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Abstract

As a random variable, the survival time or Time to Failure (TTF) of a certain component
or system can be fully characterized by its probability density function (pdf) fT (t) or its
Cumulative Distribution Function (CDF) FT (t). Moreover, it might be also identified by
transform functions such as the Moment Generating Function (MGF) and the Characteristic
Function (CF). In reliability engineering, additional specific equivalent characterizations are used
including the reliability function (survival function) which is the Complementary Cumulative
Distribution Function (CCDF), and the failure rate (hazard rate), which is the probability density
function normalized w.r.t. reliability. In prognostics, a prominent emerging subfield of reliability
engineering, the characterizing functions are still supplemented by other specifically tailored ones.
Notable among these is the Mean Residual Life (MRL) (also know as the Remaining Useful Life
(RUL)). The purpose of this paper is to compile and interrelate the most prominent among these
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characterizing functions and explore their important properties. The paper points out that there
is currently a significant proliferation of characterizing functions emerged in various fields. It
shows that, under mild conditions, the product and quotient of two characterizing functions are
also characterizing functions. The choice of one characterizing function in a certain application
is a matter of convenience and taste. Our survey is far from being a conclusive one as it is
intended to be just a brief tutorial guide for prognostics scholars, especially beginners. We had to
arbitrarily leave out many of the less known characterizing functions such as the aging intensity
function, log-odds rate, and entropy-related functions.

Keywords: Prognostics; Remaining Useful Life (RUL); Mean Residual Life (MRL); characterizing
functions; hazard rate; reliability.

Nomenclatures

T Time to failure (TTF) of the system/component under consideration, a random
variable, 0 < E[T ] < ∞.

fT (t) Probability density function (pdf) of the random variable T
FT (t) Cumulative Distribution Function (CDF) of the random variable T , can be identified

as the unreliability U(t) = 1.0−R(t)
R(t) Reliability of the system/component under consideration; R(t) = P (T > t); R(t) > 0

for t ≥ 0, R(0) = 1.0; lim
t→∞

t R(t) = 0. Many characterizing function of T cab be

obtained via algebraic manipulation, differentiation or integration of R(t)
r(t) Failure rate (also called hazard rate h(t)), r(t) ≥ 0 for t ≥ 0. For many

systems/components, r(t) follows a bathtub curve, which starts by decreasing failure
rate (DFR; infant mortality), followed by a constant failure rate (CFR; prime of life),
and finally an increasing failure rate (IFR, wearout).

H(t) Cumulative hazard rate (also called cumulative failure rate); H(t) =
∫ t

0
h(τ)dτ

m(t) Mean residual life (MRL) (also called Remaining Useful Life (RUL), albeit this name
might be undesirable since it has ambiguous economic connotations). The function
m(t) is also called residual mean time to failure (MTTF (t)), and is not to be confused
with the mean time to failure (MTTF) which is a single number rather than a function
of time.

G(t) A useful characterizing function of the random variable T , defined as an integral
function of reliability; G(t) =

∫∞
t

R(τ)dτ .

1 Introduction

The survival time or time to failure (TTF), denoted by T , is an important non-negative continuous
random variable such that 0 < E(t) < ∞ that plays a central role in the overall area of general
probability as well as its distinguished branch of reliability, which deals with the probability
of systems and components performing their intended functions under specified conditions for a
given period of time [1, 2]. The time to failure is also an indispensable concept in the emerging
subfield of reliability engineering called (engineering) prognostics and health monitoring (PHM)
(or, prognostics for short) [3], which deals mainly with the assessment of the remaining useful
life (RUL) of components and systems. The term ”prognostics” is borrowed from medicine, in
which the term ”(medical) prognostics” is of wide established utility [4, 5, 6, 7, 8]. Prognostic is
generally defined as the process of predicting the future reliability of a product by assessing the
extent of deviation or degradation of the product from its expected normal operating conditions.
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It focuses on predicting the time in which the device will no longer perform its intended function.
In the PHM Community, Prognostics is defined as the estimation of the Remaining Useful Life of a
component.The Remaining Useful Life (RUL) is the amount of time a component can be expected
to continue operating within its given specifications (Not necessarily a failure). Prognostics is used
by industry to manage business risks that result from equipment failing unexpectedly.

This paper attempts to gather scattered information about the most important functions
characterizing T . A tutorial exposition is given for the conceptual and mathematical definition of
these functions as well as for the interrelations among them that allow each of them to be expressible
in terms of each of the others. The paper is a useful introduction for any newcomers to the area
of prognostics as well as a handy reference for well-established practitioners. It attempts to be
self-contained in its compilation of various definitions and diverse and alternative formulas, and it
includes many of the necessary fundamental derivations. The paper also tries to forward a unified
set of notations, and to reconcile equivalent (albeit apparently dissimilar) concepts. We hope the
paper might save prognostics students the trouble of handling intriguing questions about unclear
relations concerning apparently diverse (albeit essentially equivalent) entities. The paper references
constitute a small (hopefully representative) sample of the plethora of papers published recently in
the topic.

The paper points out that there is currently a significant proliferation of characterizing functions
emerged in various fields. It shows that, under mild conditions, the product and quotient of
two characterizing functions are also characterizing functions. The choice of one characterizing
function in a certain application in a matter of convenience and taste. Though we included many
characterizing functions in this survey, we deliberately excluded many others. Notable among these
excluded are the aging intensity function [9, 10], the log-odd rate [10] and entropy or entropy-related
functions [11]. Our work herein hopefully supplements that in many useful expositions, surveys and
reviews [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43].

The organization of the remainder of this paper is as follows. Section 2 defines and interrelates
the most prominent functions characterizing T , including distribution functions (the Cumulative
Distribution Function (CDF), and the probability density function (pdf)), the transform functions
(the Moment Generating Function (MGF) and Characteristic Function), relaibaility, unreliability,
and hazard (failure) rate. Section 3 compiles a subset of the set of characterizing functions that
are frequently used in prognostics including the Mean Residual Life (MRL), typically referred to as
the Remaining Useful Life (RUL) or as the residual Mean Time to Failure. Section 4 explains the
phenomenon of proliferation of functions characterizing T . Section 5 concludes the paper.

2 Characterizing Functions

In this section, we briefly survey the most important functions used in characterizing the time to
failure, denoted simply as T , as a general continuous random variable, as a variable pertaining to
the general area of reliability engineering or to its subfield of prognostics engineering.

2.1 The distribution functions

The Cumulative Distribution Function (CDF) FT (t) is defined [2, 3, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22] as:

FT (t) = P (T ≤ t), 0 ≤ t < ∞ (2.1)

We note that the support of the nonnegative random variable T in Equation (2.1) is the semi-infinite
interval [0,∞) and not the whole real line ℜ = (−∞,∞). The distribution FT (t) is a probability and
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hence it is dimensionless. It is a monotone non-decreasing (increasing) function of t that satisfies
the properties

0 ≤ FT (t) ≤ 1, 0 ≤ t < ∞, (2.2a)

F (0) = 0, (2.2b)

lim
t→∞

F (t) = 1. (2.2c)

The probability density function (pdf) fT (t) is defined by the limiting probability of failure in the
interval (t, t+∆t] divided by ∆t, i.e.,

fT (t) = lim
∆t→0

P (t < T ≤ t+∆t)

∆t

= lim
∆t→0

(P (T ≤ t+∆t)− P (T ≤ t))

∆t

= lim
∆t→0

FT (t+∆t)− FT (t)

∆t

= dFT (t)/dt. (2.3)

The pdf is not a probability but is a dimensional quantity of dimension:

[fT (t)] = time−1, (2.4)

where we use the notation [y] to denote the dimension of a quantity y. The pdf satisfies the
properties

fT (t) ≥ 0, 0 ≤ t < ∞, (2.5a)∫ ∞

0

fT (t) = 1. (2.5b)

The inverse of the differentiation relation in Equation (2.3) is the integration relation

FT (t) =

∫ t

0

fT (τ)dτ. (2.6)

In passing, we note that while FT (t) and fT (t) have no meaning for t < 0, they might be defined
over the entire real line (−∞,∞) while forcing them both to be identically 0 over (−∞, 0).

2.2 The transform functions

Transform characterization is particularly useful for computation of moments (without the need to
evaluate tedious integrals) and for solving differential equations [22]. For the random variable T ,
the function eTθ in another random variable, whose expectation, denoted M(θ) is

M(θ) = E
(
eTθ

)
=

∫ ∞

0

etθfT (t)dt, (2.7)

is called the Moment Generating Function (MGF), and it is a dimensionless function that usually
exits for at least some numbers θ. This function is so named since

M(θ) =

∞∑
k=0

E
(
T k

) θk

k!
, (2.8)
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under the assumption that all expectations in the RHS of Equation (2.8) exist. Equation (2.8) is a
power-series expansion of M(θ) in terms of the kth moment E(T k) of T (k = 0, 1, 2, . . . ) and might
be rewritten as

E(T k) =
dkM(θ)

dθk

]
θ=0

, k = 0, 1, 2, . . . (2.9)

Note that, in particular, we have

E(T 0) =
d0M(θ)

dθ0

]
θ=0

= M(0) = E(e0) = 1. (2.10)

A function closely related to the MGF is the dimensionless characteristic function of the random
variable T given by

NT (w) = MT (iw) =

∫ ∞

0

eiwtfT (t)dt, (2.11)

where i stands for the imaginary unit (i =
√
−1), and w is a real variable. If we extend the definition

of fT (τ) over (−∞, 0) forcing it to be zero therein, then NT (w) is given by

NT (w) =

∫ ∞

−∞
eiwtfT (t)dt = F (fT (t)). (2.12)

and the characteristic function is identified as the Fourier Transform of fT (t). Therefore, fT (t) is
given as the inverse Fourier transform of MT (w), namely

fT (t) =
1

2π

∫ ∞

−∞
e−iwtNT (w)dw. (2.13)

Another related characterization of the nonnegative continuous random variable T , is the dimensionless
(one-sided) Laplace-Stieltjes transform of fT (t), given by

LT (s) = MT (−s) =

∫ ∞

0

e−stfT (t)dt = L (fT (t)). (2.14)

where s is a complex variable (s = σ + iw, σ > 0) called the complex frequency. The pdf fT (t)
can inversely be obtained from LT (s) via an inverse formula requiring contour integration in the
complex plane.

2.3 The reliability and unreliability functions

In reliability circles, the usual way to characterize T is to use the reliability function R(t) (also
called the survival function), which is the probability that the component or system survives until
some time t [2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], i.e.,

R(t) = P (T > t) = 1− FT (t) =

∫ ∞

t

fT (t)dt. (2.15)

Since the above definition implicitly assumes R(0) = 1, which means that the component or system
is working or successful at time 0, (i.e., it excludes the probability that the component or system
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is ”dead on arrival” (see Equations (2.2b) and (2.15)), some authors argue that R(t) should be
interpreted as the conditional probability

R(t) = P (T > t|T > 0). (2.16)

In fact, the concept of conditional probability is explicit when defining mission or conditional
reliability [44], depicted R(t0 + t|t0) or MR(t0, t), which is the probability that a system that
already survived up to time t0 will continue its survival for a further time of t, namely

R(t0 + t|t0) = MR(t0, t) = P (success in(0, t0 + t]|success in(0, t0])

=
R(t0 + t)

R(t0)

(2.17)

The definition above reduces to usual definition of reliability when t0 = 0, i.e.,

R(t) = R(t|0) = MR(0, t) (2.18)

The definition in Equation (2.15) demands the system to be successful in the semi-closed interval
(0, t]. Since the underlying distribution is continuous P (T = t) = 0 {albeit the event {T = t} is
not an impossible event}, and hence the interval (0, t] could be replaced by the doubly-open one
(0, t). If we view the condition {R(0) = 1} as a requirement rather than an assumption, then
the above interval could become [0, t] or [0, t). Therefore, four versions of the interval appear in
the literature, which is somewhat confusing to scholars in the field. According to Equation (2.15),
R(t) is dimensionless, and is the Complementary Cumulative Distribution Function (CCDF), while
its complement to one, called the unreliability U(t), can be identified as FT (t). According to
Equations (2.2a) and (2.15)), R(t) is a monotonically non-increasing function of time, and according
to Equations (2.2c) and (2.15)), the limiting value as t → ∞ for R(t) is

lim
t→∞

R(t) = 0, (2.19)

i.e., no component or system can work forever without failure (E[T ] < ∞). Usually, a stronger
condition is imposed on R(t), namely,

lim
t→∞

tR(t) = 0, (2.20)

which means not only that R(t) diminishes to 0 as t approaches ∞, but also that R(t) does so faster
than t−1. The condition in Equation (2.20) is needed in the integration by parts of the formula for
the mean time to failure:

MTTF = E[T ] =

∫ ∞

0

tfT (t)dt, (2.21)

so as to arrive at the following celebrated expression for the MTTF.

MTTF =

∫ ∞

0

R(t)dt. (2.22)

Strange conditions might also be imposed on R(t) in order to facilitate the derivation of convenient
expression for higher moments of T . Of course the MTTF is an aggregate metric that does not
characterize T fully, but it is the most important single number (rather than function) in reliability
studies. We will see shortly that it is generalized into a function that is of paramount importance
in the study of prognostics.
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2.4 The failure rate (The Hazard Rate)

The failure rate or hazard rate, denoted by r(t) or h(t) is defined such that r(t)dt is the probability
that an object that survives to age t fails in the interval (t, t+ dt], i.e.,

r(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)/∆t

= lim
∆t→0

P (t < T ≤ t+∆t)

∆t P (T > t)

= lim
∆t→0

P (T > t)− P (T > t+∆t)

∆t R(t)

= lim
∆t→0

R(t)−R(t+∆t)

∆t R(t)

= −dR(t)

dt

1

R(t)
(2.23)

Equation (2.23) can be rewritten as

r(t) =
fT (t)

R(t)
(2.24)

Equation (2.24) indicates a mathematical fundamental difference between r(t) and fT (t). There
is also a significant conceptual difference between these two quantities. The quantity r(t)dt is the
conditional probability that the component or system fails in the time interval (t, t+dt] given that
it has reached age t without failure. The quantity fT (t)dt is the unconditional probability that
the component or system fails in the same time interval (t, t+ dt]. Therefore, the pdf is sometimes
called the mortality of the component or system. Obviously, r(t) = fT (t) at t = 0, but r(t) > fT (t)
for t > 0, and r(t) ≫ fT (t) as t increases and R(t) approaches 0. Equation (2.23) can also be
rewritten as a homogeneous first-order ordinary differential equation (ODE) in R(t) with a variable
coefficient r(t)

dR(t)

dt
+ r(t)R(t) = 0 (2.25)

Together with the initial condition R(0) = 1, this ODE constitutes an initial value problem (IVP)
whose solution is

R(t) = exp

(
−
∫ t

0

r(τ)dτ

)
= exp (−H(t)) . (2.26)

Fig. 1. A Venn diagram interrelating some Characterizing Functions for the time to
failure
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The plot of r(t) versus age t is called the mortality (bathtub) curve (Fig. 2), and separates the
time axis into three distinct periods described in Table 1. The useful constant failure rate (CFR)
period is pronounced for electronic components but negligible (virtually non-existent) for mechanical
and biological systems. Under the (extremely unrealistic) assumption of a CFR (exponential
distribution) all throughout, the following results are obtained:

r(t) = λ = constant, t ≥ 0 (2.27)

R(t) = e−λt, t ≥ 0 (2.28)

MTTF =
1

λ
, (2.29)

t

Fig. 2. The mortality (bathtub) curve for a component or system (see e.g., [24]).

The failure rate r(t) should be modeled by more realistic distributions such as the Weibull [23].
Many references are dedicated to the issue of selecting appropriate distributions to model the entire
bathtub curve or certain portions thereof (see e.g., [24]).

Table 1. Periods of operating life

Description
Period Early Life Useful Life Wearout

Alternative Name

Infant mortality
Burn-in period
Break-in period

Shake-down period

Prime-of-life
Degradation period
Deterioration period

Slope of the
mortality curve

Negative
DFR: Decreasing

Failure Rate

Zero
CFR: Constant
Failure Rate

Positive
IFR: Increasing
Failure Rate

Nature of failures

Due to design
or manufacturing
weaknesses or

faults

Random,
Catastrophic,

or unpredictable

Due to
aging or wear
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2.5 The mean residual life

The mean residual life (MRL) m(t) is the main characterizing function used in prognostics, and it
appears, in disguise under alternative names, in many related disciplines [17]. It is sometimes known
under the alternative name of the Remaining Useful Life (RUL). However, the term MRL is a more
neutral term that is not lacking mathematical preciseness but lacking economic pertinence instead.
Generally speaking, the RUL is the period of time, from the current time to the time of termination
of the component or system (including termination due to inadequate performance) expressed as
a ratio of its expected useful life (depending on the context) and operational characteristics) [17].
The MRL m(t) has the (almost equivalent) mathematical definition (for E[T ] < ∞):

m(t) = E[T − t|T > t]

=

∫∞
t

(τ − t)fT (τ)dτ

P (T > t)

=

∫∞
t

R(τ)dτ

R(t)
(2.30)

Since division by 0 is not admissible, some authors use Equation (2.30) provided that R(t) ̸= 0 and
set m(t) = 0 when R(t) = 0. The final result in Equation (2.30) is obtained via integration by
parts and demanding that Equation (2.20) be satisfied. An alternative version of Equation (2.30)
in terms of the pdf fT (t) is simply obtained via rearrangement without integration as

m(t) =

∫∞
t

τfT (τ)dτ

R(t)
− t. (2.31)

Some authors define the MRL as the residual MTTF, i.e., the expected time to failure of a
component or system aged t, depicted MTTF (t), namely

MTTF (t) = m(t) =

∫ ∞

0

R(t+ τ |t)dτ =

∫ ∞

t

(τ − t)fT (τ |t)dτ (2.32)

where fT (τ |t) = fT (τ)/R(t) is the pdf of conditional probability of failure at time τ provided that
the component or system survived up to time t. The definition in Equation (2.32) is obviously in
agreement with the definition in Equation (2.30). The numerator in Equation (2.30) given by

G(t) =

∫ ∞

t

R(τ)dτ =

∫ ∞

0

R(τ − t)dτ = m(t)R(t), (2.33)

which is another characterization function, whose time derivative is given by

dG(t)

dt
= −R(t) = − 1

m(t)
G(t), (2.34)

and hence it satisfies the homogeneous first-order ODE

dG(t)

dt
+

1

m(t)
G(t) = 0, (2.35)

which together with the initial condition G(0) = m(0)R(0) = m(0) constitutes an initial value
problem IVP with the solution

G(t) = m(0) exp

(
−
∫ t

0

dτ

m(τ)

)
, (2.36)
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which allows us to produce the following Inverse Formula for the reliability (survival) function

R(t) =
G(t)

m(t)
=

m(0)

m(t)
exp

(
−
∫ t

0

dτ

m(τ)

)
. (2.37)

Another way to derive the inversion Formula (2.37) is to write

−
∫ t

0

dτ

m(τ)
= −

∫ t

0

R(τ)

G(τ)
dτ =

∫ t

0

(dG(τ)/dτ)

G(τ)
dτ

= [ln(G(τ))]t0 = ln

(
G(t)

G(0)

)
= ln

(
R(t)m(t)

R(0)m(0)

)
= ln

(
R(t)m(t)

m(0)

)
(2.38)

Exponentiation of both sides of this result produces

R(t)m(t)

m(0)
= exp

(
−
∫ t

0

dτ

m(τ)

)
, (2.39)

which can be rearranged to produce Equation (2.37).

Another Useful relation is obtained when m(t) is differentiable, since

dm(t)

dt
=

d

dt

(
G(t)

R(t)

)
=

dG(t)
dt

R(t)−G(t) dR(t)
dt

R2(t)

=
−R2(t) + (m(t)R(t)) (r(t)R(t))

R2(t)

= −1 +m(t)r(t), (2.40)

and hence r(t) is expressed in terms of m(t) as

r(t) =
dm(t)

dt
+ 1

m(t)
. (2.41)

Equation (2.40) can also be obtained by differentiating both sides of Equation (2.39). Alternatively,
Equation (2.40) can be viewed as an inhomogeneous first-order ODE whose solution under appropriate
initial conditions is given by Equation (2.39).

3 Characterizing Functions in Prognostics

There is a plethora of characterizing functions of T that can be used in prognostics. For easy
reference, we compile in Table 2 interrelations among six such quantities, and then survey in Table
3 certain properties of the four quantities among them that are most prominent in prognostics. The
properties covered include initial values, dimensions, algebraic relations, derivative relations and
integral relations.
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Table 2. Interrelations among six characterizing functions

From

To
fT (t) FT (t) ≡ U(t) R(t) r(t) G(t) m(t)

fT (t) fT (t)
∫ t

0
fT (τ)dτ

∫∞
t

fT (τ)dτ
fT (t)∫∞

t fT (τ)dτ

∫∞
t

(∫∞
τ

fT (x)dx
)
dτ

∫∞
t (

∫∞
τ fT (x)dx)dτ∫∞
t fT (τ)dτ

FT (t)
dFT (t)

dt
FT (t) 1− FT (t)

dFT (t)
dt

1−FT (t)

∫∞
t

(1− FT (τ))dτ
1

1−FT (t)

∫∞
t

(1− FT (τ)dτ)

R(t) − dR(t)
dt

1−R(t) R(t) − 1
R(t)

dR(t)
dt

∫∞
t

R(τ)dτ 1
R(t)

∫∞
t

R(τ)dτ

r(t) r(t) exp
[
−
∫ t

0
r(τ)dτ

]
1− exp

[
−
∫ t

0
r(τ)dτ

]
exp

[
−
∫ t

0
r(τ)dτ

]
r(t)

∫∞
t

exp
[
−
∫ τ

0
r(x)dx

]
dτ

∫∞
t exp [−

∫ τ
0 r(x)dx]dτ

exp [−
∫ t
0 r(τ)dτ]

G(t) d2G
dt2

1 + dG(t)
dt

− dG(t)
dt

−
d2G
dt2

dG(t)
dt

G(t) − G(t)
dG(t)

dt

m(t)
m(t)

[
dm(t)

dt
+1

]
m2(t)

exp−
∫ t

o
dτ

m(τ)
1− m(0)

m(t)
exp

[
−
∫ t

0
dτ

m(τ)

]
m(0)
m(t)

exp
[
−
∫ t

0
dτ

m(τ)

] (
dm(t)

dt
−1

)
m(t)

m(0) exp
[
−
∫ t

0
dτ

m(τ)

]
m(t)

Table 3. Properties of the four most prominent characterizing function in prognostics

Quantity Initial Value Dimension Algebraic Expression Derivative Relations Integral Relations

Reliability
R(t)

R(0) = 1
Dimensionless
([Time]0)

FT (t) = 1−R(t)
fT (t)− dR(t)

dt

r(t) = −1
R(t)

dR(t)
dt

E[t] = MTTF =
∫∞
0

R(t)dt
G(t) =

∫∞
t

R(τ)dτ

Failure Rate
r(t)

r(0) = fT (0) [T ime]−1 R(t) = fT (t)
r(t)

CFR =
∫ t

0
r(τ)dτ

CFR = ln
(

1
R(t)

)
Mean Residual
Life (MRL)

m(t)
m(0) = E[T ] [Time]1 m(t) = G(t)

R(t)
R(t) = − dG(t)

dt

Product of
Reliability & MRL

G(t)
G(0) = E[T ] [Time]1 G(t) = R(t)m(t) m(t)r(t) = 1 + dm(t)

dt
R(t) = m(0)

m(t)
e

[
−

∫ t
0

1
m(τ)

dτ
]

4 On the Proliferation of Characterizing Functions

The fact that C1(t) and C2(t) are two characterizing functions of the random variable T , means
that each of them can expressed as a function of the other, i.e.,

C1(t) = f (C2(t)) (4.1)

C2(t) = f−1 (C1(t)) (4.2)

Now many functions can be generated from C1(t) and C2(t) such as to be also characterizing
functions of T . Notable (and simple) among these are the product p(t) and quotient q(t) of C1(t)
and C2(t), i.e.,

p(t) = C1(t)× C2(t), (4.3)

q(t) = C1(t)/C2(t), (4.4)

which can be written as

p(t) = C1(t)× f−1 (C1(t))

= Fp (C1(t)) , (4.5)

q(t) = C1(t)/f
−1 (C1(t))

= Fq (C1(t)) . (4.6)
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If the functions Fp and Fq are invertible, then C1(t) can be expressed in terms of either p(t) or q(t),
i.e.,

C1(t) = F−1
p (p(t)) , (4.7)

C1(t) = F−1
q (q(t)) , (4.8)

(4.9)

A particularly notable example of this possibility is when C1(t) is the failure rate r(t), and C2(t) is
the MRLm(t), for then their product r(t)m(t) and their quotient r(t)/m(t) are each a characterizing
function of T . More accessible examples (that we have seen earlier in Section 3) is when C1(t) =
m(t), C2(t) = R(t), and p(t) = m(t)R(t) = G(t), or when C1(t) = r(t), G2(t) = R(t), and
p(t) = r(t)R(t) = fT (t).

For convenience, Fig. 1 shows some of the well known characterizing functions for T surveyed
herein within the overall area of general probability, the restricted area of reliability, and finally the
subfield of engineering prognostics.

5 Conclusions

The time to failure of a specific component/system can be fully described as any random variable
by either the probability density function (pdf), the Cumulative Distribution Function (CDF),
the moment generating function, or the characteristic function. However, due to the special
nature of this variable, it is more conveniently described via the reliability function, which is its
Complementary Cumulative Distribution Function (CCDF). In certain occasions, it is even more
convenient to use other functions derived from the reliability function via differentiation (the failure
or hazard rate function) or integration (the mean residual life function). The aim of this paper is
to interrelate and compare the plethora of functions frequently used in reliability, in general, and in
prognostics, in particular. These functions are interrelated mathematically such that each of them
is expressible in terms of any of the others. Each of these functions has perhaps its own merits
and advantages that make it suitable (or preferable) in particular applications or subfields. Such
suitability (or preferability) is usually something in the eyes of the beholder, i.e., it is often a mater
of taste, convenience, or discretion of the user.
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