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Abstract

A knowledge of the particle escape time from the acceleration regions of many space and astrophysical sources is
of critical importance in the analysis of emission signatures produced by these particles and in the determination of
the acceleration and transport mechanisms at work. This Letter addresses this general problem, in particular in solar
flares, where in addition to scattering by turbulence, the magnetic field convergence from the acceleration region
toward its boundaries also influences the particle escape. We test an (approximate) analytic relation between escape
and scattering times, and the field convergence rate, based on the work of Malyshkin & Kulsrud, valid for both
strong and weak diffusion limits and isotropic pitch-angle distributions of the injected particles, with a numerical
model of particle transport. To this end, a kinetic Fokker—Planck transport model of particles is solved with a
stochastic differential equation scheme, assuming different initial pitch-angle distributions. This approach enables
further insights into the phase-space dynamics of the transport process, which would otherwise not be accessible.
We find that in general the numerical results agree well with the analytic equation for the isotropic case; however,
there are significant differences in the weak diffusion regime for non-isotopic cases, especially for distributions
beamed along the magnetic field lines. The results are important in the interpretation of observations of energetic
particles in solar flares and other similar space and astrophysical acceleration sites, and for the determination of
acceleration-transport coefficients, commonly used in Fokker—Planck—type kinetic equations.
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1. Introduction

The processes involved in the acceleration and transport of
energetic particles in many space and astrophysical settings are
still a very active topic of investigation after decades of
research. These processes can be investigated by the observa-
tions of nonthermal radiations emitted from these sites and
from the spectrum of cosmic rays (CRs) escaping them.
Examples of these are solar eruptive events involving
nonthermal radiation produced by flare-accelerated particles
and solar energetic particles (SEPs) seen by near-Earth
instruments. The aim of this Letter is to clarify the transport
coefficients involved in the acceleration-transport processes
with particular emphasis on the time the particles spend in the
acceleration site, which we refer to as the escape time, Tes.. We
will use solar observations as an example for our discussion.

The escape time is an important component of acceleration-
transport processes for several reasons. Clearly, the time spent
in the acceleration site is important in shaping the energy, E,
spectrum of the particles in the acceleration site, N(E). It is also
the main factor determining the spectrum of the flux of the
escaping particles, O(E) = N(E) /To(E). In most sources, the
main transport characteristics that determine the escape time are
the crossing, 7Teross = L/v, and scattering, 7. (E), times, for a
source of size L, and a particle with speed v. Scattering can be
due to Coulomb interactions in a collisional plasma and/or
wave-particle interactions in a turbulent plasma. The latter is
related to the stochastic acceleration rate by turbulence or the
acceleration rate in a shock environment (see, e.g., Petrosian
2012). In addition, in situations with weaker diffusion rate (i.e.,
when 7 (E) > Teoss due to low particle and turbulence
densities), the background guiding magnetic field, B, can affect

the escape time due to mirroring in a converging field
geometry. Thus, for a comprehensive analysis of particle
confinement and escape from the acceleration regions, the field
convergence toward the boundaries of the acceleration region
needs to be considered in a particle transport model. The escape
time (through its relation with 7,.) is related to all transport
coefficients so that clarifications of its role can shed light on
many aspects of the acceleration process.

In general, in the acceleration process of background thermal
particles (with a Maxwellian distribution), the interplay
between Coulomb and turbulent scattering usually leads to
plasma heating and acceleration. This can also lead to stable
particle distributions consisting of quasi-thermal components
with nonthermal tails, often described by kappa distributions
(Bian et al. 2014), for which evidence exists from solar flare
observations (Kasparovd & Karlicky 2009; Oka et al. 2013,
2015, 2018). As shown in Petrosian & East (2008) and
Petrosian & Kang (2015), in a closed system, i.e., where the
particle escape time is longer than all the other timescales,
irrespective of the details of the acceleration process, most of
the energy goes into heating the plasma rather than producing a
nonthermal tail. But, when the escape time is shorter, then a
substantial population of nonthermal particles can escape the
acceleration site, with a spectrum that is not necessarily the
same as that of the accelerated one. They are distinguished by
the escape time. This distinction is important in many space
and astrophysical accelerators, in particular in solar eruptive
events, as described below.

A consequence of the particle interactions in the solar
atmosphere is the production of thermal (due to plasma
heating) and nonthermal (due to acceleration) radiation, in
particular hard X-ray (HXR) bremsstrahlung, as observed for
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example with the Reuven Ramaty High Energy Solar Spectro-
scopic Imager (RHESSI; Lin et al. 2002). The HXR
observations by RHESSI (and earlier by Yohkoh) have shown
the presence of a distinct source near the flaring loop top region
(presumably the acceleration site) produced by the accelerated
electrons. This is in addition to the more prominent footpoint
emission produced by escaping electrons. (Masuda et al. 1994;
Liu et al. 2008, 2013; Krucker et al. 2010), which appear to be
a common feature of almost all Yohkoh (Petrosian et al. 2002)
and RHESSI (Liu et al. 2006; Krucker & Lin 2008) flares.
These two types of emissions are related through the escape
time. Petrosian & Donaghy (1999) showed that this requires
some confinement of the electrons near the loop top
acceleration site, which makes the escape time longer than
the crossing time, and proposed turbulence as the agent of
scattering and acceleration (see also Kontar et al. 2014).
Coulomb scattering can also trap particles at the loop top if the
densities are high. However, because Coulomb energy loss and
scattering rates are comparable, in such a case electrons lose
most of their energy at the loop top leading to weaker footpoint
emission. As shown by Leach & Petrosian (1983), with
Coulomb collision alone one obtains a gradual decline of
emission along the flaring loop with a rapid increase below the
transition region. Leach & Petrosian (1983) also showed that
convergence of magnetic field toward the photosphere can
enhance the trapping of the particles (see their Figure 13).
These effects were also discussed in Fletcher (1995) and
Fletcher & Martens (1998) with similar results. They find that
the confinement by the loop magnetic field can lead to a loop
top emission that is stronger than or comparable to the
footpoint emission for densities of 3 x 10" 4 x 10”) ecm™3;
see Fletcher & Martens (1998) Figures 7 and 9, respectively.

As evident from the above discussion, observations of loop
top and footpoint emissions can provide information on the
escape time. The relation of HXR emission and energetic
electron properties can be analyzed with forward-fitting
methods or by regularized inversion using the imaging
spectroscopy abilities of RHESSI (Piana et al. 2007). As
shown by Petrosian & Chen (2010), the inversion method
allows the determination of the escape time from the
comparison of loop top and footpoint nonthermal electron
images obtained nonparametrically from RHESSI data directly.
Subsequently, Chen & Petrosian (2013) showed that with this
technique in addition to T.s., one can obtain the other relevant
coefficients (energy loss, acceleration, and crossing times).
This analysis has provided a paradigm shift indicating that the
mirroring effect can be the main source of confinement of
particles in the acceleration site. Further evidence supporting
this results comes from the interpretation by Petrosian (2016)
of Krucker et al. (2007) data comparing the spectra of HXR
producing and SEP electrons in impulsive, prompt events.
These findings can also be useful in the interpretation of the
coronal emission close to the acceleration sites in partially
occulted flares (e.g., Krucker & Lin 2008; Effenberger
et al. 2016, 2017), with more direct information on the
acceleration process.

Magnetic field convergence and the mirroring effect can also
be important in the transport of particles from coronal mass
ejection (CME) shock environments. It is generally accepted
that SEPs observed near the Earth are particles escaping from
flare sites or the upstream region of such shocks. Recently, the
Fermi Large Area Telescope (LAT) has detected >100 MeV
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sustained solar gamma-ray emission from many eruptive events
(Ajello et al. 2014; Pesce-Rollins et al. 2015; Ackermann
et al. 2017) associated with fast CMEs, lasting almost as long
as the accompanying SEPs. These post-impulsive emissions,
with no other accompanying radiative signatures, have raised
the possibility that they may be produced by particles escaping
the turbulent downstream region of the CME-shock back to the
Sun along converging field lines (Jin et al. 2018). Thus again,
analysis of these events requires a knowledge of the escape
time from a region where turbulence and field geometry can
play an important role.

An analytic approximation relating the escape and scattering
times of particles in a converging field environment has been
provided in Malyshkin & Kulsrud (2001). One of our goals is
to test the validity of this relation with a numerical particle
transport model and explore different initial pitch-angle
distributions, in addition to the isotropic one considered by
these authors.

In the next section we describe the origin of this analytic
expression. In Section 3 we present the transport equations of
particles in a turbulent site with simple converging field
geometry, the simulation scheme that we use to determine pitch
angle and spatial distributions of particles subject to only pitch-
angle scattering, and address the determination of the escape
time. The results are presented and discussed in Section 4,
followed by the summary and conclusions in Section 5.

2. The Escape Time

As described above, several factors play an important role in
trapping the particles and determining how fast particles can
escape a turbulent magnetized plasma, which is the case for the
particle acceleration in most astrophysical accelerators. The most
important factor is the ratio of the particle scattering mean free
path to the size of the source A\/L ~ Ty./Teross- In what follows
we will use the pitch-angle averaged scattering time 74 ~ \/v
and crossing time Tqoss ~ L/v, where v is the particle speed. In
sources with strong guiding magnetic field, the divergence or
convergence of the field described by the parameter 1 =
Bes./Bo, where B denotes the increased field at the boundary,
and By is the field strength in the center of the domain, also plays
an important role. The third factor is the momentum or (for
magnetized plasmas) the pitch-angle distribution. In the strong
diffusion limit this ratio is small (7. < 7o) and the particles
are isotropized quickly. They are able to random
walk across the source with To,. ~ T%mss/ T Without much
effect due to magnetic field variations on the scale h, =
—B/(0B/Jz ~ L > X. On the other hand, in the weak diffusion
limit with 74 > T8 particles move freely and escape within
one crossing time unless there is a strong field convergence
toward the boundary of the region, which can trap particles by
mirroring. In this case the escape time is determined by how fast
particles are scattered into the loss cone, in which case for an
isotropic distribution T,y X T, With the proportionality con-
stant increasing with increasing field convergence rate 7. The
three regimes can be summarized as

1 if Ty > Teross, Free stream
= Teross /e 1f Toe K Teposss Strong diffusion
XTse /Teross 1 Tse > Teross, Converging field.

€sC

TCI'OSS

The combination of the first two as Tese/Teross =1 +
Teross/ Tse 1S commonly used (see, e.g., Petrosian & Liu 2004)
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for uniform or chaotic magnetic field situations. This can be
generalized by combining with the third case to a simple
analytical approximate formula relating the particle escape and
scattering as (Petrosian 2016)

Tsc Teross

Tcross Tsc
Tose = Tcross|:cl(77) + G (77)— +G (77) :|’ (1)

with coefficients that depend only on the value of 1 and on the
degree of the isotropy of the distribution. The appendix in
Malyshkin & Kulsrud (2001) gives an extensive discussion on
these dependences leading to the following equation valid for
an isotropic distribution:

7;:SC = Tcross|:27] + % + lnn Tse ] (2)

7—SC TC['OSS

For distributions with substantial anisotropy we expect
deviations from this equation, especially in the weak diffusion
limit. Below we compare our simulation results with this
equation.

3. Particle Transport Model with Field-line Convergence

In this section, we evaluate the effects of pitch-angle
scattering and field convergence on the transport of particles
through the acceleration site. For simplicity, we ignore any
energy gain (often attributed to scattering by turbulence) or loss
(as expected in Coulomb scattering and radiative processes)
that are normally present in acceleration sites.

3.1. Transport Equation and Coefficients

To study the influence of pitch-angle scattering on the
particle escape at a fixed given energy, the general Fokker—
Planck equation for particle transport (e.g., Schlickeiser 1989;
Armstrong et al. 2012), which is common in solar flare (e.g.,
Leach & Petrosian 1981; McTiernan & Petrosian 1991) and
interplanetary particle transport studies (e.g., Roelof 1969;
Earl 1981; Effenberger & Litvinenko 2014), can be reduced to
the following energy independent form:

i ) )

Y ywZs 2a-pmZ = i(DW—
ot 0z  2hg o Ou ou
for f=f(z, u, f). Here, z is the distance along the mean
magnetic field B, ¢ is time, p is the cosine of the particle pitch
angle, hy = —B/(0B/0z) is the field convergence scale height,
and D,, denotes the pitch-angle diffusion Fokker-Planck
coefficient.*
We consider isotropic pitch-angle scattering with the
diffusion coefficient

Dy = Do(1 — %), “)

where D, is a constant which quantifies the strength of the
scattering. In the diffusion approximation, which is essentially
an average of the pitch-angle dependence of the particles, the
respective parallel spatial diffusion coefficient along z is given

4 Note that depending on the exact definition of f, the hp dependent

convergence term may be written in implicit or explicit form (e.g., Earl 1981;
Litvinenko & Noble 2013). For our purposes, in the following, we will
consider a simplified model of mirroring and confinement that does not require
this term in the integration scheme, as described in the following sections.
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by (e.g., Dung & Petrosian 1994; Schlickeiser & Shalchi 2008)

2 N 2
,{ZZ:E:V_‘[ duwzv_ (5)
3 8 Joi Dy, 6Dg

The scattering time can thus be defined as
A 1

Toe = — = —.
¥ 1% 2D0

We normalize all quantities to the length of the system L and

the particle speed v. Time is thus measured in units of %, while
L
w2’

(6)

we define the ensemble crossing time as 7Teos =
appropriate for an isotropic pitch-angle distribution.

3.2. Stochastic Simulation Scheme

Stochastic differential equations (SDEs) are used in many
contexts to solve Fokker-Planck type equations. In space
physics, they are often employed to solve particle propagation
problems, such as CR modulation (Strauss et al. 2011;
Effenberger et al. 2012), SEP transport (Droge et al. 2010),
shock acceleration (Achterberg & Schure 2011; Zuo et al.
2011), focused acceleration (Armstrong et al. 2012), and pick-
up ion evolution (Fichtner et al. 1996; Chalov & Fahr 1998).
For a recent account of numerical methods and other aspects
connected to this approach, see, e.g., Kopp et al. (2012) and the
review Strauss & Effenberger (2017). In the context of solar
flares, MacKinnon & Craig (1991) presented one of the first
simulation schemes based on the SDE approach. Recently, this
method has also been employed in studies of the warm-target
model (Jeffrey et al. 2014; Kontar et al. 2015) and coupled
hydrodynamic simulations of solar flares (e.g., Moravec
et al. 2016).

For our purposes, we can recast the transport Equation (3)
with isotropic scattering into the following set of SDEs (e.g.,
Gardiner 2009)

dz = pvdt, 7

dp = [L(l — ) - ZDO#]dt + {2Do(1 — 1) aw (1),

2hp
®)

where W(f) represents a Wiener process with zero mean and
variance f.

Ignoring the convergence term, which can be treated
separately (see below), these equations can be solved
numerically using a simple Euler approximation scheme
(Kloeden & Platen 1995):

Zsar = 2 + VAL )

Iesnr = H; — 2Dop, At + \[2Do(1 — () Ate,, (10)

where ¢, is a normal random variable with zero mean and unit
variance and At is a small time step (Strauss & Effenberger
2017). We use reflecting boundaries at ;« = 31 to conserve the
probability.

In practice, this system of coupled ordinary SDEs is solved
numerically by following a large number of pseudo-particle
orbits according to the above scheme and obtaining the
distribution functions by corresponding averages over the
particle positions in phase space. We can consider different
initial conditions by changing the starting position of the
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particles using a suitable sampling of the initial distribution.
For the purposes of this study, we will focus on three different
forms of initial pitch-angle distributions: isotropic, “pancake,”
i.e., sharply peaked at 90° pitch angle, and beam-like, i.e., two
beams of particles at y = *£1.

3.3. Field Convergence and Particle Escape

The two main processes in our model are pitch-angle
scattering and the background magnetic field convergence or
mirroring effect. The latter can be included in a straightforward
way in the SDE model described above. Consider a magnetic
field increase prescribed by the parameter 7 defined in
Section 2. The loss cone of particles, i.e., the threshold pitch
angle, beyond which particles escape, can be defined as u_;, =

J1 — 1/n (Malyshkin & Kulsrud 2001).

We assume an idealized field geometry, where the effect of
field convergence only applies point-wise at the boundaries of
the domain. With this condition, particles are only reflected
back into the domain at the boundary (z == 1) if their pitch
angle is smaller than p;. Otherwise they are counted as
escaped particles. Thus, for a given set of parameters, the
escape time T, can simply be calculated as the average time
the particles take to leave the domain through the loss cone. It
is therefore not necessary, as mentioned before, to include the
convergence term in the integration scheme explicitly, as the
effect is accounted for by the selective reflection or escape of
particles through the loss cone. In other words, the escape time
is approximated as the ensemble average or first moment of the
residence time distribution of escaping particles. In practice, the
simulation runs until all particles have escaped the domain. In
the upper panel of Figure 1 it can be seen how particles exit the
phase-space domain at z = +1 for u close to 1.

Furthermore, Figure 1 illustrates the time evolution of the
pseudo-particle ensemble and the associated phase-space
distribution resulting from a hexagonal binning. In the upper
panel, we consider a uniform initial pitch-angle distribution,
7 = 2 and a diffusion coefficient of Dy = 0.1 (or 74 =5L/V).
We see how particles that started close to u = £1 move
quickly to the escape region and are not reflected back into the
domain. At ¢ = 2 the contribution of reflected particles with
1 < peic 18 visible as secondary patches in the distribution.
Eventually, most of the particles will have escaped the region
and this allows us to calculate the approximate escape time.
The lower panel shows the evolution for a “pancake”-like
injection with a sharp peak at © = 0. We also reduce the
diffusion coefficient to Dy = 0.003 to illustrate the effect of
weak diffusion. We find that particles are generally not able to
reach the escape cone even after about five crossing times.
Their effective crossing and residence time is significantly
prolonged due to the combination of the initial condition being
far away from the loss cone and the weak diffusion.

4. Results and Discussion

To study the expected behavior of the escape time based on
the kinetic equations, and to test the validity of the above
equation, we have carried out simulations with N = 10,000
particles with different values for Dy and 7 and for the three
initial pitch-angle distributions (isotropic, pancake, beam).
Figure 2 summarizes the results in three panels for the three
initial conditions.
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The left panel shows the case of isotropic injection, which as
expected shows the best overall agreement between the
simulation results (symbols) and the analytic expression
given by Equation (2) for all three different convergence
parameters 7). Note that in the strong diffusion regime, the
numerical results converge to the random walk expression
Tose ~ Toross /T independent of 7 and isotropy. However, there
are significant deviations from this in the intermediate regime
(starting at lower values of Ty./Teross for larger 7). For weak
diffusion, the n = 1 case shows the free escape of particles,
while the other two cases exhibit the T,,. o< 7. behavior that is
reproduced well by the simulations.

The middle panel shows the result for a beam injection of
particles. With the forward SDE numerical scheme used here,
we can inject particles at exactly p = £1, resembling a very
narrow bidirectional beam. The universal behavior in the strong
diffusion regime is reproduced again, while the analytic
expression breaks down in the weak diffusion regime, with
all cases eventually converging to the crossing time. This
happens at larger scattering times for higher 7 cases with
smaller loss cones, Oicone ~ 1/./77. This can easily be explained
by the fact that at shorter scattering times, particles initially in
the loss cone are scattered out of it and remain in the site for a
longer time for higher values of 7.

Finally, in the right panel, we find that an initially strongly
peaked pitch-angle distribution near ;= O (pancake) shows
overall similar behavior, but as expected slightly larger values
for the escape time than in the isotropic injection case. The
most notable difference in the weak diffusion regime for 7 = 1
can be explained due to the difficulty of scattering of particles
from their initial large pitch angles (4 =0) to small angles at
longer and longer scattering times.

5. Summary and Conclusions

In this Letter, we investigated the particle confinement and
escape resulting from the interplay of isotropic turbulent pitch-
angle scattering and magnetic field convergence. We compared
numerical solutions for the relation between scattering and
escape time calculated with an SDE scheme for the particle
transport equation with an analytical approximation formula,
based on the work of Malyshkin & Kulsrud (2001). We found
good agreement between the approximation and the simulation
results, but also notable differences in the weak diffusion
regime that depend both on the initial pitch-angle distribution
of particles and the field convergence rate represented by the
mirror ratio 7 or scale height hp.

The investigation of the acceleration and transport of particles in
magnetized plasmas depends crucially on the escape time, because
in most situations we do not observe the particles at the acceleration
site. Instead, we observe the particles that have escaped the
acceleration site and reached the near Earth instruments as CRs and
SEPs, or indirectly through the radiation that they produce often
away from the acceleration sites.

In some sources and under favorable observational situa-
tions, it is possible to measure the escape time and its energy
dependence (see, e.g., Chen & Petrosian 2013; Petrosian &
Chen 2014). The relation that we have established here can be
used in such situations to determine the scattering time or the
pitch-angle diffusion coefficient and hence provide information
on acceleration and transport mechanisms. Expansion of these
results to a more realistic situation that includes anisotropic
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Figure 1. Pseudo-particle distribution in z — p phase space for isotropic (upper panel) and “pancake” (lower panel) injection at three times during the evolution with
n =2 and Dy = 0.1, or 7. = 5L/v, (upper panel) and Dy = 0.003 (lower panel). The red circles indicate individual particles and the blue background coloring is
given by a hexagonal binning with arbitrary units (darker blue means more particles).
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Figure 2. Particle escape times vs. scattering time 7. for three different values of mirror strength: 7; = 1 (blue), 7, = 2 (red), and 73 = 4 (green) and three different
injection functions. Symbols are from our simulations and solid lines are based on the analytic approximation of Equation (2).

pitch-angle diffusion coefficients and the dependence on
energy of the processes discussed here can shed light on
additional effects and the other important diffusion coefficient,
namely energy or momentum diffusion, that plays an equally
significant role in acceleration and transport processes. These
aspects will be addressed in our future work.
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