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ABSTRACT 
 

In this work, a study involving the Maciel scheme to solve the reactive Favre averaged Navier-
Stokes equations, coupled with a turbulence model and the Maxwell equations is performed. The 
Favre averaged Navier-Stokes equations coupled with the Maxwell equations, in conservative and 
finite volume contexts, employing structured spatial discretization, are studied. Seven species 
chemical model, based on the work of Blottner, is considered for the numerical experiments. 
Turbulence is taken into account considering the implementation of five k- two-equation 
turbulence models, based on the works of Coakley 1983; Wilcox; Yoder, Georgiadids and Orkwis; 
Coakley 1997; and Rumsey, Gatski, Ying and Bertelrud. For the magnetic coupling, the Gaitonde 
formulation is taken into account. Three integration methods are studied to march the algorithm in 
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time. The “hot gas” hypersonic flow along a blunt body is the numerical experiment for 
comparisons. The results have indicated that the Coakley 1983 model yields the best prediction of 
the stagnation pressure value, with an error inferior to 10.00%, and the best prediction of the lift 
aerodynamic coefficient. 
 

 

Keywords: Favre averaged Navier-Stokes and Maxwell equations; turbulent flow; magnetic 
fotmulation; hypersonic flow; reentry conditions. 

 

1. INTRODUCTION 
 

Renewed interest in the area of hypersonic flight 
has brought Computational Fluid Dynamics 
(CFD) to the forefront of fluid flow research [1]. 
Many years have seen a quantum leap in 
advancements made in the areas of computer 
systems and software which utilize them for 
problem solving. Sophisticated and accurate 
numerical algorithms are devised routinely that 
are capable of handling complex computational 
problems. Experimental test facilities capable of 
addressing complicated high-speed flow 
problems are still scarce because they are too 
expensive to build and sophisticated 
measurements techniques appropriate for such 
problems, such as the non-intrusive laser, are 
still in the development stage. As a result, CFD 
has become a vital tool in the flow problem 
solution. 
 
In high speed flows, any adjustment of chemical 
composition or thermodynamic equilibrium to a 
change in local environment requires certain 
time. This is because the redistribution of 
chemical species and internal energies require 
certain number of molecular collisions, and 
hence a certain characteristic time. Chemical 
non-equilibrium occurs when the characteristic 
time for the chemical reactions to reach local 
equilibrium is of the same order as the 
characteristic time of the fluid flow. Similarly, 
thermal non-equilibrium occurs when the 
characteristic time for translation and various 
internal energy modes to reach local equilibrium 
is of the same order as the characteristic time of 
the fluid flow. Since chemical and thermal 
changes are the results of collisions between the 
constituent particles, non-equilibrium effects 
prevail in high-speed flows in low-density air. 
 
In chemical non-equilibrium flows the mass 
conservation equation is applied to each of the 
constituent species in the gas mixture. Therefore, 
the overall mass conservation equation is 
replaced by as many species conservation 
equations as the number of chemical species 
considered. The assumption of thermal non-

equilibrium introduces additional energy 
conservation equations – one for every additional 
energy mode. Thus, the number of governing 
equations for non-equilibrium flow is much bigger 
compared to those for perfect gas flow. A 
complete set of governing equations for non-
equilibrium flow may be found in [2-3]. 
 

The problems of chemical non-equilibrium in the 
shock layers over vehicles flying at high speeds 
and high altitudes in the Earth’s atmosphere 
have been discussed by several investigators [4-
7]. Most of the existing computer codes for 
calculating the non-equilibrium reacting flow use 
the one-temperature model, which assumes that 
all of the internal energy modes of the gaseous 
species are in equilibrium with the translational 
mode [6-7]. It has been pointed out that such a 
one-temperature description of the flow leads to 
a substantial overestimation of the rate of 
equilibrium because of the elevated vibrational 
temperature [5]. A three-temperature chemical-
kinetic model has been proposed by [8] to 
describe the relaxation phenomena correctly in 
such a flight regime. However, the model is quite 
complex and requires many chemical rate 
parameters which are not yet known. As a 
compromise between the three-temperature and 
the conventional one-temperature model, a two-
temperature chemical-kinetic model has been 
developed [9-10], which is designated herein as 
the TTv model. The TTv model uses one 
temperature T to characterize both the 
translational energy of the atoms and molecules 
and the rotational energy of the molecules, and 
another temperature Tv to characterize the 
vibrational energy of the molecules, translational 
energy of the electrons, and electronic excitation 
energy of atoms and molecules. The model has 
been applied to compute the thermodynamic 
properties behind a normal shock wave in a flow 
through a constant-area duct [9-10]. Radiation 
emission from the non-equilibrium flow has been 
calculated using the Non-equilibrium Air 
Radiation (NEQAIR) program [11-12]. The flow 
and the radiation computations have been 
packaged into a single computer program, the 
Shock-Tube Radiation Program (STRAP) [10]. 
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In spite of the advances made in the area of 
compressible turbulence modeling in recent 
years, no universal turbulence model, applicable 
to such complex flow problems has emerged so 
far. While the model should be accurate it should 
also be economical to use in conjunction with the 
governing equations of the fluid flow. Taking 
these issues into consideration, k- two-equation 
models have been chosen in the present work 
[13-17]. These models solve differential 
equations for the turbulent kinetic energy and the 
vorticity. Additional differential equations for the 
variances of temperature and species mass 
fractions have also been included. These 
variances have been used to model the 
turbulence-chemistry interactions in the reacting 
flows studied here. 
 
The effects associated with the interaction of 
magnetic forces with conducting fluid flows have 
been profitably employed in several applications 
related to nuclear and other [18] technologies 
and are known to be essential in the explanation 
of astrophysical phenomena. In recent years, 
however, the study of these interactions has 
received fresh impetus in the effort to solve the 
problems of high drag and thermal loads 
encountered in hypersonic flight. The knowledge 
that electrical and magnetic forces can have 
profound influence on hypersonic flow fields is 
not new [19-20] – note increased shock-standoff 
and reduced heat transfer rates in hypersonic 
flows past blunt bodies under the application of 
appropriate magnetic fields. The recent interest 
stems, however, from new revelations of a 
Russian concept vehicle, known as AJAX [21], 
which made extensive reference to technologies 
requiring tight coupling between electromagnetic 
and fluid dynamic phenomena. A 
magnetogasdynamics (MGD) generator was 
proposed [22] to extract energy from the 
incoming air while simultaneously providing more 
benign flow to combustion components 
downstream. The extracted energy could then be 
employed to increase thrust by MGD pumping of 
the flow exiting the nozzle or to assist in the 
generation of a plasma for injection of the body. 
This latter technique is known to not only reduce 
drag on the body but also to provide thermal 
protection [23]. 
 
In addition to daunting engineering challenges, 
some of the phenomena supporting the feasibility 
of an AJAX type vehicle are fraught with 
controversy (see, for example, [24]). Resolution 
of these issues will require extensive 
experimentation as well as simulation. The latter 

approach requires integration of several 
disciplines, including fluid dynamics, 
electromagnetics, chemical kinetics, and 
molecular physics amongst others. This paper 
describes a recent effort to integrate the first 
three of these, within the assumptions that 
characterize ideal and non-ideal 
magnetogasdynamics. 
 
In the present work, a study involving the Maciel 
scheme to solve the reactive Favre averaged 
Navier-Stokes equations, coupled with a 
turbulence model and the Maxwell equations is 
performed. The Favre averaged Navier-Stokes 
equations coupled with the Maxwell equations, in 
conservative and finite volume contexts, 
employing structured spatial discretization, are 
studied. Turbulence is taken into account 
considering the implementation of five k- two-
equation turbulence models, based on the works 
of [13-17]. For the magnetic formulation, the [25-
26] model is implemented. Three integration 
methods are studied to march the scheme in 
time. The “hot gas” hypersonic flow around a 
blunt body, in two-dimensions, is simulated. The 
convergence process is accelerated to steady 
state condition through a spatially variable time 
step procedure, which has proved effective gains 
in terms of computational acceleration [27-28]. 
The reactive simulations involve Earth 
atmosphere chemical model of seven species 
and eighteen reactions, based on the [29] model. 
N, O, N2, O2, NO, NO+ and e- species are used to 
perform the numerical comparisons. The results 
have indicated that the [13] turbulence model 
yields the best prediction of the stagnation 
pressure value and of the lift aerodynamic 
coefficient, although the [16-17] turbulence 
models are more computationally efficient. 
 

2. FAVRE AVERAGE 
 
The Navier-Stokes equations and the equations 
for energy and species continuity which governs 
the flows with multiple species undergoing 
chemical reactions have been used [30,31,32]  
for the analysis. Details of the present 
implementation for the seven species chemical 
model, the specification of the thermodynamic 
and transport properties, as well the vibrational 
model are described in [33-34]. Density-weighted 
averaging [35] is used to derive the turbulent flow 
equations from the above relations. For a 
detailed description of the Favre equations, the 
g’s equations and the modeling are presented in 
[36]. The interested reader is encouraged to read 
this paper. 
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3. FAVRE-AVERAGED NAVIER-STOKES 
EQUATIONS COUPLED WITH 
MAXWELL EQUATIONS 

 
The flow is modeled by the Favre-averaged 
Navier-Stokes equations coupled with the 
Maxwell equations and the condition of 
thermochemical non-equilibrium, where the 
rotational and vibrational contributions are 
considered, is taken into account. Details of the 
seven species model implementation are 
described in [33-34], and the interested reader is 
encouraged to read these works to become 
aware of the present study. The reactive Navier-
Stokes equations in thermal and chemical non-
equilibrium were implemented on conservative 
and finite volume contexts, in the two-
dimensional space. In this case, these equations 
in integral and conservative forms can be 
expressed by: 
 

  




VV V

CV

S

GdVdVSdSnFQdV
t


, 

with:     jFFiEEF veve


 ,           (1) 

 

where: Q is the vector of conserved variables, V 

is the volume of a computational cell, F


 is the 

complete flux vector, n


 is the unity vector 

normal to the flux face, S is the flux area, G is the 
k- two-equation model source term, SCV is the 
chemical and vibrational source term, Ee and Fe 
are the convective flux vectors or the Euler flux 
vectors in the x and y directions, respectively, 
and Ev and Fv are the viscous flux vectors in the 

x and y directions, respectively. The i


 and j


 

unity vectors define the Cartesian coordinate 
system. Seventeen (17) conservation equations 
are solved: one of general mass conservation, 
two of linear momentum conservation, one of 
total energy, six of species mass conservation, 
one of the vibrational internal energy of the 
molecules, two of the k- turbulence model, two 
of the g-equations, and two of the Maxwell 
equations. Therefore, one of the species is 
absent of the iterative process. The CFD 
literature recommends that the species of biggest 
mass fraction of the gaseous mixture should be 
omitted, aiming to result in a minor numerical 
accumulation error. To the present study, in 
which is chosen a chemical model to the air 
composed of seven (7) chemical species (N, O, 
N2, O2, NO, NO

+
 and e

-
) and eighteen chemical 

reactions to the [29] model, this species can be 
the N2 or the O2. To this work, the N2 was 
chosen. The vectors Q, Ee, Fe, Ev, Fv, G and SCV 
can, hence, be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and 

y directions, respectively; V


 is the complete flow velocity vector; P is the pressure term considering 
the magnetic effect; Z is the fluid total energy considering the contribution of the magnetic field; 
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B


 is the complete magnetic field vector; Rb is the 
magnetic force number or the pressure number; 
1, 2, 4, 5, 6 and 7 are densities of the N, O, 
O2, NO, NO+, and e-, respectively; k is the 
turbulent kinetic energy;  is the turbulent 
vorticity; Qh is the product of fluctuating enthalpy, 

""hh ; Qs is the sum of the product of fluctuating 

mass fraction, 


ns

1i

"
i

"
icc ; Bx and By are Cartesian 

components of the magnetic field vector in the x 
and y directions, respectively; µM is the mean 
magnetic permeability, with the value of 4πx10

-7
 

T·m/A; eV is the sum of the vibrational energy of 
the molecules; the ’s are the components of the 
Reynolds stress tensor; the t’s are the 
components of the viscous stress tensor; fx and fy 
are viscous work and Fourier heat flux functions; 
svsx and svsy represent the species diffusion 
flux, defined by the Fick law; x and y are the 
terms of mixture diffusion; v,x and v,y are the 
terms of molecular diffusion calculated at the 
vibrational temperature; x, y, x, y, x, y, x 
and y are two-equation turbulence model 
parameters; sx and sy are diffusion terms 

function of the mass fraction gradients; 
s  is the 

chemical source term of each species equation, 

defined by the law of mass action; 
*
ve  is the 

molecular-vibrational-internal energy calculated 
with the translational/rotational temperature; s is 
the translational-vibrational characteristic 
relaxation time of each molecule; qv,x and qv,y are 
the vibrational Fourier heat flux components in 
the x and y directions, respectively; Re is the 
laminar Reynolds number; qJ,x and qJ,y are the 
components of the Joule heat flux vector in the x 
and y directions, respectively; Reσ is the 
magnetic Reynolds number; σ is the electrical 
conductivity; Gk and G are k- source terms; T 
is the turbulent viscosity or vorticity viscosity; h is 
the static enthalpy; and cT is the total mass 
fraction sum. 
 
The viscous stresses, in N/m

2
, are determined, 

according to a Newtonian fluid model, by: 
 

   yvxu32xu2t mmxx  ; 

 xvyut mxy  ;                             (5) 

 

    ,yvxu32yv2t mmyy   

 

where µm is the molecular viscosity. The 
components of the turbulent stress tensor 
(Reynolds stress tensor) are described by the 
following expressions: 
 

   ; kRe32yvxu32xu2 TTxx   

 xvyuTxy  ;                              (6) 

   . kRe32yvxu32yv2 TTyy   

 
Expressions to fx and fy are given below: 
 

    xx,vxxyxyxxxxx kqqvtutf  ;   (7) 

 

    yy,vyyyyyxyxyy kqqvtutf  ,   (8) 

 

where qx and qy are the Fourier heat flux 
components and are given by: 

 

  ;xhdPrdPrq TTLmx               (9) 

 

  yhdPrdPrq TTLmy  ,            (10) 

 

where PrdL and PrdT are the laminar and 
turbulent Prandtl numbers, respectively. The qv,x 
and qv,y are the vibrational heat flux components 
and are given by: 

 

;xTkq VVx,v                                         (11) 

 

yTkq VVy,v  ,                                        (12) 

 

with kV being the vibrational thermal conductivity 
and TV is the vibrational temperature, what 
characterizes this model as of two temperatures: 
translational/rotational and vibrational. The last 
terms in Eqs. (7)-(8) are kx and ky and are 
defined as follows: 

 

;xkk
k

T
mx 












  and .ykk

k

T
my 












                             

(13) 
 

The diffusion terms related to the k- equations 
are defined as: 
 

  ,xkkTmx   

  ykkTmy  ;                          (14) 
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  ,xTmx  

  yTmy   ;                          (15) 

 

  ,xQdPrdPr hTTLmx 

  ;yQdPrdPr hTTLmy                 (16) 

 

  ,xQScSc STTmx 

  ,yQScSc STTmy                 (17) 

 
with Sc and ScT the laminar and turbulent 
Schmidt numbers, with values 0.22 and 1.00, 
respectively. The terms of species diffusion, 
defined by the Fick law, to a condition of thermal 
non-equilibrium, are determined by [37]: 

 

x

Y
Dv s,MF

ssxs



   and   

y

Y
Dv s,MF

ssys



 ,                                    (18) 

 
with “s” referent to a given species, YMF,s being 
the molar fraction of the species, defined as: 
 









ns

1k
kk

ss
s,MF

M

M
Y                                        

(19) 
 
and Ds is the species-effective-diffusion 
coefficient. 
 
The diffusion terms x and y which appear in the 
energy equation are defined by [38]: 

 





ns

1s
ssxsx hv   and  




ns

1s
ssysy hv ,     (20) 

 
being hs the specific enthalpy (sensible) of the 
chemical species “s”. The molecular diffusion 
terms calculated at the vibrational temperature, 
v,x and v,y, which appear in the vibrational-
internal-energy equation are defined by [37]: 

 





mols

s,vsxsx,v hv    and   



mols

s,vsysy,v hv ,  (21) 

 
with hv,s being the specific enthalpy (sensible) of 
the chemical species “s” calculated at the 
vibrational temperature TV. The sum of Eq. (4), 

as also those present in Eq. (21), considers only 
the molecules of the system, namely: N2, O2, NO 
and NO

+
. The ’s terms of Eq. (3) are described 

as, 
 

  ;xcScSc STTmsx                 (22) 

 

  ycScSc STTmsy  .                (23) 

 
The Z total energy is defined as: 
 

   

M

b

VmixfREFmixv

B
R

vuehTTcZ

2

5.0

2

220
,,





 (24) 

 
with: TREF is the reference temperature, and 

0
mix,fh  is the mixture formation enthalpy. The 

pressure term is expressed by: 
 

M

2

b

M

2
y

2
x

b
2

B
Rp

2

BB
RpP







 ,          (25) 

 

with p the fluid static pressure. The magnetic 
force number or pressure number is determined 
by: 
 

  















,M
22

2
,y

2
,x

,M
2

2

b
vu

BB

V

B
R ,       (26) 

 

where B∞, ∞, V∞, and  ,M  are freestream flow 

properties. The laminar Reynolds number is 
estimated by: 
 










,m

REFLV
Re ,                                          (27) 

 

with LREF a characteristic configuration length. 
The magnetic Reynolds number is calculated by: 
 

  ,MREFVLRe .                                 (28) 

 

The components of the Joule heat flux vector, 
which characterizes the non-ideal formulation, 
are determined by: 
 


















































M

x

M

y

M

y

bx,J

B

y

B

x

B
Rq    and   


















































M

y

M

x

M

x
by,J

B

x

B

y

B
Rq .         (29) 
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4. TURBULENCE MODELS 
 
Five turbulence models were implemented 
according to a k-ω and k1/2-ω formulations. Two 
turbulence models due to Coakley were 
implemented. 
 

4.1 Coakley Turbulence Model – 1983 
 
The [13] model is a k

1/2
- one. The turbulent 

Reynolds number is defined as 
 

MNkR  ,                                            (30) 

 
where: N is the normal distance from the wall to 
the cell under study and M is the cinematic 
viscosity. The production term of turbulent kinetic 
energy is given by 
 

Re
y

u

x

v

y

u
P 





























 .                              (31) 

 
The function  is defined as 
 

1PC 2   .                                        (32) 

 
The damping function is given by 
 








1

e1
D

R

.                                                (33) 

 
The turbulent viscosity is defined by 
 

  kDCReT ,                                     (34) 

 
with: C a constant to be defined. According to 
the [13] model, the Gk and G terms have the 
following expressions: 
 

kkk DPG     and     DPG ,         

(35) 
 

where: 
 

Rek
DPC5.0

P
2k 













;   

 

Rek1
y

v

x

u

3

2
5.0Dk 


























 ; (36) 

  RePCCP 22
1   ;  

ReC
y

v

x

u
C

3

2
D 2

21 

























 ,   (37) 

 

where 045.0D405.0C1  . The closure 

coefficients adopted by the [13] model are: 

0.1k  ; 3.1 ; 09.0C  ; 92.0C 2  ; 

5.0 ; 0065.0 ; PrdL = 0.72; PrdT = 0.9. 

 

4.2 Wilcox Turbulence Model 
 
The turbulent viscosity is expressed in terms of k 
and  as: 

 

 kReT .                                              (38) 

 

In this model, the quantities k  and   have the 

values 
*1 and 1 , respectively, where 

* and 

 are model constants. According to the [14] 

model, the Gk and G terms have the following 
expressions: 
 

kkk DPG     and     DPG ,      (39) 
 

where: 
 

Re
y

u

x

v

y

u
P Tk 





























 ;  RekD *

k  ; (40) 

 

kP
k

P 






 
    and   ReD 2 ,      (41) 

 
where the closure coefficients adopted for the 

[14] model are: 09.0*  ; 403 ; 5.0*  ; 

5.0 ; 95 ; PrdL = 0.72; PrdT = 0.9. 

 

4.3 Yoder, Georgiadids and Orkwis 
Turbulence Model 

 
According to the [15] model, the turbulent 
Reynolds number is specified by: 
 

  mT /kRe .                                         (42) 

 

The parameter * is given by: 
 

   kTkT
*
0

* RRe1RRe  .           (43) 
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The turbulent viscosity is specified by: 
 

 /kRe *
T .                                         (44) 

 
The source term denoted by G in the governing 
equations contains the production and 
dissipation terms of k and . To the [15] model, 
the Gk and G terms have the following 
expressions: 
 

kkk DPG     and     DPG .         

(45) 
 
To define the production and dissipation terms, it 
is necessary firstly to define some parameters. 
The turbulent Mach number is defined as: 
 

2
T a/k2M  .                                             (46) 

 
It is also necessary to specify the function F: 
 

 0.0,MMMAXF 2
0,T

2
T  .                         (47) 

 

The 
*  parameter is given by: 

 

     4

ST

4

ST
* R/Re1R/Re18/509.0  . (48) 

 
Finally, the production and dissipation terms of 
Eq. (45) are given by 
 

y

u
P xyk




  and   Re/F1kD k

*
k  ;        (49) 

 

kkP/P   and   ReFD *2
  ,(50) 

 
with: 
 

   *
TT0 RRe1RRe9/5   .(51) 

 
The [15] turbulence model adopts the following 
closure coefficients: Rs = 8.0, Rk = 6.0, R = 2.7, 
k = 1.0,  = 0.0,  = 3/40, MT,0 = 0.0, 0 = 0.1, 

3/*
0  , 0.2k   and 0.2 . 

 

4.4 Coakley Turbulence Model - 1997 
 
In the [16] turbulence model, the turbulent 
viscosity is expressed in terms of k and  as: 
 

  kCReT .                                         (52) 

In this model, the quantities k  and   have 

the values *1  and 1 , respectively, where 
*

and  are model constants. 
 
The source term denoted by G in the governing 
equations contains the production and 
dissipation terms of k and . To the [16] model, 
the Gk and G terms have the following 
expressions: 
 

kkk DPG     and     DPG .         

(53) 
 
To define the production and dissipation terms, it 
is necessary to define firstly some parameters. 
The Si,j gradient is defined as 
 




















x

v

y

u
5.0Sij .                                      (54) 

 
The gradient S is expressed as 
 

ijijSS2S  .                                                 (55) 

 

The  parameter is defined as 
 

 S .                                                        (56) 

 

The divergent and the parameter  are 
determined by 
 

y

v

x

u
D









  and 




D
.                            (57) 

 

The coefficient k and  are defined by 
 

  C1
3

2
k  and k .                   (58) 

 

The terms of production and destruction of 
kinetic energy are defined as 
 

RekCP 2
k      and   

  Rek1D kk  .                    (59) 

 

In relation to the terms of production and 
destruction of vorticity, new terms are defined. 
The characteristic turbulent length is expressed 
as 
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 kl .                                                      (60) 

 

The coefficients k and   are defined as 

 

 
























  k

yy

k

xx

k
l2

k                 

(61) 
 

2

2

2

yyxx
l 

























 .               (62) 

 

The turbulent Reynolds number is determined by 
 




m

t

k
R .                                                    (63) 

 

Some others parameters are given by 
 

ot RRCR  , )R(TANHD 
, 



 


D
k ;    (64) 

  TANH ,  dxdp
k

1
fii


 , 

2
iii ff  ; 

(65) 
 

 ii fTANHf  ,  4D11w  ;   (66) 

 

    wf25.035.0w1675.0C i1  ; (67) 

 

2
12w C)CC(   , 

 kw wC2dw .                                    (68) 

 

Finally, the production and destruction terms of 
vorticity are defined as 
 

ReCCP 22
1      and   

  RedwCCD 2
21   .          (69) 

 

The closure coefficients assume the following 

values: 09.0C  , 833.0C 2  , 0.5 , 

0.1k  , 5.0 , 5.0*  , 41.0 , 

0.10Ro  , 72.0dPr L   and 9.0dPr T  . 

 

4.5 Rumsey, Gatski, Ying and Bertelrud 
turbulence model 

 
Finally, the k- model of [17] is studied. The 
equilibrium eddy-viscosity term employed in the 
diffusion terms is given by 

 

  kcRe **
T ,                                   (70) 

 

where .081.0c*   The explicit nonlinear 

constitutive equation that is used to close the 
Reynolds-averaged Navier-Stokes equations is 
expressed (after regularization) by 
 

 

 















iiijjjijijii
3

'
t

jjiiiitii

WSWSWS
2
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are the mean-rate-of-strain tensor and the mean-
vorticity tensor, respectively. The turbulent 
viscosity T is 
 

  kcReT .                                          (74) 
 

and 
 

1662222

662

663

)(2.0)1(3
c 




 ;   (75) 

 

2

1

ijij2 )SS)(/(     and   

2

1

ijij3 )WW)(/(  ,                                  (76) 
 

where: 
 

1 = (4/3-C2)(g/2); 2 = (2-C3)(g/2); 3 = (2-
C4)(g/2);                                                          (77) 
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The constants that govern the pressure-strain 
correlation model of [17] are C1 = 6.8, C2 = 0.36, 

C3 = 1.25, C4 = 0.4 and C5 = 1.88. The 
'
T  terms 

considered in Eqs. (71-72) are given by 
 

  kcRe ''
T ,                                          (79) 

 
where 
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)1(3
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


 .   (80) 

 
The source term denoted by G in the governing 
equation contains the production and dissipation 
terms of k and . To the [17] model, the Gk and 
G terms have the following expressions: 
 

kkk DPG     and     DPG ,         

(81) 
 

where: 
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k
y
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






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,  and  ReD 2 . (83) 

 

The closure coefficients adopted to the [17] 

model assume the following values: 83.0 ; 

41.0 ; 4.1k  ; 2.2 ; PrdL = 0.72; 

PrdT = 0.9;  *2 c/  . 

 

5. MACIEL CENTERED SCHEME 
 

Maciel centered scheme is obtained by 
arithmetical average between the flux at the left 
and right states of the interface. Considering the 
two-dimensional and structured case, the 
algorithm is divided in three parts, as 
recommended by [39], each one corresponding 
to a characteristic flux. The first part takes into 
account the dynamic part, which considers the 
Navier-Stokes equations plus the Maxwell 
equations and the four equations of the 
turbulence model, the second one takes into 
account the chemical part, and the third part 
takes into account the vibrational part. Hence, 
the discrete-dynamic-convective flux, which 
solves the dynamic part, is given by: 
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the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is determined by: 
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The viscous formulation follows that of [40], which adopts the Green theorem to calculate primitive 
variable gradients. The viscous vectors are also obtained by arithmetical average between cell (i,j) 
and its neighbors. As it was done with the convective terms, there is a need to separate the viscous 
flux in three parts: dynamical viscous flux, chemical viscous flux and vibrational viscous flux. The 
dynamical part corresponds to: 
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To the chemical part one has: 
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(88) 
 
Finally, to the vibrational part: 
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S
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


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

 

















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

 








 
 . (89) 

 

where   t

j,2/1iyxj,2/1i SSS
   defines the normal area vector for the surface (i+½,j). The normal area 

components Sx and Sy to each flux interface are given in Tab. 1. Fig. 1 exhibits the computational cell 
adopted for the simulations, as well its respective nodes and flux interfaces. 
 
The resultant ordinary differential equation system can be written as: 
 

  j,ij,2/1i2/1j,ij,2/1i2/1j,ij,ij,i CRRRRdtdQV   ,                                                                (90) 

 
where the cell volume is given by: 
 

        j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V  

      1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0   .                                                           (91) 

 
This centered scheme is second order accurate in space, according to a finite difference 
discretization, and needs an artificial dissipation operator, D, to guarantee stability in presence of 
shock waves and background instabilities. Considering this operator, Eq. (90) can be rewritten as: 

 

  j,ij,ij,ij,i VDCdtdQ  ,                                                                                                             (92) 

 
where D has the following structure: 
 

         j,i
4

j,i
2

j,i Qd-QdQD  ,                                                                                                         (93) 
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with: 
 

             j,ij,1ij,1ij,i
2

j,2/1ij,i1-j,i1-j,ij,i
2

2/1-j,i
2 Q-QAA5.0QQAA5.0d  

         j,ij,1-ij,1-ij,i
2

j,2/1-ij,i1j,i1j,ij,i
2

2/1j,i Q-QAA5.0Q-QAA5.0                                   (94) 

 
named the undivided Laplacian operator, responsible by the numerical stability in presence of shock 
waves; and 
 

       j,i
2

1-j,i
2

1-j,ij,i
4

2/1-j,i
4 Q∇-Q∇AA5.0d  

      j,i
2

j,1i
2

j,1ij,i
4

j,2/1i Q∇-Q∇AA5.0  

      j,i
2

1j,i
2

1j,ij,i
4

2/1j,i Q∇-Q∇AA5.0  

    j,i
2

j,1-i
2

j,1-ij,i
4

j,2/1-i Q∇-Q∇AA5.0  ,                                                                                    (95) 

 

named the bi-harmonic operator, responsible by the background stability (odd-even instabilities, for 
instance). In this last term, 
 

       j,ij,1-ij,i1j,ij,ij,1ij,i1-j,ij,i
2 Q-QQ-QQ-QQ-QQ∇   .                                                  (96) 

 

In the d
(4)

 operator, j,i
2Q  is extrapolated from its neighbor cell every time that such one represents 

an especial boundary layer cell, recognized in the CFD literature as “ghost” cell. The  terms are 
defined, for instance, as: 
 

     1j,ij,i
22

2/1j,i ,MAXK      and   
       2

2/1j,i
44

2/1j,i K,0MAX   ,                                      (97) 

 

in which: 
 

   j,ij,1-i1j,ij,1i1-j,ij,ij,1ij,i1j,ij,ij,1ij,i1j,ij,i p4ppppppp-pp-pp-p   .        (98) 

 

represents a pressure sensor employed to identify regions of high gradients. Each time that a 

neighbor cell represent a ghost cell, it is assumed that, for instance, j,ighost  . The Ai,j terms define 

the particular artificial dissipation operator. Two models were studied in the current work: 
 

(a) Artificial dissipation operator of Mavriplis / Scalar, non-linear, and isotropic model: 
 

In this case, the Ai,j terms represent the sum of the contributions of the maximum normal eigenvalue 
associated to the flux interface of the Euler equations, integrated along each cell face. Based on [41] 
work, these terms are defined as: 
 

     


5.0

j,2/1i

2
y

2
xintj,2/1iyintxint

5.0

2/1-j,i

2
y

2
xint2/1-j,iyintxintj,i SSaSvSuSSaSvSuA  

     5.0

j,2/1-i

2
y

2
xintj,2/1-iyintxint

5.0

2/1j,i

2
y

2
xint2/1j,iyintxint SSaSvSuSSaSvSu 


,                           (99) 

 
where “a” represents the sound speed and the interface properties are evaluated by arithmetical 
average. The K(2) and K(4) constants have typical values of 1/4 and 3/256, respectively. 
 

(b) Artificial dissipation model of Turkel and Vatsa / Scalar, non-linear, and anisotropic model: 
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The aforementioned artificial dissipation model presents the characteristic of being isotropic. In words, 
the dissipation introduced artificially in a given coordinate direction to stabilize the scheme weights 
equally the phenomena originated from all directions, having not a more significant weighting from the 
particular direction under study. The dissipation is clearly isotropic. The scalar, non-linear and 
anisotropic artificial dissipation model of [42] aims to provide a numerical attenuation that considers 
with bigger weight the propagation information effects associated to the characteristic maximum 
eigenvalue from the coordinate direction under study. Basically, such artificial dissipation model differs 
from the non-linear, isotropic model of [41] only in the determination of the weighting term of the 
dissipation operator. 
 



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























 

5.0

j,2/1i

1A
j,2/1i

,   j,2/1ij,2/1iyxj,2/1i
Savnun    and   j,2/1ij,2/1iyxj,2/1i

Savnun   ; 

(100) 
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
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


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










 

5.0

2/1j,i

1A
2/1j,i

,   2/1j,i2/1j,iyx2/1j,i
Savnun    and   2/1j,i2/1j,iyx2/1j,i

Savnun   . 

(101) 
 
To this artificial dissipation model, the 
recommended values of K(2) and K(4) by [42] are 
1/2 and 1/64, respectively. 
 
6. TIME INTEGRATION 
 
Three methods of time integration were studied 
herein, namely: Euler Backward, Middle Point, 
and Runge-Kutta 4th Order. 
 

6.1 Euler Backward 
 

This method is first-order accurate in time, to the 
three types of complete flux. To the convective 
dynamic component, this method can be 
represented in general form by: 

 

      )n(
j,i

)n(
j,ij,ij,i

)n(
j,i

)1n(
j,i QDQCVtQQ 

,                                      

(102) 

 

to the convective chemical component, it can be 
represented in general form by: 

 

       )n(
j,iCj,i

)n(
j,i

)n(
j,ij,i

)n(
j,i

)1n(
j,i QSVQDQCtQQ  ,                               

(103) 

 

where the chemical source term SC is calculated 
with the temperature Trrc (reaction rate controlling 
temperature, see [33-34]). Finally, to the 
convective vibrational component: 

 

       )n(
j,iVj,i

)n(
j,i

)n(
j,ij,i

)n(
j,i

)1n(
j,i QSVQDQCtQQ  ,                              

(104) 

in which: 




 
mols

s,vs,C
mols

s,VTV eSqS ,                     (105) 

 

where qT-V is the heat flux due to translational-
vibrational relaxation, defined in [33-34]. 
 

6.2 Middle Point 
 

This method is a second-order, two-stage 
Runge-Kutta one, to the three types of complete 
flux. To the convective dynamic component, this 
method can be represented in general form by: 

 

  
)k(

j,i
1n

j,i

)1k(
j,i

)1k(
j,ij,ij,ik

)0(
j,i

)k(
j,i

n
j,i

)0(
j,i

QQ

)Q(D)Q(CVtQQ

QQ









 , (106) 

 

to the convective chemical component, it can be 
represented in general form by: 
 

    
)k(
j,i

1n
j,i

1k
j,iCj,i

)1k(
j,i

)1k(
j,ij,ik

)0(
j,i

)k(
j,i

n
j,i

)0(
j,i

QQ

QSV)Q(D)Q(CtQQ

QQ









 ,                      

(107) 
 

and to the convective vibrational component: 
 

    
)k(

j,i
1n

j,i

1k
j,iVj,i

)1k(
j,i

)1k(
j,ij,ik

)0(
j,i

)k(
j,i

n
j,i

)0(
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QQ

QSV)Q(D)Q(CtQQ
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
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


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(108) 
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where the α values of each stage are: α1 = 1/2 
and α2 = 1.0. 
 

6.3 Runge-Kutta 4th Order 
 
This method is a fourth-order, four-stage Runge-
Kutta one, to the three types of complete flux. To 
the convective dynamic component, this method 
can be represented in general form by: 

 

 
)k(

j,i
1n

j,i

)1k(
j,i

RK
kk

)0(
j,i

)k(
j,i

n
j,i

)0(
j,i

QQ

QKQQ

QQ










,                     (109) 

 

where  

 

  )Q(D)Q(CVt)Q(K )1k(
j,i

)1k(
j,ij,ij,i

)1k(
j,i

RK
k

  , 

for k ≤ 3, and for k = 4 one has: 

 

 RK
k

RK
1k

RK
2k

RK
3kk

)0(
j,i

)k(
j,i KK2K2KQQ  

,                                 (110) 

 

with the α values for each stage being: α1 = 1/2, 
α2 = 1/2, α3 = 1.0, and α4 = 1/6. For the 
convective chemical component, the unique 

difference is in the definition of 
RK
kK : 

 

  )Q(SV)Q(D)Q(Ct)Q(K )1k(
j,iCj,i

)1k(
j,i

)1k(
j,ij,i

)1k(
j,i

RK
k

  ,                          

(111) 

 

and for the convective vibrational component: 

 

  )Q(SV)Q(D)Q(Ct)Q(K )1k(
j,iVj,i

)1k(
j,i

)1k(
j,ij,i

)1k(
j,i

RK
k

  .                         

(112) 

 

7. SPATIALLY VARIABLE TIME STEP 
 

The spatially variable time step has proved 
efficient gains in terms of convergence 
acceleration, as verified by [27-28]. Initially, the 
parameter  is determined, where: 
 

s

s
s

M

c
    and   




N

1s
s ,                      (113) 

 

with cs being the mass fraction and Ms the 
molecular weight. The total specific heat at 

constant volume due to translation is defined          
as: 

 





N

1s
s,T,VsT,V cc ,                                      (114) 

 

where, for each gas constituent of the seven (7) 
species chemical model, the specific heat at 
constant volume, based on the kinetic theory of 
gases [43], is defined by 

 

NN,T,V R
2

3
c  , OO,T,V R

2

3
c  ; 

22 NN,T,V R
2

5
c  , 

22 OO,T,V R
2

5
c  ;

NONO,T,V R
2

5
c  ; 

 
NONO,T,V

R
2

5
c    and     ee,T,V

R
2

3
c ,   

(115) 

 

being Rs the specific gas constant. The total 
pressure of the gaseous mixture is determined 
by Dalton law, which indicates that the total 
pressure of the gas is the sum of the partial 
pressure of each constituent gas, resulting in: 

 

TRcp sss     and   



N

1s
spp .                 (116) 

 

The speed of sound to a reactive mixture 
considering the two-equation turbulence models 
can be determined by: 
 

 
k

p1
a 




 ,                                       (117) 

 

where 
T,V

univ

c

R 
 , with Runiv = 1.987 cal/(g-

mol.K). Finally, the spatially variable time step is 
defined from the CFL definition: 
 

j,i
2

j,i
2

j,i

j,i

j,i

avu

sCFL
t




 ,                            (118) 

 

where j,is  is the characteristic length of each 

cell (defined between the minimum cell side and 
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the minimum centroid distance between each cell 
and its neighbors). 
 
 
 

8. DIMENSIONLESS SCALES, INITIAL 
AND BOUNDARY CONDITIONS 

 
8.1 Dimensionless Scales 
 
The dimensionless scales employed to the 
reactive equations consisted in: Rs is 

dimensionless by achar, where   pachar ; 

cv is dimensionless by achar; hs and 
0
sh   are 

dimensionless by 
2
chara ; T and Tv, 

translational/rotational temperature and 
vibrational temperature, respectively, are 
dimensionless by achar; s and  are 
dimensionless by ; u and v are dimensionless 
by achar;  is dimensionless by ; D, diffusion 

coefficient, dimensionless by 
2
chara dtchar, where 

dtchar is the minimum time step calculated in the 

computational domain at the first iteration;   is 

dimensionless by char
3 dt10x 

 ; ev is 

dimensionless by 
2
chara ; p is dimensionless by 

2
chara ; s, relaxation time, is dimensionless by 

dtchar. To the Maxwell equations: the Bx and By 
Cartesian components of the magnetic field 
dimensionless by B∞; the magnetic permeability 
of the mean is dimensionless by µM,∞; and the 
electric conductivity is dimensionless by σ∞. 
 

8.2 Initial Condition 
 
The initial conditions to this problem, for a seven 
species chemical model, coupled with a 
turbulence model and suffering the actuation of a 
magnetic field, are presented in Tab. 2. The 
Reynolds number is obtained from data of [44]. 
 

8.3 Boundary Conditions 
 
The boundary conditions are basically of three 
types: solid wall, entrance, and exit. These 
conditions are implemented with the help of 
ghost cells. 
 
Wall condition. In the viscous case, the non-slip 
condition is enforced. Therefore, the tangent 
velocity component of the ghost volume at wall 
has the same magnitude as the respective 

velocity component of its real neighbor cell, but 
opposite signal. In the same way, the normal 
velocity component of the ghost volume at wall is 
equal in value, but opposite in signal, to the 
respective velocity component of its real 
neighbor cell. It results in: 
 

rg uu     and   rg vv  .                        (119) 

 
where “g” indicates ghost cell properties and “r” 
indicates real cell properties. 
 
The normal pressure gradient of the fluid at the 
wall is assumed to be equal to zero according to 
a boundary-layer like condition. The same 
hypothesis is applied for the normal temperature 
gradient at the wall, assuming an adiabatic wall. 
 
From the above considerations, density and 
translational/rotational temperature are 
extrapolated from the respective values of its real 
neighbor volume (zero order extrapolation). The 
total vibrational internal energy is also 
extrapolated. The turbulent kinetic energy and 
the turbulent vorticity at the ghost volumes are 
determined by the following expressions: 
 

0.0k ghost     and       22
nM

2 d338
ghost

 ,                                    

(120) 
 
where  assumes the value 3/40 and dn is the 
distance of the first cell to the wall. The Qh and 
Qs variables are fixed by their initial values (see 
Table 2). 
 

With the mixture species mass fractions and with 
the values of the respective specific heats at 
constant volume, it is possible to obtain the 
mixture specific heat at constant volume. The 
mixture formation enthalpy is extrapolated from 
the real cell. The Cartesian components of the 
induced magnetic field at the wall to the ghost 
cells are fixed with their initial values. The 
magnetic permeability is considered constant 
with its initial value. The mixture total energy to 
the ghost cell is calculated by: 
 

 
     ggMgygxbgg

gavgmixtREFgtrgmixtg

BBRvu

ehTTCvZ

 ,
2
,

2
,

22

dim,,
0

,,,

25.0 


.    

(121) 

 
To the species density, the non-catalytic 
condition is imposed, what corresponds to zero 
order extrapolation from the real cell. 
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Entrance condition. It is divided in two flow 
regimes: 
 
(a) Subsonic flow: Seven properties are specified 
and three extrapolated in the boundary 
conditions of the dynamic part of the algorithm. 
This approach is based on information 
propagation analysis along characteristic 
directions in the calculation domain [45]. In other 
words, for subsonic flow, seven characteristics 
propagate information pointing into the 
computational domain. Thus seven flow 
properties must be fixed at the inlet plane. Just 
three characteristic lines allow information to 
travel upstream. So, three flow variables must be 
extrapolated from the interior grid to the inlet 
boundary. The total energy and the components 
of the magnetic field were the extrapolated 
variables from the real neighbor volumes, for the 
studied problem. Density and velocity 
components adopted values of the initial flow. 
The turbulence kinetic energy and the vorticity 
were fixed with the values of the initial condition. 
Qh and Qs variables are also fixed with the 

values 10-6 2
initialh  and 10-3 



N

si

2
initial,ic , 

respectively. To the chemical part, six 
information propagate upstream because it is 
assumed that all six equations are conducted by 
the eigenvalue “(qn-a)”. In the subsonic flow, all 
eigenvalues are negative and the information 
should be extrapolated. In the same reasoning to 
the chemical boundary conditions, the 
vibrational-internal-energy equation is dictated by 
the “(qn-a)” eigenvalue and, in the subsonic 
region, its value is negative. Hence, the 
vibrational internal energy should be 
extrapolated. 
 
(b) Supersonic flow: In this case no information 
travels upstream; therefore all variables are fixed 
with their initial values. 
 
Exit condition. It is also divided in two flow 
regimes: 
 
(a) Subsonic flow: Three characteristics 
propagate information outward the computational 
domain. Hence, the associated variables should 
be extrapolated from interior information. The 
characteristic direction associated to the “(qnormal-
a)” velocity should be specified because it points 
inward to the computational domain [45]. In this 
case, the ghost volume total energy and the 
induced magnetic components are specified from 

its initial value. Density and velocity components 
are extrapolated. The turbulence kinetic energy 
and the vorticity are prescribed and receive the 
following values: 0.01kff and 10u/LREF, 
respectively, where kff = 0.5u2. Qh and Qs 
variables are also fixed with the values 10

-6

2
initialh  and 10-3



N

si

2
initial,ic , respectively. To the 

chemical part, the eigenvalue “(qn-a)” is again 
negative and the characteristics are always 
flowing in to the computational domain. Hence, 
the six chemical species under study should 
have their densities fixed by their initial values. In 
the same reasoning, the internal vibrational 
energy should have its value prescribed by its 
initial value due to the eigenvalue “(qn-a)” be 
negative. 
 
(b) Supersonic flow: All variables are 
extrapolated from interior grid cells, as no flow 
information can make its way upstream. In other 
words, nothing can be fixed. 
 

9. PHYSICAL PROBLEM AND MESHES 
 
Firstly the blunt body problem is studied. The 
geometry under study is a blunt body with 1.0 m 
of nose ratio and parallel rectilinear walls. The far 
field is located at 20.0 times the nose ratio in 
relation to the configuration nose. 
 
Fig. 2 shows the viscous mesh used to the blunt 
body physical problem. This mesh is composed 
of 2,548 rectangular cells and 2,650 nodes. This 
mesh is equivalent in finite differences to a one 
of 53x50 points. An exponential stretching of 
5.0% in the  direction was used to the viscous 
simulations. A “O” mesh is taken as the base to 
construct such mesh. No smoothing is used in 
this mesh generation process, being this one 
constructed in Cartesian coordinates. 
 

10. RESULTS 
 
Tests were performed in a Core i7 processor of 
2.1GHz and 8.0Gbytes of RAM microcomputer, 
in a Windows 7.0 environment. Three (3) orders 
of reduction of the maximum residual in the field 
were considered to obtain a converged solution. 
The residual was defined as the value of the 
discretized conservation equation. In the 
dynamic part, such definition results in: 
 

 j,ij,ij,ij,i DCVtsidualRe  .       (122) 
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The angle of attack was adopted equal to zero. 
Only the [41] artificial dissipation operator has 
yielded converged results. 
 

 
Fig. 1. Computational cell. 

 

10.1 Euler Backward 
 
Coakley (1983) Results. Fig. 3 exhibits the 
pressure contours obtained by the Maciel 
scheme as using the [13] turbulence model and 
the Euler backward method to march in time. 
Good symmetry properties are observed in these 
contours. The shock wave is well captured by the 
Maciel scheme. Fig. 4 shows the turbulent kinetic 
energy contours obtained as using the [13] 
turbulence model. Good symmetry properties are 
observed. The values of k indicate that 
turbulence is well captured by the numerical 
algorithm. Fig. 5 presents the Bx magnetic 
component contours obtained as using the [13] 
turbulence model. A quantitative symmetrical 
field is observed as result of the initial condition, 
which considers only the By magnetic component 
active in this study. Fig. 6 shows the N2 mass 
fraction contours obtained in this case. Good N2 
dissociation is observed. Good symmetry 
properties are also verified. 
 
Wilcox (1988) Results. Fig. 7 exhibits the 
pressure contours obtained by the Maciel 
scheme as using the [14] turbulence model and 
the Euler backward time marching method. Good 
symmetry properties are observed in the field. 
Fig. 8 shows the turbulent kinetic energy 
contours obtained as using the [14] turbulence 
model. The level of turbulence is bigger than that 
observed in the [13] turbulence model. Moreover, 
the k contours captured by the [14] model 
present worse behavior than the [13] k contours. 
Fig. 9 presents the Bx magnetic component 
contours with good symmetry properties as in 
qualitative as in quantitative aspects. Fig. 10 
shows the N2 mass fraction contours obtained as 
using the [14] turbulence model. Good 
dissociation of N2 is observed, more than that 

observed with the [13] turbulence model. Good 
symmetry properties are also verified. 
 
Yoder, Geoirgiadids and Orkwis (1996) 
Results. Fig. 11 exhibits the pressure contours 
captured by the Maciel scheme as using the [15] 
turbulence model and the Euler backward time 
marching method. The stagnation pressure is 
inferior to those observed in the [13] and [14] 
turbulence models. Fig. 12 shows the turbulent 
kinetic energy contours. They are qualitatively 
different from those observed in the [13] and [14] 
turbulence models. However, major turbulence 
effects in relation to the [13] turbulence results 
are observed. Fig. 13 presents the Bx magnetic 
component contours. Good qualitative and 
quantitative aspects are noted. Fig. 14 shows the 
N2 mass fraction contours captured by the Maciel 
scheme as using the [15] turbulence model. 
Again, good dissociation and symmetry 
properties are verified. 
 
Coakley (1997) Results. Fig. 15 exhibits the 
pressure contours captured by the Maciel 
scheme as using the [16] turbulence model and 
the Euler backward time marching method. Good 
symmetry properties are observed. Fig. 16 
shows the turbulent kinetic energy contours and 
good comparison with the [13] turbulence results 
are observed. Fig. 17 presents the Bx magnetic 
component contours and the most intense 
magnetic field is captured with this turbulence 
model. Good symmetry properties are observed. 
Fig. 18 shows the N2 mass fraction contours 
generated by the Maciel scheme as using                  
the [16] turbulence model. Good dissociation of 
N2 is observed as well good symmetry 
properties. 
 
Rumsey, Gatski, Ying and Bertelrud (1998) 
Results. Fig. 19 exhibits the pressure contours 
captured by the Maciel scheme as using the [17] 
turbulence model and the Euler backward 
method is employed to march in time. Good 
symmetry properties are observed. Fig. 20 
shows the turbulent kinetic energy contours 
captured by the Maciel scheme as using the [17] 
turbulence model. Good comparison with the [13] 
and the [16] turbulence models is verified. Good 
homogeneous and symmetry properties are 
observed in this figure. Fig. 21 presents the Bx 
magnetic component contours and little 
differences are observed in the symmetry 
properties. Fig. 22 shows the N2 mass fraction 
contours obtained by the Maciel scheme as 
using the [17] turbulence model. Good 
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dissociation is observed, comparable with the 
other results. 

 
 

 
Fig. 2. Blunt body viscous mesh. 

 

 
Fig. 3. Pressure contours (EB-C83). 

                         

 
 

Fig. 4. Turbulent kinetic energy contours 
 (EB-C83). 

 
Fig. 5. Bx magnetic component contours 

(EB-C83). 
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Fig. 6. N2 mass fraction contours (EB-C83). 

 

 
Fig. 7. Pressure contours (EB-W88). 

 

 
 

Fig. 8. Turbulent kinetic energy contours 
 (EB-W88). 

 

 
Fig. 9. Bx magnetic component contours 

 (EB-W88). 
 

10.2 Middle Point 
 
Coakley (1983) Results. Fig. 23 exhibits the 
pressure contours captured by the Maciel 
scheme as using the [13] turbulence model and 
the Middle Point time marching method. Good 
symmetry properties are observed. Fig. 24 
shows the turbulent kinetic energy contours 
obtained by the Maciel scheme as using the [13] 
turbulence model. Good turbulence effects are 
observed. Fig. 25 presents the Bx magnetic 
component contours, where good symmetry 
properties are observed as in qualitative as in 
quantitative terms. Fig. 26 shows the N2 mass 
fraction contours generated by the Maciel 
scheme as solution of this reactive-turbulent-
magnetic physical problem. Good dissociation of 
N2 is perceptible. 
 

 
 

Fig. 10. N2 mass fraction contours (EB-W88). 
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Fig. 11. Pressure contours (EB-YGO86). 

                
Wilcox (1988) Results. Fig. 27 exhibits the 
pressure contours obtained by the Maciel 
scheme as using the [14] turbulence model and 
the Middle Point time marching method. Again, 
good symmetry properties are observed. Fig. 28 
shows the turbulent kinetic energy contours 
obtained when the [14] turbulence model is 
employed. Again, bigger levels of turbulence are 
observed for this turbulence model and its 
qualitative aspects are worse than the other 
models. Fig. 29 presents the Bx magnetic 
component contours obtained by the Maciel 
scheme as using the [14] turbulence model. 
Good symmetry properties are observed as in 
qualitative as in quantitative aspects. Fig. 30 
shows the N2 mass fraction contours generated 
by the Maciel scheme. Good N2 dissociation is 
observed, comparable to that obtained by this 
model when using the Euler backward method. 
 

 
Fig. 12. Turbulent kinetic energy contours 

(EB-YGO96). 
 

 
 

Fig. 13. Bx magnetic component contours 
(EB-YGO96). 

 

Yoder, Georgiadids and Orkwis (1996) 
Results. Fig. 31 exhibits the pressure contours 
captured by the Maciel scheme as using the [15] 
turbulence model and the Middle Point is 
employed to march the solution in time. Again, 
this turbulence model predicts the minor value to 
the stagnation pressure. Good symmetry 
properties are observed. Fig. 32 shows the 
turbulent kinetic energy contours and again the 
behavior observed in the Euler backward method 
is repeated here. Bigger levels of turbulence are 
perceptible in this solution. Fig. 33 presents the 
Bx magnetic component contours captured by the 
Maciel scheme as using the [15] turbulence 
model. Good symmetry properties are observed 
in quantitative and qualitative terms. Fig. 34 
shows the N2 mass fraction contours generated 
by the Maciel scheme as using the [15] 
turbulence model. Again, good dissociation of N2 
is verified. Good symmetry characteristics are 
also perceptible. 
 

 
Fig. 14. N2 mass fraction contours 
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 (EB-YGO96). 
 

 
Fig. 15. Pressure contours (EB-C97). 

 
Coakley (1997) Results. Fig. 35 exhibits the 
pressure contours detected by the Maciel 
scheme as employing the [16] turbulence model 
and the time marching method is the Middle 
Point. Good symmetry properties are observed. 
Fig. 36 shows the turbulent kinetic energy 
contours again comparable with the [13] 
turbulence model. Reasonable levels of 
turbulence are verified. Good symmetry 
properties are noted. Fig. 37 presents the Bx 
magnetic component contours with good 
qualitative and quantitative aspects. Again, the 
most severe Bx field is captured with this 
turbulence model. Fig. 38 shows the N2 mass 
fraction contours generated by the Maciel 
scheme. Good dissociation is observed in this 
case, with good symmetry properties. 
 

 
 

Fig. 16. Turbulent kinetic energy contours 
(EB-C97). 

 

 
Fig. 17. Bx magnetic component contours 

(EB-C97). 
 

Rumsey, Gatski, Ying and Bertelrud (1998) 
Results. Fig. 39 exhibits the pressure contours 
obtained by the Maciel scheme as using the [17] 
turbulence model and the Middle Point method to 
march in time. Good symmetry properties are 
observed. Fig. 40 shows the turbulent kinetic 
energy contours generated by the Maciel 
scheme. These contours are in agreement with 
the respective contours of the [13] and [16] 
turbulence models. Fig. 41 presents the Bx 
magnetic component contours generated by the 
Maciel scheme as using the [17] model. Discrete 
differences are observed quantitatively by this 
turbulence model, but the qualitative aspects are 
of good resolution. Fig. 42 shows the N2 mass 
fraction contours generated by the Maciel 
scheme. Good symmetry properties are 
observed with good dissociation levels. 
 

 
Fig. 18. N2 mass fraction contours (EB-C97). 
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Fig. 19. Pressure contours (EB-RGYB98). 
 

10.3 Runge-Kutta 4th Order 
 

Coakley (1983) Results. Fig. 43 exhibits the 
pressure contours calculated by the Maciel 
scheme as using the [13] turbulence model and 
the Runge-Kutta 4th order method to march in 
time. Good symmetry properties are observed. 
Fig. 44 shows the turbulent kinetic energy 
contours obtained by the Maciel scheme as 
using the [13] turbulence model. Good levels of 
turbulence are captured. Fig. 45 presents the Bx 
magnetic component contours calculated with 
the Maciel scheme. Good symmetry aspects are 
observed as in quantitative as in qualitative 
terms. Fig. 46 shows the N2 mass fraction 
contours obtained by the Maciel scheme. Good 
dissociation and symmetry aspects are observed 
in this figure. 
 

 
Fig. 20. Turbulent kinetic energy contours 

(EB-RGYB98). 
 

 
 

Fig. 21. Bx magnetic component contours 
(EB-RGYB98). 

 

 
 

Fig. 22. N2 mass fraction contours (EB-
RGYB98). 

 
Fig. 23. Pressure contours (MP-C83). 
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Fig. 24. Turbulent kinetic energy contours 

(MP-C83). 
 

 
Fig. 25. Bx magnetic component contours 

(MP-C83). 
                       

Wilcox (1988) Results. Fig. 47 exhibits the 
pressure contours calculated by the Maciel 
scheme as using the [14] turbulence model and 
the Runge-Kutta 4th order method to march in 
time. Good symmetry properties are observed. 
Fig. 48 shows the turbulent kinetic energy 
contours obtained by the Maciel scheme as 
using the [14] turbulence model. High levels of 
turbulence were captured, with the same 
problem in qualitative aspects as observed in the 
previous solutions of this turbulence model. Fig. 
49 presents the Bx magnetic component contours 
captured by the Maciel scheme as using the [14] 
turbulence model. Good aspects are observed as 
in quantitative as in qualitative terms. Fig. 50 
shows the N2 mass fraction contours calculated 
by the Maciel scheme. Good dissociation and 
symmetry properties are noted. 
 

 
 
Fig. 26. N2 mass fraction contours (MP-C83). 

 

 
 

Fig. 27. Pressure contours (MP-W88). 
                    

Yoder, Georgiadids and Orkwis (1996) 
Results. Fig. 51 exhibits the pressure contours 
calculated with the Maciel scheme as using the 
[15] turbulence model and the Runge-Kutta 4th 
order method to march in time. Good symmetry 
properties are observed. The minimum value to 
the stagnation pressure is obtained with this 
turbulence model in all cases studied in this 
work. Fig. 52 shows the turbulent kinetic energy 
contours obtained with the Maciel scheme as 
using the [15] turbulence model. The qualitative 
aspects are different of all studied cases in this 
work. High levels of turbulence are obtained. Fig. 
53 presents the Bx magnetic component contours 
obtained by the Maciel scheme as using the [15] 
turbulence model. Good symmetry aspects are 
observed qualitatively and quantitatively. Fig. 54 
shows the N2 mass fraction contours obtained by 
the Maciel scheme as using the [15] turbulence 
model. Minor dissociation levels are observed in 
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relation to the other solutions studied herein. 
Good symmetry aspects are verified. 
 

 Fig. 28. Turbulent kinetic energy contours 
(MP-W88). 

 

Coakley (1997) Results. Fig. 55 exhibits the 
pressure contours calculated by the Maciel 
scheme as using the [16] turbulence model and 
the Runge-Kutta 4th order method to march in 
time. Good symmetry properties are observed. 
Fig. 56 shows the turbulent kinetic energy 
contours generated by the Maciel scheme as 
using the [16] turbulence model. Good 
comparison with the [13] solutions is verified. Fig. 
57 presents the Bx magnetic component contours 
generated by the Maciel scheme as using the 
[16] turbulence model. Good symmetry 
properties are observed. The solution is free of 
oscillations. Fig. 58 shows the N2 mass fraction 
contours obtained by the Maciel scheme as 
using the [16] turbulence model. Good symmetry 
properties are noted. 

 

  
Fig. 29. Bx magnetic component contours 

 (MP-W88).                 
Fig. 30. N2 mass fraction contours (MP-W88). 

 

 Fig. 32. Turbulent kinetic energy contours 
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 Fig. 31. Pressure contours (MP-YGO96).              (MP-YGO96). 
  

 
 

Fig. 33. Bx magnetic component contours 
 (MP-YGO96). 

Fig. 34. N2 mass fraction contours 
 (MP-YGO96). 

           

 
 

Fig. 35. Pressure contours (MP-C97).                      Fig. 36. Turbulent kinetic energy contours 
(MP-C97). 

 Fig. 37. Bx magnetic component contours 
 (MP-C97). 

 

 
Fig. 38. N2 mass fraction contours (MP-C97). 
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Fig. 39. Pressure contours  

(MP-RGYB98).            
 Fig. 40. Turbulent kinetic energy contours 

(MP-RGYB98). 
  

 
 

Fig. 41. Bx magnetic component contours 
 (MP-RGYB98). 

Fig. 42. N2 mass fraction contours 
 (MP-RGYB98). 

        

 Fig. 43. Pressure contours (RK-C83).  Fig. 44. Turbulent kinetic energy contours 
(RK-C83). 
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Fig. 45. Bx magnetic component contours 

 (RK-C83).                   

 
 

Fig. 46. N2 mass fraction contours 
(RK-C83). 

 

 
Fig. 47. Pressure contours (RK-W88).  

Fig. 48. Turbulent kinetic energy contours 
(RK-W88). 

 

  
Fig. 49. Bx magnetic component contours 

 (RK-W88). 
Fig. 50. N2 mass fraction contours (RK-W88). 
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 Fig. 51. Pressure contours  
(RK-YGO96).               

 Fig. 52. Turbulent kinetic energy contours 
(RK-YGO96). 

 

 Fig. 53. Bx magnetic component contours 
(RK-YGO96).            

 Fig. 54. N2 mass fraction contours 
 (RK-YGO96). 

 

 Fig. 55. Pressure contours (RK-C97).                       Fig. 56. Turbulent kinetic energy contours 
(RK-C97). 
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Fig. 57. Bx magnetic component contours 

 (RK-C97). 

  
Fig. 58. N2 mass fraction contours  

(RK-C97). 

  

Fig. 59. Pressure contours  
(RK-RGYB98).             

 

Fig. 60. Turbulent kinetic energy contours 
 (RK-RGYB98). 

 

 Fig. 61. Bx magnetic component contours 
(RK-RGYB98). 

 Fig. 62. N2 mass fraction contours 
 (RK-RGYB98). 
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Rumsey, Gatski, Ying and Bertelrud (1998) 
Results. Fig. 59 exhibits the pressure contours 
generated by the Maciel scheme as using the 
[17] turbulence model and the Runge-Kutta 4th 
order method to march in time. Good symmetry 
and homogeneous properties are observed. Fig. 
60 shows the turbulent kinetic energy contours 
obtained by the Maciel scheme. Good levels of 
turbulence are obtained in agreement with the 
[13] and [16] solutions. Fig. 61 presents the Bx 
magnetic component contours obtained by the 
Maciel scheme as using the [17] turbulence 
model. Small differences are observed in 
quantitative terms, but in qualitative terms the 
resolution is good. Finally, Fig. 62 shows the N2 
mass fraction contours generated by the Maciel 
scheme as using the [17] turbulence model. 
Reasonable levels of dissociation are 
perceptible, but inferior to the other solutions. 

Table 1. Values of Sx and Sy 
 

Surface Sx Sy 

i,j-1/2  
j,ij,1i yy 

  
j,1ij,i

xx


  

i+1/2,j  
j,1i1j,1i

yy


   1j,1ij,1i xx    

i,j+1/2  
1j,1i1j,i

yy


   1j,i1j,1i xx    

i-1/2,j  
1j,ij,i

yy


   
j,i1j,i

xx 


 

 
10.4 Quantitative Analysis 
 
In order to perform a quantitative analysis, the 
present reactive results are compared to the 
perfect gas solutions. The stagnation pressure at 
the blunt body nose was evaluated assuming     
the perfect gas formulation. Such parameter 
calculated at this way is not the best comparison, 
but in the absence of practical reactive results, 
this constitutes the best available solution. 
 

Table 2. Initial conditions to the problem of 
the blunt body 

 
Property Value 
Minitial 8.78 
initial 0.00326 kg/m

3
 

prinitial 687 Pa 
Uinitial 4,776 m/s 
Tinitial 694 K 
Tv,initial 694 K 
TREF 0 K 
Altitude 40,000 m 
cN 10-9 
cO 0.07955 

2Oc  0.13400 

cNO 0.05090 
cNO+ 0.0 
ce- 0.0 
LREF 2.0 m 
Re 2.3885x106 
kinitial 10

-6
 

initial 10Uinitial/LREF 
Qh,initial 10-4 2

initialh  

 
Qs,initial 10

-2


ns

1i

2
initial,ic  

By,iinitial 0.15 T 
µM,∞ 1.2566x10

-6
 T.m/A 

σ∞ 1,000 ohm/m 
 

To calculate the stagnation pressure ahead of 
the blunt body, [46] presents in its B Appendix 
values of the normal shock wave properties 
ahead of the configuration. The ratio pr0/pr∞ is 
estimated as function of the normal Mach 
number and the stagnation pressure pr0 can be 
determined from this parameter. Hence, to an 
initial Mach number of 8.78, the ratio pr0/pr∞ 
assumes the value 99.98.  The value of pr∞ is 
determined by the following expression: 
 

2
initial

a

pr
pr






 .                                     (123) 

 

In the present study, prinitial = 687N/m
2
, ∞ = 

0.004kg/m3 and a∞ = achar = 317.024m/s. 
Considering these values, one concludes that pr∞ 
= 1.709 (non-dimensional). Using the ratio 
obtained from [46], the stagnation pressure 
ahead of the configuration nose is estimated as 
170.87 unities. Table 3 compares the values of 
the stagnation pressure obtained from the 
simulations with this theoretical value and shows 
the percentage errors. As can be seen, the best 
results are provided by the [13], turbulence 
model, in all three time marching methods, with 
an error of 9.49%, inferior to 10.00%. 
 

As the hypersonic flow along the present blunt 
body was simulated with a zero value to the 
attack angle, a zero lift coefficient is the expected 
value for this aerodynamic coefficient. Table 4 
exhibits an analysis of the lift aerodynamic 
coefficient, based only on pressure contribution, 
in this study. As can be observed, the best value 
to the lift coefficient is obtained by the Maciel 
scheme when using the [13] turbulence model 
coupled with the Middle Point time marching 
method. 
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Table 3. Values of stagnation pressure and respective errors 

 
March method: Turbulence model: Pr0: Error: 
 Coakley (1983) 154.66 9.49 
 Wilcox (1988) 154.06 9.84 
Euler Backward Yoder, Georgiadids and Orkwis (1996) 153.91 9.93 
 Coakley (1997) 154.05 9.84 
 Rumsey, Gatski, Ying and Bertelrud (1998) 154.12 9.80 
 Coakley (1983) 154.66 9.49 
 Wilcox (1988) 154.06 9.84 
Middle Point Yoder, Georgiadids and Orkwis (1996) 153.91 9.93 
 Coakley (1997) 154.05 9.84 
 Rumsey, Gatski, Ying and Bertelrud (1998) 154.12 9.80 
 Coakley (1983) 154.66 9.49 
 Wilcox (1988) 154.06 9.84 
Runge-Kutta 4

th
  Yoder, Georgiadids and Orkwis (1996) 153.89 9.94 

 Coakley (1997) 154.05 9.84 
 Rumsey, Gatski, Ying and Bertelrud (1998) 154.05 9.84 

 
Table 4. Lift aerodynamic coefficient 

 
March Method: Turbulence Model: cL: 
 Coakley (1983) 1.9187x10

-14
 

 Wilcox (1988) 6.1555x10-10 
Euler Backward Yoder, Georgiadids and Orkwis (1996) 3.8703x10-10 
 Coakley (1997) 1.7190x10

-11
 

 Rumsey, Gatski, Ying and Bertelrud (1998) -3.7777x10-04 
 Coakley (1983) 1.4471x10

-14
 

 Wilcox (1988) 5.0839x10-11 
Middle Point Yoder, Georgiadids and Orkwis (1996) 3.3753x10

-10
 

 Coakley (1997) 1.7189x10
-11

 
 Rumsey, Gatski, Ying and Bertelrud (1998) -3.7767x10-04 
 Coakley (1983) 1.7918x10

-14
 

 Wilcox (1988) 6.1531x10-10 
Runge-Kutta 4

th
  Yoder, Georgiadids and Orkwis (1996) -1.3546x10

-10
 

 Coakley (1997) -3.7747x10
-11

 
 Rumsey, Gatski, Ying and Bertelrud (1998) -3.6983x10-04 

 
Table 5. Computational data 

 
March method: Turbulence model: CFL: Iterations: 
 Coakley (1983) 0.05 5,362 
 Wilcox (1988) 0.05 5,452 
Euler Backward Yoder, Georgiadids and Orkwis (1996) 0.05 5,428 
 Coakley (1997) 0.05 5,363 
 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,363 
 Coakley (1983) 0.05 5,359 
 Wilcox (1988) 0.05 5,450 
Middle Point Yoder, Georgiadids and Orkwis (1996) 0.05 5,427 
 Coakley (1997) 0.05 5,361 
 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,361 
 Coakley (1983) 0.05 5,362 
 Wilcox (1988) 0.05 5,450 
Runge-Kutta 4

th
  Yoder, Georgiadids and Orkwis (1996) 0.03 9,058 

 Coakley (1997) 0.05 5,364 
 Rumsey, Gatski, Ying and Bertelrud (1998) 0.03 8,952 
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10.5 Computational Performance 
 
Table 5 presents the computational data of the 
Maciel scheme for the blunt body problem. It 
shows the CFL number and the number of 
iterations to convergence for all studied cases in 
the current work. It can be verified that the best 
performance of the Maciel scheme occurred 
when using the [16] and [17] turbulence models 
coupled with the Middle Point time marching 
method. 
 
As final conclusion, it is possible to highlight the 
[13] turbulence model as the best performance in 
estimating the stagnation pressure ahead of the 
blunt body. Moreover, the [16] and [17] 
turbulence models coupled with the Middle Point 
method were the most efficient in terms of 
computational effort. It is also important to note 
that all turbulence models predicted the 
stagnation pressure value with errors inferior to 
10.00%. 
 

11. CONCLUSIONS 
 
In this work, a study involving magnetic field 
actuation over turbulent reentry flows in 
thermochemical non-equilibrium condition was 
performed. The Favre averaged Navier-Stokes 
equations coupled with the Maxwell equations, in 
conservative and finite volume contexts, 
employing structured spatial discretization, were 
studied. The numerical algorithm of Maciel was 
used to perform the reentry flow numerical 
experiments, which gave us an original 
contribution to the CFD community. Two types of 
numerical dissipation models were applied, 
namely: [41-42]. The “hot gas” hypersonic flow 
around a blunt body, in two-dimensions, was 
simulated. The convergence process was 
accelerated to steady state condition through a 
spatially variable time step procedure, which has 
proved effective gains in terms of computational 
acceleration [27-28]. Three time integration 
methods were tested to march the scheme in 
time, and it was another relevant contribution of 
the present work. They are: Euler Backward, 
Middle Point, and Runge-Kutta 4th order. The 
reactive simulations involved Earth atmosphere 
chemical model of seven species and eighteen 
reactions, based on the [29] model. The work of 
[25] was the reference one to present the fluid 
dynamics and Maxwell equations of 
electromagnetism based on a conservative and 
finite volume formalisms. 
 

The results have indicated that the Maciel 
scheme, using the [41] artificial dissipation 
operator and the [13] turbulence model, yielded 
the best prediction of the stagnation pressure 
value with error inferior to 10.00%. Moreover, the 
best value to the lift aerodynamic coefficient was 
yielded by the Maciel scheme when using the 
[13] turbulence model coupled with the Middle 
Point time marching method. On the other hand, 
the [16] and [17] turbulence models coupled with 
the Middle Point method were the most efficient 
in terms of computational effort. This work was 
the couple of the [26] study, involving perfect gas 
magnetic actuation, [33-34] studies, involving 
reactive reentry flows, and [47], related to 
turbulent reactive flow, in two-dimensions. 
 
In the present formulation, the Stokes hypothesis 
was adopted for defining the viscous tension 
even for a high speed flow (see [36]). This 
implementation is largely applied by the CFD 
community for high Mach number flows in all 
turbulence models that the authors have 
understanding and yields good results. Some 
references that use the Stokes hypothesis for 
high speed flow are [48-50]. 
 
The Maciel scheme was written in Fortran90 
language and was developed in the Visual Studio 
2008 environment and was only validated for 
reactive flows with magnetic actuation. For 
applications with reactive + magnetic + 
turbulence this is the first use of such method. 
For the reader interested only in the magnetic 
actuation with the Maciel scheme, some 
references are [51-53]. 
 
Finally, the validation and verification of the 
implemented code was performed by testing a 
benchmark physical problem (the blunt body) of 
the CFD community, where percentage errors 
were calculated in the evaluation of the 
stagnation pressure ahead of the geometry nose. 
The good results obtained demonstrated that the 
code was correctly implemented and that is 
capable to solve hypersonic flow problems, for 
what it was developed and applied. 
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