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Abstract 

 
In this paper, we use the properties of Euler’s function, elementary methods and the idea of classification 

discussion to study the solvability of equation    2 2x x   
. 

 

 
Keywords: Euler function; equation; solution; Mersenne prime; Twin prime. 

 

1 Introduction 
 

Research on Euler's function is a very important and meaningful topic in number theory. Many scholars have 

studied its properties and obtained many interesting results.  

 

Euler's function is defined as the number of positive integers that are less than or equal to n and relatively prime 

to n, denoted as [1]. From the definition, we can see that . For a prime 

number , all positive integers less than are relatively prime to , so .  If , let 

( )n      1 1, 2 1, 3 2,    

p p p   1p p   1n
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canonical form of  be , where 
 
are different primes, , then  

 

[2]. 

 

Carmichael [3]
 
proof that if  ( and is odd), then or ,  is an odd prime . 

 

In 1945，Paul Erdös [4] conjectured that the equation 

 

 

 

is solvable for arbitrary positive integer . 

 

For  and  n  in the range of  to , Lal and Gillard [5] provided the number of solutions for the 

equation . Schinzel [6,7] conjecture that for every even , the equation  

has
 
infinitely many solutions, but observes that the corresponding conjecture with 

 
odd is implausible. 

 

Makowski [8]
 
considered the solution of equation  

 

Patricia Jones [9]
 
proof that if , then 

 or , and  prime .  

 
Either  or  has at least 33 distinct prime factors. 

, where is odd，prime , , and  has at least  9 distinct 

prime factors. 

 

V. L.klee [10] listed the values of the Euler function for   < 3000, and find that the equation 

 holds when both  and  
are prime, or  is the form of 

 
and both 

 are prime. 

 

Moser Leo
 
[11]

 
proof that if , then at least one of  and  is of the form  or 

，and is a prime number in the form of . 

 

When , must be even. When , the equation  has only one solution, 

which is  obviously. For odd , it is easy to show that the equation  has only one 

solution  when  is prime. For even , it is more difficult, we study the equation 

 due to , and get the following results. 

 

Theorem 1: If prime 
 
and  positive integer  satisfying  

 

, 

 

n 1 2

1 2 ... krr r

kn p p p
1 2, ,..., kp p p )1(1 kiri 

1 2

1 1 1
( ) (1 )(1 ) (1 )

k

n n
p p p

     

  2n j  1j  j n p 2 p
p

       1 2n n n n q         

q

30k 
410 510

   n n k   k    n n k  

k

     x k x k    

     3 3x x    

 i 2x p 2 3x p  3p 

 ii x 3x 

 iii 2x p   2 mod 3p 
1110x  3x 

n

   2 2n n    n 2n n 4p

and 2 1p p

   2 2n n    n 2n p

2 p
p 4 3r 

2x   x 1k     x k x k   

2x  k    x k x k   

2x  2k  k

   x k x k    2k 

 3 mod 4p  

   2 2 2 2p p    
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then α = 1 and both  are primes. 

Theorem 2: If  prime 
 
and positive integer  satisfying ，

except for the cases when  and  is a Mersenne prime, or when  and , any other solutions 

must satisfy the following  and , where  denotes the number of 

distinct prime factors of . 

 

Theorem 3: If  prime and positive integer  satisfying ，except 

for the cases when  are prime, any other solutions must satisfy the following 

conditions, is odd,  and  has  one prime factor 
 
at least. 

 

Theorem 4: If  prime and positive integer  satisfying ，except 

for the cases when  are twin primes, any other solutions must satisfy the following 

conditions: 

 

 and  has even number of prime factors  or 

 and  has odd number of prime factors  or 

， is even and  has one prime factor at least . 

 

Theorem 5: Except for  or  where  is a Mersenne prime, or  and  are twin 

primes, or  and both  are primes, other solutions of the equation 

 must satisfy one of the following conditions: 

,where and . 

, where is odd，  and  has one prime factor  at least . 

and all the prime factors of  must be the form . 

 , where either and all the prime factors of  must be the form  or 

, is even and has one prime factor at least. 

 

2 Preliminaries 

 

Lemma 1 [12]: If  is an odd integer ， then . If  is an even integer ， then 

. 

 

Lemma 2 [12]: If ，then  is a prime. 

 

1
and

2

p
p



 3 mod 4p      2 2 2 2p p    

1  p 2  3p 

 2 1a a  
2 1

1
2

a

p

 

  
 

 n

n

 3 mod 4p      2 2p p    

1,   both and 2p p  

1   11 mod12p  p  1 mod 3q 

 3 mod 4p      2 2p p    

1,   and 2p p  

 1 3p  3 2   2 mod 3q 

 2  1 mod3p  2p   2 mod 3q 

 3  2 mod 3p   2p   1 mod 3q 

18x  2 px M pM x 2x

2 2x p 
1

and
2

p
p



   2 2x x   

 i 2x p  2 1a a  
2 1

1
2

a

p

 

  
 

 ii x p 1   11 mod12p  p  1 mod 3q 

 iii 3 2x   x 3 2r 

 iv 2x p   1 mod3p  x 3 2r 

 2 mod 3p   x  1 mod 3q 

n    2n n  n

   2 2n n 

  1n n   n
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Lemma 3 [11]: If  then at least one of  and +2 has the form or , where  

 
is a prime of the form 4 +3. 

Lemma 4: If , then . 

 

Proof: Let . Then  

 

. 

 

So ，we have .
.
Thus . 

 

3 Proof of the Theorems  
 

3.1 Proof of theorem 1 
 

For the equation , since 
 
and is positive integer, then  

is even. By Lemma 1, we have 

 

 
 

(1) When ， ，it is obviously that . Since is a prime number of the form 

, is an odd prime. Therefore, by Lemma 1, we have 

 

. 

 

By Lemma 2, we have is a prime.  

(2) When is odd, there exists a positive integer  such that 

 

. 

Also, since is a prime of the form , it follows that is odd.Thus 

 period. 

Therefore, must have an odd prime factor not exceeding ，so 

. 

 

   2 2n n    n n p 2 p

p r

 
2

n
n   2 0n   

  1 12 0, 2, 1n n n   

       1 1

1 1 12 2 2
2

n
n n n n         

 1 1n n 
1 1n   2 0n   

   2 2 2 2p p      3 mod 4p   1p 

 1 2 2 1 .p p p     

1   3 2 1p p   3p  p

4 3r 
1

2

p 

1 3 1
1

2 2 2

p p p


   
   

 

1

2

p 

1  M

 1 1p p M   

p 4 3r 
1

2

p 

 
1

2 2 2 1 4
2

p
p p M M 

     

2 2p 
1

2

p 

   
1 2

2 2 2 2 1 (1 )
2 1

p p
p

 
 

     
 
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Furthermore ，so 

. 

Hence , it is impossible. 

(3) When  is even, if ，since ， 

. 

 

Hence ，i.e.,  is contradictory to condition . 

 

If ，then ，by Lemma 1, we have 

，i.e., . 

 

As ，according to the computation and properties of Euler's totient function, we can obtain 

，but ，it is contradictory. 

 

Combining with , we obtain the conclusion of Theorem 1.
 

 

3.2 Proof of theorem 2 
 

For the equation , since , we have 

 

.                  

                 

(3.1) 

 

When ，by Lemma 1, we obtain 

 

 

 

By Lemma 4,  we have ,that is  is a Mersenne prime. 

 

When is odd，there exists a positive integer  such that 

 

. 

 If , then . And 

 

    12 2 2 2 2p p p p          

 1 1 2
2 2 2 1 (1 )

2 1
p p p

p

    
      

 

  1 1 1 0p p   

 3p     1 mod 2 , 1 mod3p p  

   1 1 1
2 2 1 2 1 1 1

2 3
p p p p      

         
  

13 4 0p p    4p  3p 

3p     2 3 2 3 2 2      

   3 2 3 1 2      13 1 3 1    

 3 1 0 mod8  

   3 1 0 mod 4    13 1 2 mod 4  

     1 2 3、 and

   2 2 2 2p p       12 p p p    

  12 2 2p p p      

 1 1 

 
1

1 .
2

p
p


 

1 2p   2 1p  

 2 1  M

1
2 2 4

2

p
p M 

   

1 2kp  1 1
2 2 2

1

k p
p

p


  
  


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is odd. Therefore, the left side of (3-1) is 

 

 

 

But, the right side of (3-1) is 

 

 

 
 

Contradictory, thus . So  must have an odd prime factor not exceeding . Thus  

， 

hence , it is impossible. 

 

When , , if ，then 

 

, 

 

because must have factors 2 and , 

 

. 

 

Hence ，it is impossible. Therefore, if such an even number  exists, then it 

must be  In this case (3-1) is 

 

 
 

Since 
 
is an odd prime, thus  is odd，by Lemma 1, we have 

1 2 3 41
1 1

1

p
p p p p

p


      

      


   1 11 1
2 2 (2 ) 2 0 mod 2 .

1 1

k k kp p
p

p p

 
        
      

    

    

          

1
1 1

20 1 21 2

1 1 1

2 1 2 2 2 2 1 2

2 2 2 2 1 2 1 1 2

k k

k kk k

p p p p

C C C

  

 

  


 

 

  

        

        

        
        

 

20 1 21 2

1 1 1

20 1 21 2

1 1 1

1

2 2 2 1 2 1

2 2 2 1 2 1 2

2 mod 2 .

k kk k

k k k k

k k

C C C

C C C

 

  

 

  

 

  

 

  



     

      



1 2kp  1p 
1

4

p 

   1 1 1
2 2 2 2 2 1 1

2 4

p
p p p p      

         
  

13 5 0p p p    

 3 2ab   2, 1b  1b 

 2 2 1 22 2 2
a a ab b bp p p   

22 2
a bp  2 1

a

p 

     
2

2 2 2

2 2

1 2 1
2 2 2 2 (1 ) 1 1

2 1 1

a

a a a

a a

b b b p
p p p

p p


  
          

2 2 2 1 3 0
a a ab bp p p     

1and 2 ( 1).ab a  

 2 2 2 12 2 2.
a a a

p p p    

p
2 1 2 (mod 8),

a

p  
2 1

2

a

p 
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(3.2) 

Since 

 

, 

  is square-free. 

 

When ，(3-2) is 

 

 

it leads to ，so ，in this case  

When , then  must have an odd prime factor that is less than , so 

. 

By (3-2) 

 

 
 

it leads . When ， ，it is impossible. 

Therefore, if such an exists, then it must be and  

Combining with , we obtain the conclusion of Theorem 2.
  

 

3.3 Proof of theorem 3 
 

For , since 

, 

 is square-free. 

 

2 2 2 11 2
.

2 2

a a a

p p p


   
  

 

2 2 2 1 2 2 1 2 11 2 1 1 1 1 1
, , , 1 ,1 1

2 2 2 2 2 2 2

a a a a a a

p p p p p p p p               
                       

2 1

2

a

p 

 i
2 1

1
2

a

p

 

  
 

2 2 2 11 2
1 ,

2 2

a a a

p p p   
 

2 1 3
a

p   3, 1p a 
2 22 2 3 18.

a

x p   

 ii
2 1

1
2

a

p

 

  
 

2 1

2

a

p  2 1

2

a

p 

2 2 2 2

2

1 1 1 1 1
1

2 2 2 21

2

a a a a

a

p p p p

p


 
 

                 
     

 

2 2 1 2 22 1 1
,

2 2 2

a a a a

p p p p   
 

12 2 2 2 12 2 1 0
a a a

p p p
      1a 

2 2 1 0p p  

  2 1a a  
2 1

1.
2

a

p

 

  
 

     1 2 3、 and

    12 2 2p p p p          

 12 2p p p     ，  12 1p p   ，

2p 
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When ， ， by Lemma 2,  we have
 
is prime ， that is when 

 are twin primes, the equation  holds. 

When ， ，let . 

Since ，  must have an odd number of prime factors . 

 

If all ，then 

 

, 

 

 If there exists ，then 

 

, 

 

but ，Contradiction. 

 

When  and is even，since , we have 

. 

 

That is ，contradiction. 

 

When  and  is odd 

 

If ，then ，so  must have a factor 3, thus 

 

, 

 

Simplifying gives ，contradiction. 

 

If ，then . Let . 

 

If all ，then 

 

. 

 

But ， contradiction. Thus there must at least exist one prime 

. Furthermore ， by Chinese Remainder Theorem， we have

 and   has at least one prime factor . 

 1 1   2 1p p    2p 

and 2p p    2 2p p    

 2 1and 3p     13 2 3 3 2      
1 23 2 iq q q  

 3 2 2 mod3   3 2   2 mod 3 (1 )jq j i  

 i  2 mod 3 (1 )jq j i  

        1 23 2 1 1 1 1 mod3iq q q      

 ii  1 mod 3 (1 )jq j i  

        1 23 2 1 1 1 0 mod3iq q q      

 13 3 2 2 mod3   

 3 3p   3 2)p 

   1 1
2 2 2 1

3
p p p p     

       
 

 1 3 2 0p p   

 4 3p  1 

 i  1 mod3p  3 2p  2p 

   1 1
2 2 2 1

3
p p p p     

       
 

 1 3 2 0p p   

 ii  2 mod 3p   2 1 mod3p  
1 22 ip q q q  

 2 mod 3 (1 )jq j i  

        1 22 1 1 1 1 mod3ip q q q      

 1 2 0 mod3p p   

 1 mod 3 (1 )jq j i    3 mod 4p 

 11 mod12p  2p   1 mod 3q 
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Combining with , we obtain the conclusion of Theorem 3.
 

 

3.4 Proof of theorem 4 
 

For the equation  we have 

.                

      

(3.3) 

 

When ，

 

(3-3) is . By Lemma 2, we have is prime， so when 

 are twin primes，

 

(3-3)  holds. 

When ，(3-3) is .  

 

Let . If there exists a prime factor ， then 

，but , contradiction.  

 

Since , then we have all prime factors 
 
and  is even. 

 

When , we have ，let . 

 

If there exists a prime factor ， then ， but 

, contradiction.  

 

Thus all prime factors of  satisfying 
 
and  is odd. 

 

When 
,
. 
 

If is odd，then ，therefore 

, 

it gives ，contradiction.  

 

If is even，then , let . 

 

If all , then , but 

, 

 

contradiction. Thus there exists one prime factor of  satisfying .  

 

Combining with , we obtain the conclusion of Theorem 4.
  

 

       1 2 3 4、 、 and

   2 2p p    

  12 2p p p      

 1 1   2 3p p    2p 

and 2p p

 2 1and 3p     13 2 3 3 2      

1 23 2 iq q q    1 mod 3 (1 )jq j i  

   3 2 0 mod3    13 3 2 1 mod3   

 3 2 1 mod3    2 mod 3 (1 )jq j i   i

 3  1and 1 mod3p    2 2 mod 3p  
1

2
i

j

j

p q



 

 1 mod 3 (1 )jq j i      2 0 mod3p  

 1 2 1 mod3p p   

2p   2 mod 3 (1 )jq j i   i

 4  1and 2 mod3p  

 i  3 2)p 

   1 1
2 2 2 1

3
p p p p     

       
 

 1 3 2p p  

 ii   2 2 mod 3p  
1 22 ip q q q  

 2 mod 3 (1 )jq j i      2 1 mod3p  

 1 2 0 mod3p p   

2p   1 mod3jq 

       1 2 3 and 4、 、
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3.5 Proof of theorem 5 
 

By Lemma 3, we know that the solution of equation  satisfies

or and , is a positive integer . Based on Theorem 1-4, we 

can conclude that the solutions to the equation  

 

 

satisfying one of the following: 

 

, both  are primes; 

 are twin primes; 

 or , where  is a Mersenne prime; 

The other solutions must satisfy one of the following 

, where and .  

, where and is odd， and  has at least one prime factor 

. 

 , and all the prime factors of  must be the form . 

 , where either and all the prime factors of  must be the form  

or , is even and  has at least one prime factor . 

 

4 Conclusion 
 

From the proof of Theorem 5, we conjecture that the solution to the equation 
 
only 

exists in the first three cases. That is, except for  or  where  is a Mersenne prime, or  

and  are twin primes, or  and both  are primes, there are no other solutions of 

the equation .We hope that readers can find a solution of that 

belongs to Case 4, or prove that there is no solution that satisfies Case 4.  
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