground state energy of polaron in 
spherical semiconductor quantum dot (QD) using modified Lee Low Pines (LLP) method. The 
numerical results show the increase of the ground state energy with the increase of the electric field 
and the confinement lengths. The modulation of the electric and the confinement lengths lead to 
the control of the decoherence of the system. 
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1. INTRODUCTION 
 
Due to the recent progress achieved in 
nanotechnology, it has become possible to 
fabricate low dimensional semiconductor 
structures. Special interest is being devoted to 
the quasi zero dimensional structures, usually 
referred to as quantum dots (QD) [1-9]. In such 
nanometer QD's, some novel physical 
phenomena and potential electronic device 
applications have generated a great deal of 
interest. They may give theoretical physicists 
great challenges to develop the theory based on 
the quantum mechanical regime. Recently, much 
effort [10-12] has been focused on exploring the 
polaron effect of QD's. Roussignol et al. [10] 
have shown experimentally and explained 
theoretically that the phonon broadening is very 
significant in very small semiconductor QD's. 
Some have also observed [11-12] that the 
polaron effect is more important if the dot sizes 
are reduced to a few nanometers. More recently, 
the related problem of an optical polaron bound 
to a Coulomb impurity in a QD has also been 
considered in the presence of a magnetic field. 
 
The theoretical investigation of the polaron 
properties was performed by using the standard 
perturbation techniques [13], by the variational 
Lee-Low-Pines method [14-15] and by modified 
LLP approach [16-17], by Feynman path integral 
method [18], by numerical diagonalization [19], or 
by Green function methods [20]. The 
experimental data [21] show, in particular, a large 
splitting width near the one-phonon and two-
phonon resonance in aInAs/GaAs QD. This was 
accounted for by the theoretical model via a 
numerical diagonalization of the Fröhlich 
interaction [19]. The required value of the 
Fröhlich constant was much larger (by a factor of 
two [19]), than measured in bulk. In [18] using 
the Feynman path integral method, the authors 
observed that the quadratic dependence of the 
magnetopolaron energy is modulated by a 
logarithmic function and strongly depend on the 
Fröhlich electron–phonon coupling constant 
structure and cyclotron radius. Furthermore the 
effective electron-phonon coupling is enhanced 
by high confinement or high magnetic field. In 
[21] the polaron energy in QD was calculated 
using a LLP approach and it was found that the 
polaronic effect is more pronounced for small dot 
sizes. In [16], using a modified LLP approach, 
the number of phonons around the electron, and 
the size of the polaron for the ground state, and 

for the first two excited states is calculated via 
the adiabatic approach. 
 
It is important to note that, all works done are not 
using the modified LLP method to solve the 
problem of polaron subjected to an electric field. 
It is also instructive from the works presented 
above, to recall that polarons are often classified 
according to the Fröhlich electron-phonon 
coupling constant. Some authors [18] 
investigated simultaneously all couplings types 
characterizing Fröhlich electron-phonon coupling 
by using the Feynman path integral method. The 
main feature of the method presented here is the 
modification of the LLP approach [16] by 

introducing a new parameter 
1 2
b and b in the 

traditional LLP approach, which permits us to 
obtain an “all coupling” polaron theory. Here the 

coupling is weak if 
1 2

1b b  , strong coupling 

if 
1 2

0b b   and intermediate  between these 

ranges.  
 
In this paper, we study the influence of the 
electric field on the polaron ground state energy, 
using the modified LLP method. This paperhas 
the following structure: In section 2, we describe 
the Hamiltonian of the system while in section 3 
the modified LLP method is presented and 
analytical results of the ground state energy, 
polaron effective mass are obtained.In section 4, 
we present results and discussions and finally we 
end with section 5 where concluding remarks are 
presented. 
 
2. HAMILTONIAN OF SYSTEM  
 
The electron under consideration is moving in a 
polar crystal with three dimensional anisotropic 
harmonic potential, and interacting with the bulk 
LO phonons, under the influence of an electric 
field along the  direction. The Hamiltonian of 

the electron-phonon interaction system can be 
written as [22] 
 

e ph e ph            (2.1) 

 

Where
e
  represents the electronic Hamiltonian 

and is given by 
 

2
2 2 2 2 *
1 2

1 1

2 2 2e

p
m m z

m
      � e      (2.2) 
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where p


 is the momentum, 
1 2
and   measure the confinement in the   direction and z 

direction respectively. 
 

ph
 is the phonon Hamiltonian defined as 

 

†
ph Q Q

Q

a a                                                                                (2.3) 

 

where † ( )QQa a  are the creation(annihilation) operators for  LO phonons of wave vector ( , )zQ q q
 

, 

e ph represents  the electron-phonon Hamiltonian and is given by 

 
 

. † .i Q r iQ r
e p h Q Q Q

Q

V a e a e 
    

  



            

(2.4) 

 

where
Q
V and   are the amplitude of the electron-phonon interaction and the coupling constant  

respectively  given by 
 

 
3. MODIFIED LLP METHOD AND ANALYTICAL RESULTS OF GROUND STATE 

ENERGY AND POLARON MASS 
 
Adopting the mixed-coupling approximation of [23], we propose a modification to the LLP-

transformation by inserting two variational parameters
1 2
b and b .  

Our new unitary transformation is now   
 

1 1 2exp ( ) ( )zi P b P zb           

  
                                               (3.1) 

 
Where 
 

†
Q Q

Q

P p a a 
 

                                                                                             

(3.2) 

is the total momentum of the polaron and 
 

†
Q Q

Q

Qa a
 
�

                                                                                                

(3.3) 

 
is the momentum of the phonon.  
 

1 14 2

12 2

0

4
, ( 2 . 5 )

2

2 1 1
, ( 2 . 6 )

2

L O
Q

L O

L O

L O

V i
Q m V

e m

  






  

                 

                 

 

 
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The two new variational parameters are supposed to trace the problem from the strong coupling case 
to the weak coupling limit and to interpolate between all possible geometries. 
 
The second transformation has the form [23] 
 

†
2 ( )Q QQ

Q

u a a                                                                                      (3.4) 

 

where
Q
u  is a variational function. This transformation is called the displaced oscillator which is 

related to the phonon operators via the phonon wave vector and the relation 
 

2 0ph phU                                                                                                   (3.5) 

 

where 0
ph

 is the phonon vacuum state since at low temperature there will be no effective phonons. 

Applying the transformation in (3.1) on the Hamiltonian (2.1), we obtained

 

1 2 1 2

(1) 1
1 1

2
2 2 2 2 * 2 2
1 2 1

2 2 †
1 2 2

( . ) . † ( . ) .

1 1
( )

2 2 2

2 ( ) ( ) 2 ( )

z z

z z z z z QQ
Q

i b q b q z iQ r i b q b q z iQ r
Q Q Q

Q

p
m m z b P

m

b p P b P b p P a a

V a e e a e e

 

 

 

   



   



      

       

    




      

  �

 

  

e

       (3.6) 

 
Applying the transformation (3.4) on (3.6), we obtained 
 

(2) 1 (1)
2 2

2
2 2 2 2 * 2 2
1 2 1

2 (0) 2 (1) (0) 2 (1) (1)
1 1 1

2 (0) (1) 2 (0) 2 (0) 2 2 2 (0) 2
1 1 1 2 2

(1
2

1 1
( )

2 2 2

( ) 2 ( ) ( 2 )

2 ( ) 2 2 ( ) ( )

2 (

z z z

z z z z

p
m m z b P

m

b b p P b

b P b b P b P b

b p P

 

        

      

   



      

       

      

  

  � 

 

      

      

 

e

1 2 1 2

) (0) 2 (1) (1) 2 (0) (1)
2 2

2 (0) 2 (0) 2 † †
2 2

( . ) . ( . ) . †

) ( 2 ) 2 ( )

2 2 ( )

( ) ( )z z

z z z z z z

z z z z Q Q Q QQ Q
Q Q Q

i b q b q z iQ r i b q b q z iQ r
Q Q Q Q QQ

Q Q

b b P

b b P u a a u a a

V e e a u V e e a u    

     

      

   

  

 
      

     

  

 

 

In Fröhlich units i.e.2 1
LO

m    , this expression takes the form 
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(2) 1 (1)
2 2

2 2 2 2 2 * 2 2
1 2 1

2 (0) 2 (1) (0) 2 (1) (1)
1 1 1

2 (0) (1) 2 (0) 2 (0) 2 2 2 (0) 2
1 1 1 2 2

(1)
2

1 1
( )

4 4

( ) 2 ( ) ( 2 )

2 ( ) 2 2 ( ) ( )

2 (

z z z

z z z z z

p z b P

b b p P b

b P b b P b P b

b p P

 

        

      

   



      

       

      

   

  � 

 

      

      

  

e

1 2 1 2

(0) 2 (1) (1) 2 (0) (1)
2 2

2 (0) 2 (0) 2 † †
2 2

( . ) . ( . ) . †

) ( 2 ) 2 ( )

2 2 ( )

( ) ( )z z

z z z z z

z z z z Q Q Q QQ Q
Q Q Q

i b q b q z iQ r i b q b q z iQ r
Q Q Q Q QQ

Q Q

b b P

b b P u a a u a a

V e e a u V e e a u    

    

      

   

  

 
      

    

  

  (3.7) 

 
Where 
 

(1) †( )Q Q Q
Q

Qu a a 
 


                                                                             

(3.8) 

 
And 
 

(0) 2
Q

Q

Qu
 


                                                                                             

(3.9) 

 
Applying(3.5) on (3.7), we obtained the ground state energy  
 

   

2 2 2 2 2 * 2 2 2 (0) 2 (0) 2
1 2 1 1 1

2 2 2 2 2 (1) (0)
1 2 1

1 2 1 2

1 1
0 0 2 ( )

4 4

(1 ) 0 0 2 ( ) 0 0

0 (exp ( . ) exp( . ) exp ( . ) exp( . )) 0

g e e

Q z e ph ph e
Q

Q Q e z z e
Q

p z b P b P b

u b q b q b p P

V u i b q b q z iQ r i b q b q z iQ r

   

    

   

 

       

       

     





   

      

   

  

e

2 2 2 (0) 2 (0) 2 (1) (0)
2 2 2 22 ( ) 0 0 2 ( ) 0 0z z z z e ph z z z z z ph eb P b P b b p P



      
   

    

 (3.10) 

 
To evaluate this expression, we express the coordinates and momenta of the electron in terms of its 

creation(annihilation) operators †( )   as 

 
†

1

†
1

†
2

†
2

( )

( )

( )

( )

z z z

z z

p

x i

p

z i

  

  

  

  

  

  

 

 

 

  

 

 

where the index   refers to the x and y  coordinates, and 
1 2
and   are another variational 

parameters. Performing the required calculations we get for the ground state energy 
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2 2 *
2 2 2 (0) 2 (0) 21 2 1 2
1 1 1

1 2 1

2 2 2 2 2 2 2 2 (0) 2 (0) 2
1 2 2 2 2

2 2 ( )
2 4 2 4

(1 ) 2 ( ) 2

g

Q z z z z z Q Q Q
Q Q

b P b P b

u b q b q b P b P b V u S

   

   

  
        

       


  

 

e

  

   (3.11) 

 
With 
 

 1 20 (exp ( . ) exp( . )) 0Q e z eS i b q b q z iQ r   
  

                      (3.12) 

 
this expression can be written as 
 

2 2
2 2

1 2
1 2

exp (1 ) exp (1 )
2 2

z
Q

q q
S b b

 

   
       
   
   

                                 (3.13) 

 

Minimizing (3.11) with respect to the variational function 
Q
u we obtain 

 
2 2 2 2 2 (0) 2 (0)
1 2 1 21 2 ( ) 2 ( )z z z z Q Q Qb q b q b q P b q P u V S 

         
 

   
(3.14) 

 

Solving (3.14) with respect to 
Q
u , with the assumption that (0)


  differ from the total momentum by 

a scalar factor  (0) P 
 
 , we get 

 

2 2 2 2 2 2
1 2 1 21 2 (1 ) 2 (1 )

Q Q
Q

z z z

V S
u

b q b q b qP b q P  

     

                          (3.15) 

 
Substituting (3.15) into (3.11) we obtain 
 

2 2 *
2 2 2 2 2 21 2 1 2
1 2

1 2 1

2 2 2 2 2 2
1 2

22 2 2 2 2 2
1 2 1 2

2 2

2 2 2 2 2 2
1 2 1 2

2
(1 ) (1 )

2 2 2 4

(1 )

1 2 (1 ) 2 (1 )

2
1 2 (1 ) 2 (1 )

g z

Q Q z

Q z z z

Q Q

Q z z z

b P b P

V S b q b q

b q b q b qP b q P

V S

b q b q b qP b q P







    
 

  

 

 

        

 

        


        








e

        (3.16) 

 
 

But ( )g P


  may be well represented by the first two terms of a power series expansion in 2P  as [23] 

 
2

4( ) (0) 0( )
2

g g

P
P P   


                                                          (3.17) 

with 1  gives the effective mass of the polaron. 

Comparing (3.16) and (3.17) we obtain for the ground state energy 
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2 22 2 *
1 2 1 2

2 2 2 2
1 2 1 1 2

2

2 4 2 4 1

Q Q

g
Q z

V S

b q b q

   

  
     

    





e                            (3.18) 

 
and the mass of polaron is given as 
 

2 2 2 2
1 2

1 1

2 (1 ) 2 (1 )
Pm

b b 
 
                                                                 

(3.19) 

 
Substituting (3.13) in the ground state energy (3.18), we obtained 
 

2 2
2 2 2

1 22 2 *
1 21 2 1 2

2 2 2 2
1 2 1 1 2

exp (1 ) exp (1 )
2

2 4 2 4 1

z
Q

g
Q z

q q
V b b

b q b q

    

  

   
      
   
        
    





e          (3.20) 

 
re-arranging this expression, we finally obtained the ground state energy  
 

2 2
2 2 2

1 2*
1 21 2

4 4 2 2 2 2
11 1 2 2 1 2

exp (1 ) exp (1 )
1 1 2

2 4 2 4 1

z
Q

g
Q z

q q
V b b

l l b q b q

  

 

   
      
   
        
    





e

 

   (3.21) 

 

where
2 2
1 2

1 2

l and l
m m 

 
 

are the confinement length in xy  plane and z  direction 

respectively 
 

4. NUMERICAL RESULTS AND 
DISCUSSIONS 

 
For the numerical results, we consider the strong 

coupling case, i.e. 
1 2

0b b  . In this section, 

we show the numerical results of the ground 

state energy 
0

ε versus the electric field strength

 , the electron-phonon coupling strength  , 

and the confinement lengths
1 2
l and l . 

 
In Fig. 1, we have plotted the ground state 

energy 0
 of polaron as a function of electric 

field  for 

1 2 2
6.5, 0.15 , 0.35 0.75l l and l      

(Fig. (1a)) and 

1 2 2
6.5, 0.25, 0.35 0.75l l and l      

(Fig. (1b)). The ground state energy is an 
increasing function of electric field. This is 
because the electric field leads to the electron 
energy increment and makes the electrons 

interact with more phonons. In this way, the 
states’ energies are increased. From another 
point of view, since the presence of the electric 
field is equivalent to introducing another new 
confinement to the electron, which leads to 
greater electron wave-function overlapping with 
each other, the electron-phonon interaction will 
be enhanced, resulting in the increase of states’ 
energies with the increase of electric field. This 
indicates a new way to control the QD energies 
via the electric field. In fact, the electric field 
plays an important role in low-dimensional 
materials. For example, both the quantum 
decoherence process and the electron’s 
probability density are affected by it. Thus, here 
we find a suitable two-state system by adjusting 
the electric field, which is crucial in constructing a 
qubit [24-25].  
 

In Fig. 2 we plot the ground state energy 
0


which varies with the electron-phonon coupling 
strength   for 
 

1 2 2
0.25, 5.0, 0.25 0.85l l andl     (Fig. 2a) 
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2 1 1
0.25, 0.0, 0.3 0.35l l andl     (Fig. 2b) 

1 2
0.25, 0.5, 0.5 3.5l l and     (Fig. 2c) 

 
From the three figures we can see that the 

ground state energy 
0
  is a decreasing function 

of the electron-phonon coupling strength. From 
here, we also see that the ground state is an 
increasing function of the LO confinement length 
(Fig. 2a) and the electric field strength (Fig. 2c); it 
is a decreasing function of the transverse 
confinement length (Fig. 2b). With the increase of 

the harmonic potential (
1 2
and  ), the energy 

of the electron and the interaction between the 
electron and the phonons, which take phonons 
as the medium, are enhanced because of the 
smaller particle motion range. The presence of 
the parabolic potential is equivalent to 
introducing another confinement on the electron, 
which leads to greater electron wave functions 
overlapping with each other, and the 
enhancement ofthe electron-phonon interactions. 
 

All these figures show the decreasing behavior of 
the ground state energy as a function of electron-
phonon coupling constant  .This is because the 
larger the electron-phonon coupling strength is, 
the stronger the electron-phonon interaction. This 
leads to the increment of the electron’s energy 
and makes the electron interact with more 

phonons. It is known that the electron-phonon 
interaction strength is different in different crystal 
materials. Thus the state energies and the 
transition frequency of the AQDs can be tuned by 
changingit [24,26]. 
 

In Fig. 3 we plot the ground state energy 
0


varying with the electron-phonon coupling 
strength   for 
 

1 2 2
5.0, 0.45, 0.15 0.85l l andl     (Fig. 3a)

 

2 1 1
10.0, 0.45 0.4 0.45l and l andl     (Fig. 3b) 

 
From here it is obvious that, the ground state 
energy increases with the electron-phonon 
coupling constant. 
 
These results are in agreement with the results 
of Kervan et al. [27], Ren et al.[28], Kandemir[29] 
and [30] obtained respectively by using 
variational, Feynman-Haken path-integral, 
squeezed-state variational and linear 
combination operator methods. The transverse 
and longitudinal lengths of the AQD are equal to 
the transverse and longitudinal confining lengths 
of the electrons, which show the property of 
strong confining strength in the transverse and 
longitudinal directions.  

 

 
 

Fig. 1. Ground state energy 
0
 as a function of electric field  with 

(a)
1 2 2

6 .5, 0 .15 , 0 .35 0 .75l l and l      

(b)
1 2 2

6 .5, 0 .25, 0 .35 0 .7 5l l a n d l    
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Fig. 2. Ground state energy 

0
 as a function of coupling constant with 

(a)
1 2 2

0.25, 5.0, 0.25 0.85l l and l     

(b) 
2 1 1

0.25, 0.0 0.3 0.35l l and l     

(c) 
1 2

0 .25, 0 .5 0 .5 3 .5l l an d    
 

 
Fig. 3. Ground state energy 

0
 as a function of coupling constant   with 

(a)
1 2 2

5.0, 0.45 , 0.15 0.85l l and l   
 

(b)
2 1 1

1 0 .0, 0 .4 5 0 .4 0 .4 5l a n d l a n d l   
 

 

5. CONCLUSION 
 
In conclusion, with the use of modified LLP 
method, we have studied the energylevels of 
strong polaron in spherical quantum dot (QD)as 
a strong coupling polaron in an anisotropic QD 
subjected to an electric field. It is found that the 
ground state energy of the polaron is an 
increasing function of the electric field; this is 
because the presence of electric field makes 
phonons interact more strongly with the electron. 
It is also seen that, with the good control of the 
confinement length and the electron coupling 
constant we can control the decoherence of the 
system. The enhancement of the coupling 

strength is very important in the construction of 
quantum computers since it leads to the 
conservation of its internal properties such as its 
superposition states against the influence of its 
environment, which can induce the construction 
of coherent states and cause coherence 
quenching. Part two of this work is dedicated to 
the weak and intermediate couplings. 
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