



SCIENCEDOMAIN international www.sciencedomain.org

# Supersalts Na<sub>2</sub>MgX<sub>4</sub> (X = F, CI): Quantum Chemical Study of the Structure, Vibration Spectra and Thermodynamic Properties

Evance A. Ulime<sup>1\*</sup>, Alexander M. Pogrebnoi<sup>1</sup> and Tatiana P. Pogrebnaya<sup>1</sup>

<sup>1</sup>Department of Materials, Energy Science and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania.

## Authors' contributions

This work was carried out in collaboration between all authors. Author EAU performed computations, wrote the first draft of the manuscript and managed literature searches. Author AMP performed some selected computations of thermodynamic properties. Author TPP performed corrections and some selected computations regarding the structure and vibrational spectra. All authors analyzed and discussed the results and approved the final manuscript.

## Article Information

DOI: 10.9734/BJAST/2016/21677 <u>Editor(s):</u> (1) Jon S. Gold, Dept. of Chemistry, East Stroudsburg University, East Stroudsburg, PA, USA. <u>Reviewers:</u> (1) Anonymous, University of Missouri-St. Louis, USA. (2) Alexandre Gonçalves Pinheiro, Universidade Estadual do Ceará, Quixadá, Brazil. Complete Peer review History: <u>http://sciencedomain.org/review-history/11672</u>

**Original Research Article** 

Received 28<sup>th</sup> August 2015 Accepted 19<sup>th</sup> September 2015 Published 5<sup>th</sup> October 2015

## ABSTRACT

The theoretical study of supersalts Na<sub>2</sub>MgX<sub>4</sub> (X = F, Cl) has been performed. The formation of the supersalts was considered through association reactions between different building blocks: superalkalies and superhalogens, ionic (Na<sub>2</sub>X<sup>+</sup> and MgX<sub>3</sub><sup>-</sup>) and neutral (Na<sub>2</sub>X and MgX<sub>3</sub>), as well as dimers Na<sub>2</sub>X<sub>2</sub> and traditional salts MgX<sub>2</sub>. The optimization of geometrical structures, and determination of vibrational spectra of supersalts and their respective building blocks was carried out by the DFT/B3P86 and MP2 methods; the McLean–Chandler basis set and the extended basis set (cc-pVTZ for Na, Mg; aug-cc-pVTZ for F, Cl) were used. Different possible geometrical configurations for Na<sub>2</sub>MgX<sub>4</sub> were considered, among which two structures: two- cycled structure of  $D_{2d}$  symmetry and polyhedral,  $C_{2v}$ , were proved to be isomers; their relative concentrations in equilibrium vapour were evaluated. The energies and enthalpies of the association reactions were determined. The enthalpies of formation  $\Delta_{f}H^{2}(0)$  of gas-phase supersalts found as follows: -1850± 30 kJ·mol<sup>-1</sup>(Na<sub>2</sub>MgF<sub>4</sub>) and -1170±40 kJ·mol<sup>-1</sup>(Na<sub>2</sub>MgCl<sub>4</sub>).



Keywords: Supersalt; superatom; superhalogen spectrum; enthalpy of formation.

Keywords: Supersalt; superatom; superhalogen; superalkali; geometrical structure; vibrational

#### **1. INTRODUCTION**

critical investigation, prediction and The understanding of the structure and a wide range of the properties of individual components of a given substance not only are a crucial and continuous, but also a very important aspect towards designing and development of chemical species with outstanding properties. Khanna and Jena [1,2] proposed and pioneered on the existence of superatoms which are defined as clusters of atoms with suitable size and composition that can mimic the chemistry of atoms in the periodic table. Being experienced players in the field of computational chemistry. Gutsev and Bodyrev [3] classified superatoms as 'Superhalogens', chemical species with higher electron affinity (EA) than that of chlorine (3.6 eV), and 'Superalkali', chemical species with lower lonization potentials than normal alkali metals. Simple examples of superalkali and superhalogen are M<sub>2</sub>X and MX<sub>2</sub> respectively where M is the alkali metal and X is halogen. The technique used in designing superatoms is by combining the most electronegative group VII elements with the most electropositive group I elements in the right and reasonable proportions. And according to Tian [4], the superatoms are very important as they provide compounds with novel structures, novel properties and special binding nature which all together contribute to, and promote the development of chemistry.

A little progress has already been made in the research of supersalts, and the recent studies include the novel  $Li_3X_3$  supersalt by Srivastava and Misra[5], and different supersalts by Giri [6]. But both have described only the electron affinity, ionization potential, and binding energies of the supersalts.

This theoretical study intends to design and optimize the geometrical structure of  $Na_2MgX_4$  (X = F, Cl) supersalts. A design of these species is considered through interaction of different building blocks: superalkalies and superhalogens, ionic ( $Na_2X^+$  and  $MgX_3^-$ ) and neutral ( $Na_2X$  and  $MgX_3$ ), as well as dimers  $Na_2X_2$  and traditional salts  $MgX_2$ . The work also is aimed to examine critically the vibrational spectra and thermodynamic properties of supersalts, superatoms and traditional salts.

#### 2. COMPUTATIONAL DETAILS

All calculations have been carried out by using the PC GAMESS program (Firefly 8.1.0 version) [7,8]. The methods used were the density theory (DFT/B3P86) functional and the Møller-Plesset perturbation theory of second order (MP2). Two basis sets have been employed: the first one was McLean-Chandler basis set (MC) with d-functions added for all atoms [9,10], and second (called hereafter the "extended" and denoted as Ext): cc-pVTZ for metals and aug-cc-pVTZ for halogens [11]. For MP2 method, no frozen AO (NCORE=0) were considered for fluorides and 1s AO of CI atom were frozen for chlorine containing species.

The geometry of the species was optimized using B3P86 and MP2 methods with both basis sets. The vibrational analysis was performed at the same level to verify that all obtained structures correspond to a real minimum energy by the absence of imaginary frequencies. Geometrical structures were analyzed and examined by using the Chemcraft software [12] as a visualization tool.

The thermodynamic functions were determined in the rigid rotator-harmonic oscillator approximation using the Openthermo software [13]. The required reference data for the thermodynamic calculations were taken from [14]. The values of enthalpies of reactions  $\Delta_r H^{\circ}$ (0) were computed theoretically using the formulae:

$$\Delta_r H^{\circ}(0) = \Delta_r E + \Delta_r \varepsilon \tag{1}$$

$$\Delta_{\rm r} \epsilon = 1/2hc \left( \sum \omega_{\rm i \ product} - \sum \omega_{\rm i \ reactant} \right)$$
(2)

Where  $\Delta_r E$  is the energy of the reaction calculated through the total energies *E* of the species,  $\Delta_r \epsilon$  is the zero point vibration energy correction,  $\sum \omega_{i prod}$  and  $\sum \omega_{i reactant}$  are the sums of the vibration frequencies of the products and reactants respectively.

#### 3. RESULTS AND DISCUSSION

#### 3.1 Analysis of the Computational Approaches

To analyze the accuracy of the calculated properties for the supersalts, the related species

NaX, MgX<sub>2</sub>, and dimers Na<sub>2</sub>X<sub>2</sub> (X = F, Cl) were considered and their properties were computed and compared with experimental data. The four theoretical approaches B3P86 MC, MP2 MC, B3P86 Ext, MP2 Ext were applied. The ionization energies and electron affinities were calculated as the energy difference  $\Delta E$  between the ionic and neutral states. For the adiabatic values, the optimized coordinates were used for both states. For vertical magnitudes the parameters were optimized for the singlet-state species only, while for doublet-states the same parameters were accepted. The adiabatic values were computed by DFT method only as MP2 suffers from the spin contamination [15,16] and the optimization procedure for molecules with multiplicity more than one was not incorporated in the software used

The results for NaX molecules are given in Table 1. It is seen that for both molecules NaF and NaCl the internuclear distances,  $R_{e}$ , found theoretically by four methods do not contradict the literature data, the difference does not exceed 0.02 Å. For both NaX molecules, the B3P86 Ext and MP2 Ext methods gave better vibrational frequencies in accordance with the reference values. Regarding the dipole moment, the results by the B3P86 Ext level are in the best agreement with the reference data [17]. For the ionization energies, MP2 Ext produces the values which are most close to the literature

data. The calculated electron affinities are in accordance with the reference *EA*s.

The results for the MgX<sub>2</sub> molecules are presented in Table 2. There is no clear-cut preference in theoretical values of inter nuclear separations, vibrational frequencies and ionization energies found by DFT and MP2 methods, although the results by B3P86 are in better agreement with experimental data.

For the dimer molecules  $Na_2F_2$  and  $Na_2Cl_2$  the equilibrium geometry ( $D_{2h}$  symmetry) is presented in Fig. 1(a) and the calculated parameters are given in Table 3. The experimental data on the geometrical parameters of these molecules are not available and the fundamental frequencies are scarce. The parameters calculated by different methods agree well with each other, the difference does not exceed 0.02–0.03 Å for  $R_e$  (Na-X), 2° for valence angle  $\alpha_e$ (Na-X-Na), and ~10% for vibrational frequencies. As compared to the experimental frequencies, the B3P86 Ext approach looks preferable.

The energies of the dimerization reactions  $2NaX = Na_2X_2$  were determined through the total energies of the species. The enthalpies of the reactions presented in Table 3 were calculated using Eqs. (1) and (2). Fig. 2 presents the enthalpies of reactions together with the reference values.

| Property                | B3P86 MC  | MP2 MC    | B3P86 Ext | MP2 Ext   | Expt [17] |
|-------------------------|-----------|-----------|-----------|-----------|-----------|
| NaF                     |           |           |           |           |           |
| R <sub>e</sub>          | 1.918     | 1.929     | 1.941     | 1.937     | 1.926     |
| -E                      | 262.13604 | 261.72199 | 262.16684 | 261.71972 |           |
| μ <sub>e</sub>          | 9.51      | 7.73      | 8.17      | 11.09     | 8.16      |
| <i>IE</i> vert          | 10.10     | 9.65      | 10.33     | 10.40     | 10.88     |
| <i>IE</i> <sub>ad</sub> | 9.66      |           | 9.96      |           | 10.88     |
| $EA_{ad}$               | 0.56      |           | 0.65      |           | 0.52      |
| ω <sub>e</sub>          | 564       | 562       | 520       | 525       | 535.7     |
| NaCl                    |           |           |           |           |           |
| R <sub>e</sub>          | 2.381     | 2.373     | 2.379     | 2.374     | 2.361     |
| -E                      | 622.53227 | 621.74517 | 622.55180 | 621.74107 |           |
| μ <sub>e</sub>          | 9.53      | 9.13      | 8.99      | 9.18      | 9.00      |
| <i>IE</i> vert          | 9.38      | 8.77      | 9.36      | 9.21      | 9.20      |
| IE <sub>ad</sub>        | 9.15      |           | 9.13      |           | 9.20      |
| $EA_{ad}$               | 0.86      |           | 0.87      |           | 0.73      |
| ω <sub>e</sub>          | 355       | 374       | 352       | 358       | 364       |

Table 1. Comparison of the calculated properties of NaX (X = F, Cl) with the reference data

Notes: Here and hereafter in Tables 2–7,  $R_e$  is the internuclear distance in Å; E is the total energy in au,  $\mu_e$  is the dipole moment in D;  $IE_{vert}$ ,  $IE_{ad}$ , and  $EA_{ad}$  are the ionization energies, vertical and adiabatic, and electron affinity in eV,  $\omega_e$  is the fundamental frequency in cm<sup>-1</sup>

| Property                       | B3P86 MC   | MP2 MC     | B3P86 Ext  | MP2 Ext    | Expt       |
|--------------------------------|------------|------------|------------|------------|------------|
| MgF₂( <i>D</i> <sub>∞h</sub> ) |            |            |            |            |            |
| $R_{\rm e}^{-}$                | 1.759      | 1.764      | 1.751      | 1.735      | 1.77[18]   |
| -E                             | 399.86786  | 399.29947  | 399.90604  | 399.38344  |            |
| <i>IE<sub>vert</sub></i>       | 13.31      | 14.30      | 13.35      | 14.83      | 13.60 [19] |
| IE <sub>ad</sub>               | 13.22      |            | 13.35      |            | 13.60[19]  |
| $EA_{ad}$                      | 0.27       |            | 0.53       |            |            |
| $\omega_1(\Sigma_g^+)$         | 567        | 567        | 560        | 548        | 540 [18]   |
| $\omega_2(\Sigma_u^+)$         | 905        | 908        | 882        | 863        | 825 [18]   |
| $\omega_3 (\Pi_u)$             | 141        | 130        | 166        | 155        | 165 [18]   |
| MgCl₂( <i>D</i> ∞h)            |            |            |            |            |            |
| R <sub>e</sub>                 | 2.188      | 2.180      | 2.177      | 2.173      | 2.18[20]   |
| -E                             | 1120.60967 | 1119.29589 | 1120.63482 | 1119.37735 |            |
| IE <sub>vert</sub>             | 12.12      | 12.36      | 12.02      | 12.66      | 11.58[20]  |
| IE <sub>ad</sub>               | 12.08      |            | 11.99      |            | 11.58[20]  |
| $EA_{ad}$                      | 0.78       |            | 0.81       |            |            |
| $\omega_1(\Sigma_g^+)$         | 317        | 329        | 314        | 315        | 320 [20]   |
| $\omega_2(\Sigma_u^+)$         | 612        | 635        | 613        | 619        | 596 [20]   |
| $\omega_3 (\Pi_u)$             | 111        | 109        | 111        | 111        | 110 [20]   |

Table 2. Comparison of the calculated properties of  $MgX_2$  (X = F, Cl) with the reference data

Table 3. Calculated properties of the dimers Na<sub>2</sub>X<sub>2</sub>

| Property                      | B3P86 MC   | MP2 MC     | B3P86 Ext   | MP2 Ext    | Reference  |
|-------------------------------|------------|------------|-------------|------------|------------|
| $Na_2F_2(D_{2h})$             |            |            |             |            |            |
| R <sub>e</sub> (Na-F)         | 2.063      | 2.077      | 2.081       | 2.068      | 2.094 [21] |
| α <sub>e</sub> (Na-F-Na)      | 85.7       | 85.8       | 85.0        | 83.3       | 87.1[21]   |
| -E                            | 524.376970 | 523.55503  | 524.424173  | 523.53812  |            |
| $\omega_1(A_g)$               | 416        | 414        | 387         | 370        |            |
| $\omega_2(A_q)$               | 213        | 214        | 204         | 186        |            |
| $\omega_3(B_{1g})$            | 367        | 365        | 338         | 329        |            |
| $\omega_4(B_{1u})$            | 158        | 157        | 153         | 152        |            |
| $\omega_5(B_{2u})$            | 390        | 386        | 361         | 350        | 363 [22]   |
| $\omega_6(B_{3u})$            | 413        | 412        | 385         | 368        | 380 [22]   |
| $-\Delta_r E$                 | 275.4      | 291.6      | 237.6       | 259.1      |            |
| $-\Delta_{\rm r}H^{\circ}(0)$ | 268.1      | 286.8      | 232.9       | 254.9      | 242.0 [14] |
| $Na_2Cl_2(D_{2h})$            |            |            |             |            |            |
| R <sub>e</sub> (Na-Cl)        | 2.552      | 2.531      | 2.548       | 2.516      | 2.538 [21] |
| α <sub>e</sub> (Na-Cl-Na)     | 78.3       | 78.8       | 77.2        | 76.8       | 79.8 [21]  |
| -E                            | 1245.13954 | 1243.57286 | 1245.176890 | 1243.56387 |            |
| $\omega_1(A_g)$               | 258        | 281        | 266         | 270        |            |
| $\omega_2(A_g)$               | 132        | 133        | 133         | 122        |            |
| $\omega_3(B_{1q})$            | 233        | 255        | 232         | 247        |            |
| $\omega_4(B_{1u})$            | 92         | 95         | 92          | 90         | 116 [23]   |
| $\omega_5(B_{2u})$            | 227        | 245        | 223         | 231        | 228 [23]   |
| $\omega_6(B_{3u})$            | 278        | 300        | 278         | 288        | 274 [23]   |
| $-\Delta_{\rm r}E$            | 196.9      | 216.7      | 192.4       | 214.6      |            |
| $-\Delta_{\rm r}H^{\circ}(0)$ | 193.9      | 213.6      | 189.3       | 211.5      | 200.8 [14] |

Note: $\Delta_r E$  and  $\Delta_r H^{\circ}(0)$  are the energy and enthalpy of the dimerization reactions  $2NaX = Na_2X_2$ , in kJ·mol<sup>-1</sup>;  $\alpha_e$  is the bond angle in degrees

The results obtained with the extended basis sets show good accordance with reference values [14]. The calculated average values

between B3P86 Ext and MP2 Ext are equal to-244 $\pm 11~kJ\cdot mol^{-1}$  for  $Na_2F_2$  and  $-200\pm 11kJ\cdot mol^{-1}$  for  $Na_2Cl_2.Uncertainties$  were

estimated as a half-difference between B3P86 Ext and MP2 Ext results. Both averaged values are very close to the reference data,-242 and -200.8kJ·mol<sup>-1</sup> from [14], respectively.

Concluding this section, we can state that all four methods (B3P86 MC, MP2 MC, B3P86 Ext, and MP2 Ext) are suitable for the geometrical parameters and vibrational spectra determination, while the approaches with extended basis sets, B3P86 Ext and MP2 Ext, are preferable for the calculation of enthalpies of the reactions. In order to obtain the total array of the parameters of acceptable accuracy, we assume the methods B3P86 Ext and MP2 Ext are appropriate and reliable and therefore they have been applied in computations of properties of the superatoms and supersalts.



Fig. 1. Equilibrium geometrical structures of the species: (a) dimers  $Na_2X_2$ ,  $D_{2h}$ ; (b) ionic superalkali  $Na_2X^+$ ,  $D_{\infty}h$ ; (c) neutral superalkali  $Na_2X$ ,  $C_{2v}$ ; (d) ionic superhalogens  $MgX_3^-$ ,  $D_{3h}$ ; and (e) neutral  $MgX_3$ ,  $C_{2v}$ , (X = F, Cl)



Fig. 2. Enthalpies of dimerization reactions  $2NaX = Na_2X_2$ ,  $\Delta_r H^{\circ}(0)$  versus the level of calculations: 1 – B3P86 MC, 2 – MP2 MC, 3 – B3P86 Ext, 4 – MP2 Ext, 5 – the reference from IVTANTHERMO Database [14]

## 3.2 Geometrical Structure and Vibration Spectra of Superalkalies and Superhalogens

#### 3.2.1 Superalkalies

The neutral and ionic superalkalines involved in this study are Na<sub>2</sub>F and Na<sub>2</sub>Cl, and Na<sub>2</sub>F<sup>+</sup> and Na2Cl<sup>+</sup>. Electronic state of the neutral superalkalies Na<sub>2</sub>X is <sup>2</sup>A<sub>1</sub> and <sup>1</sup>A<sub>1</sub> for ionicNa<sub>2</sub>X<sup>+</sup> (B3P86 Ext). Their equilibrium geometrical structures are shown in Figs. 1 (b) and (c). The neutral superalkalines assume a bent structure while ionic.  $Na_{2}F^{\dagger}$  and  $Na_{2}CI^{\dagger}$ . linear shape. geometrical Calculated parameters and vibrational frequencies of superalkalines are presented in Table 4. It is seen that for the ionic species MP2 gives the shorter values of internuclear distances, by 0.03-0.04 Å, than DFT, while the DFT results are very close to the data obtained earlier using CISD+Q method [24. 25]. At the same time the values of vibrational frequencies by both methods do not contradict the results obtained previously [23,24], a controversial result for the deformational frequency in Na<sub>2</sub>F<sup>+</sup> (157 cm<sup>-1</sup>) found by MP2 Ext.

The bent structure of neutral superalkalines has the valence angles  $104^{\circ}$  and  $80^{\circ}$  in Na<sub>2</sub>F and Na<sub>2</sub>Cl, respectively. The linear structure of the neutral species Na<sub>2</sub>X has also been taken into consideration and this structure had a higher energy by 7 kJ·mol<sup>-1</sup> for Na<sub>2</sub>F and 19 kJ·mol<sup>-1</sup> for Na<sub>2</sub>Cl, moreover the imaginary frequencies were found for the linear structure that indicates non equilibrium state. A significant difference in vibrational frequencies is noted between ionic and neutral clusters especially for the  $Na_2Cl^+$  and  $Na_2Cl$  species. This might be accounted by the influence of the one extra electron in ionic clusters as compared to their respective neutral species and change in geometrical structure from linear for ions to bent for neutrals.

Adiabatic ionization energies  $(IE_{ad})$  of neutral clusters were obtained by B3P86 Ext as the energy difference  $\Delta E$  between their neutral and ionic states with optimized structures. For the MP2 method, there was no optimization of the neutral Na<sub>2</sub>X, consequently only estimation of the  $IP_{vert}$  values was done. The ionization energies of the Na<sub>2</sub>X species was found to be lower than that of Na (5.14 eV) hence they proved to be typical superalkalines and suitable reducing agents.

#### 3.2.2 Superhalogens

The equilibrium geometrical structures of the ionic and neutral superhalogens;  $MgX_3^-$  and  $MgX_3$  are presented by Fig. 1d, e. The structure of the ionic species is of  $D_{3h}$  symmetry, while that of neutral is of  $C_{2v}$  symmetry. The parameters are shown in Table 5. From the ionic state to neutral, the symmetry is lowered, the geometrical parameters: bond lengths and valence angles becomes non-equivalent (Fig. 1 e).For  $MgCl_3^-$  the internuclear distance and vibrational frequencies are in agreement with the values obtained by CCSD(T)/6-311+G\* [26].

| Property                         | B3P86 Ext | MP2 Ext                          | [24]      | B3P86 Ext | MP2 Ext                                   | [25]      |  |  |  |
|----------------------------------|-----------|----------------------------------|-----------|-----------|-------------------------------------------|-----------|--|--|--|
|                                  |           | $Na_2F^+(D_{\infty h}, {}^1A_1)$ | )         | Ν         | $Na_2Cl^{\dagger}(D_{\infty h}, {}^1A_1)$ |           |  |  |  |
| R <sub>e</sub> (Na-X)            | 2.024     | 1.985                            | 2.033     | 2.480     | 2.450                                     | 2.483     |  |  |  |
| -E                               | 424.32459 | 423.53076                        | 423.57148 | 784.68892 | 783.52799                                 | 783.56586 |  |  |  |
| $\omega_1(\Sigma_g^+)$           | 290       | 290                              | 290       | 219       | 227                                       | 230       |  |  |  |
| $\omega_2(\Sigma_u^+)$           | 512       | 534                              | 518       | 324       | 339                                       | 334       |  |  |  |
| ω <sub>3</sub> (Π <sub>u</sub> ) | 106       | 157                              | 118       | 43        | 54                                        | 51(2)     |  |  |  |
|                                  |           | $Na_2F(C_{2v}, {}^2A_1)$         | )         | Ν         | $la_2Cl (C_{2v}, {}^2A_1)$                | )         |  |  |  |
| R <sub>e</sub> (Na-X)            | 2.047     | (2.047)                          |           | 2.543     | (2.543)                                   |           |  |  |  |
| α <sub>e</sub> (Na-X-Na)         | 104.3     | (104.3)                          |           | 79.5      | (79.5)                                    |           |  |  |  |
| -E                               | 424.46869 | 423.65677                        |           | 784.84058 | 783.66550                                 |           |  |  |  |
| $IE_{ad}$                        | 3.92      |                                  |           | 4.13      |                                           |           |  |  |  |
| IE <sub>vert</sub>               |           | 3.43                             |           |           | 3.74                                      |           |  |  |  |
| $\omega_1(A_1)$                  | 374       |                                  |           | 266       |                                           |           |  |  |  |
| $\omega_3(A_1)$                  | 96        |                                  |           | 106       |                                           |           |  |  |  |
| $\omega_2(B_1)$                  | 396       |                                  |           | 214       |                                           |           |  |  |  |

Table 4. Calculated properties of superalkalies Na<sub>2</sub>X (X=F, CI)

Electronic state of the ionic superhalides is  ${}^{1}A_{1}$  for both MgX<sub>3</sub><sup>-</sup> and  ${}^{2}B_{2}$  and  ${}^{2}A_{1}$  for neutral MgF<sub>3</sub> and MgCl<sub>3</sub>, respectively (B3P86 Ext). The values of vertical energy detachment (*VED*) of electron from anion MgX<sub>3</sub><sup>-</sup> were found using the MP2 Ext level, the geometrical parameters for the neutral MgX<sub>3</sub> were accepted the same as those optimized for the ionic MgX<sub>3</sub><sup>-</sup> species (both neutral and anionic are of  $D_{3h}$ ). The value 6.64 eV for the MgCl<sub>3</sub><sup>-</sup> agrees well with the experimental result 6.60  $\pm$  0.04 eV [26]. The theoretical result 6.50 eV [26] corresponds to the state  ${}^{2}B_{2}$  of MgCl<sub>3</sub> determined which is different from ours,  ${}^{2}A_{1}$ .

Adiabatic electron affinities of neutral MgX<sub>3</sub> were also calculated by B3P86 method. For MgF<sub>3</sub> *EA* is noticeably higher that for MgCl<sub>3</sub>, 6.93 and 6.21 eV, respectively. These results prove that these molecules release much energy when they accept electrons *i.e.* have high *EA* as compared to normal halogens, 3.4 eV (F) and 3.6 eV (Cl).

#### 3.3 Geometrical Structure and Vibration Spectra of Supersalts Na<sub>2</sub>MgX<sub>4</sub>

Different geometrical shapes of the Na<sub>2</sub>MgX<sub>4</sub> molecules have been considered: a structure with two cycles in perpendicular planes of  $D_{2d}$  symmetry, polyhedral compact structure,  $C_{2v}$ , and bipyramidal one with a tail,  $C_{3v}$ . Among these configurations, the first two were proved to correspond to the minima at the potential energy surface. The optimized equilibrium geometrical structures of supersalts Na<sub>2</sub>MgX<sub>4</sub> are shown and specified in Fig. 3.

The geometrical parameters and fundamental frequencies for isomers  $D_{2d}$  and  $C_{2v}$  computed by B3P86 and MP2 method with the extended basis set are gathered in Tables 6 and 7 respectively. The corresponding geometrical parameters obtained by the two methods agree in general between each other; for instance the DFT  $R_e$  values are longer than MP2 values by 0.01–0.03 Å.

The IR spectra (MP2 Ext) are presented in Fig. 4. The similarity of the vibrational bands is observed for Na<sub>2</sub>MgF<sub>4</sub> and Na<sub>2</sub>MgCl<sub>4</sub> for isomers of the same configurations. For example, in the spectra of the  $D_{2d}$  isomers, the most intensive bands correspond to the Mg-X asymmetrical stretching vibrations at 521 cm<sup>-1</sup> (Na<sub>2</sub>MgF<sub>4</sub>) and 360 cm<sup>-1</sup> (Na<sub>2</sub>MgCl<sub>4</sub>). The high intensities of bands assigned to Mg-X modes are caused by the bigger number of Mg-X bonds compared to Na-X; in both isomers Mg atom links with four X atoms while Na atom, being the terminal, forms two bonds in  $D_{2d}$  and three in  $C_{2v}$ . The valence vibrations of Mg-X bonds are of higher frequency than those of Na-X; e.g. in the spectrum of Na<sub>2</sub>MgF<sub>4</sub> ( $D_{2d}$ ), the bands at 619 and 521 cm<sup>-1</sup> are assigned to Mg-F stretching modes whereas 376 and 330 correspond to Na-F stretching vibrations (Fig. 4a). The similar relationship is observed in spectrum of Na<sub>2</sub>MgCl<sub>4</sub> (D<sub>2d</sub>), Fig. 4b, as well in spectra of both  $C_{2v}$  Na<sub>2</sub>MgF<sub>4</sub> and Na<sub>2</sub>MgCl<sub>4</sub> isomers (Figs. 4 c, d). This relationship connects to the internuclear separations between metal and halide, shorter the distance higher is the frequency.

To evaluate the concentration of two isomers in the equilibrium vapour, the isomerization reactions

$$Na_2MgX_4 (D_{2d}) = Na_2MgX_4 (C_{2v})$$
 (R1)

were considered. The isomerization energies  $\Delta_r E_{iso}$  were calculated by equation

$$\Delta_{\rm r} E_{\rm iso} = E(C_{\rm 2v}) - E(D_{\rm 2d}) \tag{3}$$

and given in Table 7. The values of  $\Delta_r E_{iso}$  are negative: -13 kJ mol<sup>-1</sup> (Na<sub>2</sub>MgF<sub>4</sub>) and -23 kJ mol<sup>-1</sup> (Na<sub>2</sub>MgCl<sub>4</sub>), according to MP2 Ext calculations; therefore the  $C_{2v}$  isomer is more stable energetically as compared to  $D_{2d}$  isomer for both species. Their relative abundance in saturated vapour was estimated using the following equation:

$$\Delta_{\rm r} H^{\circ}(0) = T \Delta_{\rm r} \Phi^{\circ}(T) - RT ln\left(\frac{p_{\rm II}}{p_{\rm I}}\right),\tag{4}$$

where  $\Delta_r H^{\circ}(0)$  is the enthalpy of the reaction; T is absolute temperature;  $\Delta_r \Phi^{\circ}(T)$  is the change in the reduced Gibbs energy of the reaction,  $\Phi^{\circ}(T)$ =  $-[H^{\circ}(T)-H^{\circ}(0)-TS^{\circ}(T)]/T$ ;  $p_{\parallel}/p_{\parallel}$  is the pressure ratio between two isomers, isomer I corresponds to  $D_{2d}$ , and II corresponds to  $C_{2v}$ . Thermodynamic functions of the isomers are given in Appendix. The enthalpies of the isomerization reactions  $\Delta_r H^{\circ}(0)$  were calculated using isomerization energies  $\Delta_r E$  and the ZPVE corrections  $\Delta_r \epsilon$  as given in Eqs. (1) and (2). The values of  $\Phi^{\circ}(T)$ were calculated using the optimized coordinates and vibrational frequencies obtained by MP2 method with extended basis set. The relative concentrations have been calculated for the temperature range 700 - 1600 K and the plots are displayed in Fig. 5.

The results show that the two isomers  $C_{2v}$  and  $D_{2d}$  are of comparable amount in a broad temperature range. For example, at 1000 K the value of  $p_{II}/p_I$  equals to ~1.2 and ~0.5 for Na<sub>2</sub>MgF<sub>4</sub> and Na<sub>2</sub>MgCl<sub>4</sub>, respectively. The isomer of the compact structure ( $C_{2v}$ ) prevails at

temperature below ~1100 K for Na<sub>2</sub>MgF<sub>4</sub> and at *T*< 800 K for Na<sub>2</sub>MgCl<sub>4</sub>. With temperature raise the relative concentration of the compact isomer is decreasing, and the isomer of the  $D_{2d}$  symmetry becomes more abundant.

| Property                                 | B3P86 Ext MP2 Ext  |                     | B3P86 Ext         | CCSD(T)/                 |                               |
|------------------------------------------|--------------------|---------------------|-------------------|--------------------------|-------------------------------|
|                                          |                    |                     |                   |                          | 6-311+G* [26]                 |
|                                          | MgF₃⁻ (            | $D_{3h}^{1}A'_{1}$  | MgCl₃⁻            | $(D_{3h}, {}^{1}A'_{1})$ |                               |
| R <sub>e</sub> (Mg-X)                    | 1.823              | 1.821               | 2.277             | 2.267                    | 2.280                         |
| -E                                       | 499.90964          | 499.29125           | 1581.02044        | 1579.31218               | 1578.95346                    |
| VED                                      |                    | 7.96                |                   | 6.64                     | 6.50; 6.60± 0.04 <sup>a</sup> |
| $\omega_1(A_1')$                         | 470                | 472                 | 282               | 279                      | 279                           |
| $\omega_3(A_2'')$                        | 243                | 254                 | 166               | 170                      | 176                           |
| $\omega_2(E')$                           | 656                | 659                 | 444               | 457                      | 460                           |
| $\omega_4(E')$                           | 182                | 177                 | 108               | 104                      | 106                           |
|                                          | MgF <sub>3</sub> ( | $C_{2v}^{2}, B_{2}$ | MgCl <sub>3</sub> | $(C_{2v},^{2}A_{1})$     |                               |
| R <sub>e1</sub> (Mg-X <sub>1</sub> )     | 1.828              |                     | 2.266             |                          |                               |
| R <sub>e2</sub> (Mg-X)                   | 1.839              |                     | 2.281             |                          |                               |
| $\alpha_{e}(X_{1}-Mg-X)$                 | 114.9              |                     | 131.6             |                          |                               |
| -E                                       | 499.65484          |                     | 1580.79229        |                          |                               |
| EA <sub>ad</sub>                         | 6.93               |                     | 6.21              |                          | 5.61 <sup>b</sup>             |
| $\omega_1(A_1)$                          | 518                |                     | 360               |                          |                               |
| $\omega_2(A_1)$                          | 449                |                     | 262               |                          |                               |
| $\omega_3(A_1)$                          | 108                |                     | 68                |                          |                               |
| $\omega_4(B_1)$                          | 541                |                     | 391               |                          |                               |
| ω <sub>5</sub> ( <i>B</i> <sub>1</sub> ) | 158                |                     | 105               |                          |                               |
| $\omega_6(B_2)$                          | 161                |                     | 123               |                          |                               |

#### Table 5. Calculated properties of superhalogens MgX<sub>3</sub> (X=F, Cl)

Notes: <sup>a</sup> experimental value of VED for MgCl<sub>3</sub>-found by photoelectron spectroscopy [25]; <sup>b</sup> theoretical value of  $EV_{ad}$  was determined in [26] for the state <sup>2</sup>B<sub>2</sub>

| Property                     | B3P86 Ext | MP2 Ext   | B3P86 Ext  | MP2 Ext     |  |
|------------------------------|-----------|-----------|------------|-------------|--|
|                              | N         | Na₂MgF₄   | Na₂MgCl₄   |             |  |
| -E                           | 924.43906 | 923.03530 | 2365.88225 | 2363.023612 |  |
| R <sub>e1</sub> (Na-X)       | 2.094     | 2.071     | 2.552      | 2.521       |  |
| R <sub>e2</sub> (Mg-X)       | 1.892     | 1.878     | 2.369      | 2.345       |  |
| α <sub>e</sub> (X–Na–X)      | 81.9      | 82.8      | 91.5       | 91.5        |  |
| β <sub>e</sub> (X–Mg–X)      | 93.0      | 93.7      | 101.0      | 100.7       |  |
| $\omega_1(A_1)$              | 428       | 432       | 340        | 268         |  |
| $\omega_2(A_1)$              | 389       | 374       | 244        | 253         |  |
| $\omega_3(A_1)$              | 183       | 161       | 74         | 96          |  |
| $\omega_4(B_1)$              | 104       | 110       | 62         | 61          |  |
| $\omega_5(B_2)$              | 602       | 619       | 387        | 411         |  |
| $\omega_6(B_2)$              | 395       | 376       | 252        | 256         |  |
| $\omega_7(B_2)$              | 279       | 271       | 165        | 169         |  |
| ω <sub>8</sub> ( <i>E</i> )  | 503       | 521       | 342        | 360         |  |
| ω <sub>9</sub> ( <i>E</i> )  | 337       | 330       | 234        | 244         |  |
| ω <sub>10</sub> ( <i>E</i> ) | 203       | 207       | 115        | 114         |  |
| ω <sub>11</sub> ( <i>E</i> ) | 55        | 62        | 34         | 22          |  |

| Table 6. Calculated | I properties of | f supersalts | Na₂MgX₄ ( | (D <sub>2d</sub> symmetry | ) |
|---------------------|-----------------|--------------|-----------|---------------------------|---|
|---------------------|-----------------|--------------|-----------|---------------------------|---|

Note: the reducible vibrational representation breaks down into irreducible ones as follows:

 $\Gamma = 3A_1 + B_1 + 3B_2 + 4E$ 



Fig. 3. Equilibrium geometrical configurations of Na<sub>2</sub>MgX<sub>4</sub> isomers: (a) two-cycled structure of  $D_{2d}$  symmetry; (b) polyhedral structure of  $C_{2v}$  symmetry



Fig. 4. Theoretical infrared spectra (MP2 Ext) of supersalts: (a)  $Na_2MgF_4$  ( $D_{2d}$ ); (b)  $Na_2MgCl_4$  ( $D_{2d}$ ); (c)  $Na_2MgF_4$  ( $C_{2v}$ ); (d)  $Na_2MgCl_4$  ( $C_{2v}$ )



Fig. 5. Relative abundance  $p_{\rm ll}/p_{\rm l}$  of two isomers of supersalts Na<sub>2</sub>MgF<sub>4</sub> and Na<sub>2</sub>MgCl<sub>4</sub>; I is  $D_{\rm 2d}$  and II is  $C_{\rm 2v}$  isomer (MP2 Ext)

| Property                     | B3P86 Ext | MP2 Ext   | B3P86 Ext   | MP2 Ext    |
|------------------------------|-----------|-----------|-------------|------------|
|                              | Na₂MgF    | 4         | Na₂MgCl₄    |            |
| -E                           | 924.43548 | 923.04024 | 2365.883478 | 2363.03220 |
| R <sub>e1</sub> (Na–X)       | 2.257     | 2.231     | 2.730       | 2.637      |
| $R_{e2}(Na-X_1)$             | 2.202     | 2.173     | 2.687       | 2.629      |
| $R_{e3}(Mg-X)$               | 1.954     | 1.941     | 2.458       | 2.438      |
| $R_{e4}(Mq-X_1)$             | 1.842     | 1.825     | 2.301       | 2.286      |
| $\alpha_{e}(X-Na-X_{1})$     | 80.4      | 78.4      | 85.9        | 87.4       |
| β <sub>e</sub> (X-Mg-X)      | 82.5      | 82.9      | 88.2        | 86.8       |
| $\gamma_{e}(X_{1}-Mg-X_{1})$ | 157.0     | 156.6     | 147.3       | 150.4      |
| $\Delta_{\rm r} E_{\rm iso}$ | 9.4       | -13.0     | 3.2         | -22.5      |
| μ <sub>e</sub>               | 6.69      | 6.60      | 7.22        | 6.86       |
| $\omega_1(A_1)$              | 485       | 483       | 327         | 335        |
| $\omega_2(A_1)$              | 448       | 460       | 260         | 271        |
| $\omega_3(A_1)$              | 321       | 323       | 213         | 212        |
| $\omega_4(A_1)$              | 305       | 301       | 183         | 192        |
| $\omega_5(A_1)$              | 230       | 227       | 125         | 163        |
| $\omega_6(A_1)$              | 150       | 139       | 90          | 99         |
| $\omega_7(A_2)$              | 223       | 238       | 142         | 174        |
| $\omega_8(A_2)$              | 134       | 141       | 86          | 91         |
| $\omega_9(B_1)$              | 408       | 432       | 267         | 280        |
| $\omega_{10}(B_1)$           | 236       | 254       | 134         | 146        |
| $\omega_{11}(B_1)$           | 140       | 167       | 110         | 129        |
| $\omega_{12}(B_2)$           | 684       | 709       | 469         | 483        |
| $\omega_{13}(B_2)$           | 322       | 334       | 215         | 218        |
| $\omega_{14}(B_2)$           | 267       | 263       | 168         | 178        |
| $\omega_{15}(B_2)$           | 223       | 229       | 157         | 168        |

Table 7. Calculated properties of supersalts Na<sub>2</sub>MgX<sub>4</sub> (C<sub>2v</sub> symmetry)

Note:  $\Delta_r E_{iso}$  are the energies of the isomerization reactions Na<sub>2</sub>MgX<sub>4</sub> (D<sub>2d</sub>) = Na<sub>2</sub>MgX<sub>4</sub> (C<sub>2v</sub>), in kJ·mol<sup>-1</sup>. The reducible vibrational representation breaks down into irreducible ones as follows:

 $\Gamma = 6A_1 + 2A_2 + 3B_1 + 4B_2$ 

#### 3.4 Thermodynamic Properties of Supersalts

The supersalts were designed trough association of different building blocks as per reactions:

 $2NaX + MgX_2 = Na_2MgX_4$  (R2)

 $Na_2X_2 + MgX_2 = Na_2MgX_4$ (R3)

 $Na_2X^+ + MgX_3^- = Na_2MgX_4$  (R4)

$$Na_2X + MgX_3 = Na_2MgX_4$$
 (R5)

The first two reactions involve the conventional salts MgX<sub>2</sub> and NaX, and the dimer Na<sub>2</sub>X<sub>2</sub>, and the last two reactions involve the superhalides and superalkalies to form the supersalts. The energies  $\Delta_r E$ , zero-point vibration energy corrections  $\Delta_r \epsilon$ , and enthalpies  $\Delta_r H^{\circ}(0)$  of the reactions were calculated using Eqs. (1) and (2). The data obtained by DFT/B3P86 and MP2 methods with the extended basis set are presented in Table 8. For each reaction considered the difference between the  $\Delta_r H^{\circ}(0)$ values by B3P86 and MP2 methods is rather big, lying in the range 30–70kJ mol<sup>-1</sup>. The calculated enthalpies of the reactions  $\Delta_r H^{\circ}(0)$  show that all reactions proceed with release of heat energy (i.e. exothermic), even though the magnitude differs between reactions. Thus, in the reaction involving dimers (R3) smaller energy is released, while reactions involving neutral superatoms (R5) give larger amount of energy as compared to others.

The enthalpies of formation  $\Delta_i H^{\circ}(0)$  of the supersalts were estimated through the formation

of enthalpies of the reactions (R2) and (R3) and the enthalpies of the reactants were taken from [14]. The values of  $\Delta_{\rm f} H^{\circ}(0)$  are given in the last column of Table 8. To evaluate the accuracy of the results, we have considered the data obtained through two reactions (R2) and (R3) and two methods of calculations (B3P86 Ext, MP2 Ext). The results have been plotted in Fig. 6. It can be seen the oscillations of the  $\Delta_t H^{\circ}(0)$ values along each plot. As it was shown for the dimer molecules (Fig. 1), the averaged values of  $\Delta_{\rm f} H^{\circ}(0)$  for different methods for the Na<sub>2</sub>F<sub>2</sub> and Na<sub>2</sub>Cl<sub>2</sub> molecules are in a good agreement with the reference data [14] accordingly. Using the same approach we have estimated the enthalpies of formation of Na<sub>2</sub>MgF<sub>4</sub> and Na<sub>2</sub>MgCl<sub>4</sub> molecules:  $-1850\pm$  30 and  $-1170\pm$  40  $kJ \cdot mol^{-1}$ , respectively.

The thermodynamic stability of the salts was examined through Gibbs free energy for the reaction (*R*3) as it corresponds to the most probable channel of dissociation. The change in Gibbs free energy  $\Delta_r G^{\circ}(T)$  was calculated by the formula:

$$\Delta_{\rm r}G^{\circ}(T) = \Delta_{\rm r}H^{\circ}(T) - T\Delta_{\rm r}S^{\circ}(T) \tag{5}$$

where  $\Delta_r H^{\circ}(T)$  is the enthalpy of the reaction, *T* is the absolute temperature;  $\Delta_r S^{\circ}$  is the entropy change. The required thermodynamic functions have been computed using rigid rotator-harmonic oscillator approximation, based on geometrical parameters and vibrational frequencies obtained in MP2 method with the extended basis set.

Table 8. The energies of reactions,  $\Delta_r E$ , zero-point vibration energy corrections,  $\Delta_r \epsilon$ , enthalpies of the reactions,  $\Delta_r H^{\circ}(0)$ , and enthalpies of formation,  $\Delta_f H^{\circ}(0)$  of supersalts Na<sub>2</sub>MgX<sub>4</sub> (X = F, CI); all values are given in kJ · mol<sup>-1</sup>

| Property  | $-\Delta_r E$ | $\Delta_{\mathbf{r}} \mathbf{\epsilon}$ | –∆r <b>H°(0)</b> | –∆f <b>H°(0)</b> | $-\Delta_r E$                                     | $\Delta_{\mathbf{r}} \mathbf{\epsilon}$ | –∆r <b>H°(0)</b> | –∆ <sub>f</sub> <i>H</i> ⁰(0) |
|-----------|---------------|-----------------------------------------|------------------|------------------|---------------------------------------------------|-----------------------------------------|------------------|-------------------------------|
|           |               | Ν                                       | la₂MgF₄          |                  |                                                   | 1                                       | Na₂MgCl₄         |                               |
| R2        |               |                                         |                  | 2NaX + M         | gX <sub>2</sub> = Na <sub>2</sub> M               | gX₄                                     |                  |                               |
| B3P86 Ext | 514.1         | 10.5                                    | 503.6            | 1825             | 380.9                                             | 6.5                                     | 374.4            | 1134                          |
| MP2 Ext   | 570.8         | 11.5                                    | 559.3            | 1881             | 453.5                                             | 6.8                                     | 446.7            | 1206                          |
| R3        |               |                                         |                  | $Na_2X_2 + M_2$  | $gX_2 = Na_2M$                                    | lgX₄                                    |                  |                               |
| B3P86 Ext | 276.5         | 5.1                                     | 271.3            | 1835             | 188.5                                             | 3.9                                     | 184.6            | 1145                          |
| MP2 Ext   | 311.7         | 4.6                                     | 307.1            | 1870             | 238.9                                             | 3.5                                     | 235.5            | 1195                          |
| R4        |               |                                         |                  | Na₂X⁺+ Mg        | $X_3^- = Na_2N$                                   | lgX₄                                    |                  |                               |
| B3P86 Ext | 528.5         | 1.0                                     | 527.5            | _                | 457.2                                             | -0.8                                    | 456.4            |                               |
| MP2 Ext   | 573.1         | 1.6                                     | 571.5            |                  | 504.3                                             | -1.1                                    | 503.2            |                               |
| R5        |               |                                         |                  | Na₂X + Mg        | $\mathbf{X}_3 = \mathbf{N}\mathbf{a}_2\mathbf{M}$ | gX₄                                     |                  |                               |
| B3P86 Ext | 819.2         | 6.5                                     | 812.7            |                  | 645.3                                             | _4.4                                    | 640.9            |                               |
| MP2 Ext   | 802.7         |                                         |                  |                  | 597.0                                             |                                         |                  |                               |

For the salts considered here the thermodynamic functions are listed in Tables A and B of the Appendix. In the  $\Delta_r G^{\circ}(T)$  calculations, the compact structure of  $C_{2\nu}$ symmetry for Na<sub>2</sub>MgX<sub>4</sub>obtained by MP2 with extended basis set was considered. The graph of  $\Delta_r G^{\circ}(T)$  vs *T* is shown on the Fig. 7. As is seen the values are negative in a broad temperature range, *i.e.* this result satisfies the condition that the reaction for the salt formation is spontaneous.

The spontaneous dissociation of the supersalts starts at the elevated temperatures: at ~2000 K for  $Na_2MgF_4$  and ~1400 K for  $Na_2MgCl_4$ . The

 $\Delta_r G^\circ$  values indicate the thermodynamic stability of the supersalts and correlate to the enthalpies of the reactions R3 given in Table 8.For the fluoride the values of  $\Delta_r G^\circ$  are negative at a broader temperature range as compared to chloride, and the enthalpy of reaction R3 for the fluoride is more negative. The lower thermodynamic stability of Na<sub>2</sub>MgCl<sub>4</sub> as compared to Na<sub>2</sub>MgF<sub>4</sub> is accounted for stronger chemical bonds in the latter. The spontaneous course for other reactions (R2, R4, and R5) is predictable as the enthalpies of these reactions are even more negative than for R2.



Fig. 6. The enthalpies of formation of the salts calculated through different approaches: n = 1,
2 correspond to reaction 2NaX + MgX<sub>2</sub> = Na<sub>2</sub>MgX<sub>4</sub> (1 – B3P86 EXT, 2 – MP2 EXT); n = 3,
4 correspond toreaction Na<sub>2</sub>X<sub>2</sub> + MgX<sub>2</sub> = Na<sub>2</sub>MgX<sub>4</sub> (3– B3P86 EXT, 4– MP2 EXT); n = 5
correspond to the averaged values



Fig. 7. Gibbs free energy change against temperature for reaction  $Na_2X_2 + MgX_2 = Na_2MgX_4$ ; the polyhedral isomer ( $C_{2\nu}$ ) for  $Na_2MgX_4$  was considered

## 4. CONCLUSION

The geometrical parameters and vibrational frequencies of superalkalies  $Na_2X$ , superhalogens  $MgX_3$ , dimers  $Na_2X_2$  and supersalts  $Na_2MgX_4$  (X = F, CI) have been determined using DFT/B3P86 and MP2 methods. The results obtained by DFT and MP2 methods do not contradict each other and the available reference data. The low ionization energies of the superalkalies and high electron affinities of superhalogens not only suggest their suitability as building blocks but also predict the stability and existence of the supersalts they compose.

For the supersalts  $Na_2MgF_4$  and  $Na_2MgCl_4$ , two isomers; polyhedral ( $C_{2v}$ ) and two-cycled ( $D_{2d}$ ), were proved to exist; the relative concentrations of the isomers in equilibrium vapour were evaluated and found to be comparable at ~1000 K. The enthalpies and Gibbs energies of association reactions indicated the thermodynamic stability of the supersalts and spontaneity for the salt formation process in a broad temperature range.

The supersalts considered are predicted to be useful in catalysis, ion batteries manufacturing and design of novel functional materials. Therefore this study is not only anticipated to widen the theoretical understanding of supersalts but also to provide sound promises and calls to experimentalists and technologists to come out with tangible novel supersalts and its derivatives.

#### ACKNOWLEDGEMENT

The authors are very thankful to the government of Tanzania through The Nelson Mandela African Institution of Science and Technology for supporting and sponsoring this research work.

## **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

# REFERENCES

- 1. Wang XB, Ding CF, Wang, LS, Boldyrev, AI, Simons J. First experimental photoelectron spectra of superhalogens and their theoretical interpretations. J. Chem. Phys. 1999;110(10).
- 2. Khanna SN, Jena P. Atomic clusters: Building blocks for a class of solids. Phys.

Rev. B.: Condens. Matter. 1995;51:13705-13716:3.

- 3. Gutsev GL, Boldyrev AI. DVM-X $\alpha$  calculations on the ionization potentials of  $M_{k+1}X$  –complex anions and the electron affinities of  $MX_{k+1}$  "superhalogens". J.Chem. Phys. 1981;56(3):277-283.
- Tian W, Yang K, Li Q, Li W, Cheng J. Hydrogen bonding involved with superhalogens MX<sub>2</sub>NY: Its influence on the structure and stability of the superhalogens. Molecular Physics. 2014; 112(15):1947-1953.
- 5. Srivastava AK, Misra N. Novel  $Li_3X_3$ supersalts (X= F, Cl, Br & I) and their alkalide characteristics. New J. Chem; 2014;38(7):2890-2893.
- Giri S, Behera S, Jena P. Superalkali and superhalogens as building blocks of supersalts. J. Chem. Phys. 2014;118(3): 638-645.
- Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. General Atomic and Molecular Electronic Structure System. J Comput. Chem. 1993; 14:1347-1363.

DOI:10.1002/jcc.540141112.

- Granovsky AA. Firefly version 8.1.0, www. 2014. Accessed 15 March 2015. Available:<u>http://classic.chem.msu.su/gran/firefly/index.html</u>
- 9. Feller D, The role of databases in support of computational chemistry calculations Comput. Chem. 1996;17(13):1571-1586.
- Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL, Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 2007;47(3): 1045-1052.
- 11. Basis set library EMSL (The Environmental Molecular Sciences Laboratory, U.S.) Available:<u>https://bse.pnl.gov/bse/portal</u>
- 12. Chemcraft. Version 1.7 (build 132). GA Zhurko, Zhurko DA. Available:<u>www.chemcraftprog.com</u>
- Tokarev KL. "Open Thermo", v.1.0 Beta 1 (C); 2007-2009. Available:<u>http://openthermo.software.informer.com/</u>
- Gurvich LV, Yungman VS, Bergman GA, Veitz IV, Gusarov AV, Iorish VS, Leonidov VY, Medvedev VA, Belov GV, Aristova NM, Gorokhov LN, Dorofeeva OV, Ezhov

Efimov ME, Krivosheya YS, NS, Nazarenko II, Osina EL, Ryabova VG, Tolmach PI. Chandamirova NE, Shenyavskaya EA. Thermodynamic properties of individual substances. Ivtanthermo for windows database on thermodynamic properties of individual substances and thermodynamic modeling software. Version 3.0 (Glushko Thermocenter of RAS, Moscow; 1992-2000.

- 15. Available:<u>http://www.ccl.net/cca/document</u> s/dyoung/topics-orig/spin\_cont.html
- Jensen F. A remarkable large effect of spin contamination on calculated vibrational frequencies. Chemical Physics Letters. 1990;169(6):519-528.
- Huber KP, Herzberg G. Constants of diatomic molecules (data prepared by JW Gallagher and RD Johnson, III) in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, eds. PJ Linstrom and WG Mallard; 2001.
- Gurvich LV, Veyts IV, Alcock CB, Eds., Thermodynamic properties of individual substances, 4<sup>th</sup> ed., Hemisphere Publishing Corp., New York; 1989.
- 19. NIST Chemistry Webbook. Available:http://webbook.nist.gov/chemistry
- 20. Jacox ME. Vibrational and electronic energy levels of polyatomic transient

molecules. Supplement B. J. Phys. Chem. Ref. Data. 2003;32(1):1-441.

- 21. Hargittai M. Molecular structure of metal halides. Chem. Rev. 2000;100(6):2233-2302.
- Snelson A, Cyvin SJ, Cyvin BN. Infrared spectrum of LiNaF2. J. Phys. Chem. 1970; 74(25):4338-4343.
- Ismail ZK, Hauge RH, Margrave JL. Infrared studies of matrix isolated sodium and potassium chloride and cyanide dimers. Journal of Molecular Spectroscopy. 1975;54(3):402-411.
- 24. Pogrebnaya TP, Pogrebnoi AM, Kudin LS. Calculation of the thermodynamic characteristics of ions in vapor over sodium fluoride. Russ.J. Phys. Chem. A, 2008;82(1):75-82.
- Pogrebnaya TP, Pogrebnoi AM, Kudin LS. Theoretical study of the structure and stability of the Na<sub>2</sub>Cl<sup>+</sup>, NaCl<sub>2</sub><sup>-</sup>, Na<sub>3</sub>Cl<sub>2</sub><sup>+</sup>, and Na<sub>2</sub>Cl<sub>3</sub><sup>-</sup> ions. J. Struct. Chem. 2007;48(6): 987-995.
- Elliot BM, Koyle E, Boldyrev AI, Wang XB, Wang LS. MX<sub>3</sub><sup>-</sup> Super Halogens (B = Be, Mg, Ca; X = Cl, Br): A Photoelectron Spectroscopic and ab Initio Theoretical Study. J. Phys. Chem. A. 2005;109(50): 11560.

DOI:10.1021/jp054036v

#### APPENDIX

The thermodynamic functions of supersalts Na<sub>2</sub>MgF<sub>4</sub> and Na<sub>2</sub>MgCl<sub>4</sub>in gaseous phase were calculated using Openthermo software [13]. The molar heat capacity  $c_p(T)$ ; Gibbs reduced free energy  $\Phi^{\circ}(T)$ ; entropy S<sup>o</sup>(T); and enthalpy increment  $H^{\circ}(T) - H^{\circ}(0)$ , in  $J \cdot mol^{-1} \cdot K^{-1}$ ,  $J \cdot mol^{-1} \cdot K^{-1}$ ,  $J \cdot mol^{-1} \cdot K^{-1}$  and  $kJ \cdot mol^{-1}$ , respectively, are listed in Table A and B. The geometrical parameter and vibrational frequencies were calculated by MP2 method with extended basis set.

| <i>T</i> , K           | <b>c°</b> <sub>p</sub> ( <b>7</b> ) | Φ( <i>Τ</i> ) | S( T)   | H⁰(T) –<br>H⁰(0) | <i>T</i> , K | <b>с°</b> р( <b>Т</b> ) | Φ( <i>Τ</i> )         | S( T)   | H°(T) –<br>H°(0) |
|------------------------|-------------------------------------|---------------|---------|------------------|--------------|-------------------------|-----------------------|---------|------------------|
| D <sub>2d</sub> isomer |                                     |               |         |                  |              |                         | C <sub>2v</sub> isome | r       |                  |
| 298.15                 | 134.700                             | 302.947       | 396.112 | 27.777           | 298.15       | 135.070                 | 292.802               | 383.270 | 26.973           |
| 700                    | 152.900                             | 396.450       | 520.512 | 86.844           | 700          | 152.950                 | 384.818               | 507.821 | 86.102           |
| 800                    | 154.050                             | 413.265       | 541.009 | 102.195          | 800          | 154.090                 | 401.503               | 528.324 | 101.457          |
| 900                    | 154.850                             | 428.489       | 559.202 | 117.642          | 900          | 154.870                 | 416.624               | 546.522 | 116.908          |
| 1000                   | 155.430                             | 442.392       | 575.549 | 133.157          | 1000         | 155.460                 | 430.445               | 562.871 | 132.426          |
| 1100                   | 155.870                             | 455.181       | 590.384 | 148.723          | 1100         | 155.880                 | 443.168               | 577.708 | 147.994          |
| 1200                   | 156.200                             | 467.022       | 603.961 | 164.327          | 1200         | 156.220                 | 454.955               | 591.287 | 163.599          |
| 1300                   | 156.450                             | 478.043       | 616.474 | 179.960          | 1300         | 156.470                 | 465.929               | 603.801 | 179.234          |
| 1400                   | 156.660                             | 488.350       | 628.076 | 195.616          | 1400         | 156.680                 | 476.196               | 615.404 | 194.891          |
| 1500                   | 156.820                             | 498.030       | 638.891 | 211.291          | 1500         | 156.850                 | 485.841               | 626.219 | 210.567          |
| 1600                   | 156.980                             | 507.154       | 649.017 | 226.981          | 1600         | 156.990                 | 494.935               | 636.346 | 226.258          |

Table A. Thermodynamic functions of Na<sub>2</sub>MgF<sub>4</sub>

Table B. Thermodynamic functions of Na<sub>2</sub>MgCl<sub>4</sub>

| <i>T</i> , K | $c^{\circ}_{p}(T)$ | Φ( Τ)                 | S'( T)  | H°(T) – | <i>T</i> , K | $c^{\circ}_{p}(T)$ | Φ( Τ)                 | S'( T)  | H°(T) − |
|--------------|--------------------|-----------------------|---------|---------|--------------|--------------------|-----------------------|---------|---------|
|              | •                  |                       |         | H°(0)   |              |                    |                       |         | H°(0)   |
|              |                    | D <sub>2d</sub> isome | er      |         |              |                    | C <sub>2v</sub> isome | er      |         |
| 298.15       | 146.210            | 358.475               | 469.076 | 32.976  | 298.15       | 146.500            | 333.301               | 440.683 | 32.016  |
| 700          | 155.630            | 464.097               | 598.863 | 94.336  | 700          | 155.690            | 437.125               | 570.593 | 93.428  |
| 800          | 156.180            | 482.272               | 619.683 | 109.929 | 800          | 156.210            | 455.139               | 591.419 | 109.024 |
| 900          | 156.550            | 498.582               | 638.100 | 125.566 | 900          | 156.570            | 471.323               | 609.840 | 124.665 |
| 1000         | 156.800            | 513.374               | 654.609 | 141.235 | 1000         | 156.840            | 486.015               | 626.352 | 140.337 |
| 1100         | 157.010            | 526.905               | 669.565 | 156.926 | 1100         | 157.040            | 499.464               | 641.310 | 156.031 |
| 1200         | 157.170            | 539.371               | 683.234 | 172.636 | 1200         | 157.190            | 511.862               | 654.980 | 171.742 |
| 1300         | 157.280            | 550.927               | 695.819 | 188.359 | 1300         | 157.310            | 523.362               | 667.567 | 187.467 |
| 1400         | 157.440            | 561.698               | 707.478 | 204.092 | 1400         | 157.400            | 534.083               | 679.227 | 203.202 |
| 1500         | 157.490            | 571.783               | 718.339 | 219.834 | 1500         | 157.470            | 544.126               | 690.089 | 218.945 |
| 1600         | 157.520            | 581.264               | 728.503 | 235.583 | 1600         | 157.550            | 553.570               | 700.254 | 234.695 |

© 2016 Ulime et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/11672