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Abstract 
 

Aims: A shape optimization technique is developed, using the boundary element method, for two-
dimensional anisotropic structures to study the effects of anisotropy on the displacements and stresses, 
then minimize weight while satisfying certain constraints upon stresses and geometry. 
Study Design:  Original Research Paper. 
Place and Duration of Study: Jamoum University College, Mathematics Department, between June 
2016 and July 2017. 
Methodology: The shape design sensitivity analysis of a two-dimensional anisotropic structure using a 
singular formulation of the boundary element method is investigated to study the effects of anisotropy on 
the displacements and stresses. An Implicit differentiation technique of the discretized boundary integral 
equations is performed to produce terms that contain derivatives of the fundamental solutions employed 
in the analysis. This technique allows the coupling between optimization technique and numerical 
boundary element method (BEM) to form an optimum shape design algorithm that yields shape design 
sensitivities of the displacement and stress fields for anisotropic materials with very high accuracy. The 
fundamental solutions of displacements and tractions in terms of complex variables employed in the 
analysis. The feasible direction method was developed and implemented for use with the golden-section 
search algorithm based on BEM as a numerical optimization technique for minimizing weight while 
satisfying all of the constraints. 

Original Research Article 
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Results: The proposed method has been verified by using the two-dimensional plate with an elliptical 
hole as the numerical example. The numerical results show that the proposed method is suitable and 
effective tool for the computer implementation of the solution. 
Conclusion: From the research that has been performed, it is possible to conclude that the optimal shape 
of the two-dimensional plate with an elliptical hole is crucial when elastic field is sensitive to boundary 
shape. Also from this knowledge of the effects of anisotropy on the displacements and stresses, we can 
design various anisotropic structures to meet specific engineering requirements and utilize within which 
to place new information can be more effective. 
 

 
Keywords: Shape optimization; design sensitivity; implicit differentiation method; anisotropic structures; 

boundary element method.  
 
2010 Mathematics subject classification: 65M38 - 65K05  - 74B05  - 74E05 - 74F05  - 74H05  - 74H15   - 
74S20  - 90C31. 
 

1 Introduction 
 
The rapid development of composite materials following wide varieties of techniques and the design and 
manufacturing technologies is one of the most significant achievements in the field of materials engineering 
and science. Because of their high stiffness and high strength properties, composites are the most commonly 
used in mechanical engineering and aerospace applications [1-5].  
 
In recent years, the scientific research in the field of optimization algorithms has become a rapidly 
developing area of research in computational optimization techniques [6-8].  
 
Numerical techniques are also increasingly used for analysis of structural engineering, among which the 
boundary element technique [9-19], which offers a clear advantage over other methods, and is applicable to 
a wide range of structural engineering problems. The study of anisotropic structures is very complex and is 
still not well understood, and as a result, more sophisticated strategies for optimal design of anisotropic 
structure are in demand [20-25]. 
 

2 Formulation of the Problem 
 
The equilibrium equation for anisotropic elasticity  
 ���,� + �� = 0                                                                                                                                          (1) 
 
where there are 21 independent material elastic constants ���� because ���� = ���� = ���� = ����. Due to 
the symmetry of the stress and strain tensors, and assuming that the material is symmetric with respect to the 
z-direction which is perpendicular to � − � plane, the two-dimensional stress-strain relations for plane-stress 
anisotropic elasticity are  
 

����������� = ���� ��� ������ ��� ������ ��� ���
� �����������                                                                                                        (2) 

 
where ���  and ���  (�, � = �, �)  are the stress and strain components, respectively, d !  are the elastic 
compliances coefficients, which can be written in terms of elastic constants as follows 
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��� = 1"� , ��� = 1"� , #�� = − $��"� = − $��"�                                                                 
��� = 1%�� , ��� = &��,�"� = &�,��%�� , ��� = &��,�"� = &�,��%��                                                             (3) 

 
The coefficients of mutual influence of the first and second kinds, respectively 
 

( ! = � ! − � )�!)�)) , *, + = 1, 2, 6                                                                        
 � ) = − $ )" , �)) = 1") , ��) = &��,)") = &),��%��                                                                                   (4) 

 
The strain compatibility equation is 
 .����.��� + .����.��� = 2 .����.��.��                                                                                                                (5) 

 
The equilibrium equation is automatically satisfied by writing the stresses in terms of derivatives of the Airy 
stress function ϕ(x�, x�) proposed by Airy [26] as 
 

��� = .�1.��� , ��� = .�1.��� , ��� = .�1.��.��                                                                                            (6) 

 
Now by combining equations (2), (5) and (6), the governing equation for the two-dimensional anisotropic 
elasticity can be obtained as  
 

��� .21.��2 − 2��� .21.��).�� + (2��� + ���) .21.���.��� − 2��� .21.��.��) + ��� .21.��2 = 0              (7) 

 
It is convenient to define the operator 45 (6 = 1, 4) as follows 
 

45 = ..�� − 75 ..��                                                                                                                                 (8) 

 
equation (7) may be reexpressed in the following form  
 4�4�4)42(1) = 0                                                                                                                                   (9) 
 
where 75 are the four roots of the following characteristic equation  
 

:��� − 27��� + (2��� + ���)7� − 2���7) + ���72; �21�<2 = 0                                           (10) 

 
Lehknitskii [27] has proved that, for an anisotropic elastic material, these roots are distinct and should be 
purely imaginary or complex and they can be denoted by  
 7� = #� + �=�, 7� = #� + �=�, 7) = 7�>>> , 72 = 7�>>>                                                                      (11) 
 
where #�  and =�  (� = 1, 2) are real constants, � = √−1  and the overbar is complex conjugate. Thus, the 
stresses and displacements in an anisotropic elastic body may be expressed in terms of the complex 
coordinates <� = �� + 7��� and their complex conjugates  
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Also, the strains can be written in terms of the stresses in non-principal coordinate system of laminae as [28] 
 

����������� = @�̅�� �̅�� �̅���̅�� �̅�� �̅���̅�� �̅�� �̅��
B �����������                                                                                                     (12) 

 
Where the transformed compliances are 
 �̅�� = C� + C� cos 2G + C) cos 4G                                                                                               (13#) 
 �̅�� = C2 − C) cos 4G                                                                                                                      (13=) 
 ��̅� = C� − C� cos 2G + C) cos 4G                                                                                                 (13() 
 ��̅� = C� sin 2G + 2C) sin 4G                                                                                                        (13�) 
 �̅�� = C� sin 2G − 2C) sin 4G                                                                                                         (13J) 
 �̅�� = 2(C� − C2) − 4C) cos 4G                                                                                                    (134) 
 
in which the invariants (C�, C�, C), C2) are 
 C� = 18 (3��� + 3��� + 2��� + ���)                                                                                            (14#) 

 

C� = 12 (��� − ���)                                                                                                                              (14=) 

 C) = 18 (��� + ��� − 2��� − ���)                                                                                                   (14() 

 C2 = 18 (��� + ��� + 6��� − ���)                                                                                                   (14�) 

 

3 Numerical Implementation 
 
According to the Betti's reciprocal theorem, we assume that ���, J�� and ���∗ , J��∗  represent two different types 
of stresses and strains which satisfy equilibrium, compatibility and Hooke’s law. Hence 
 

L ���J��∗M �N = L ���∗ J��M �N                                                                                                              (15) 

 
the unstarred quantities are supposed to represent the unknown solution, and the starred quantities 
correspond to a singular fundamental solution to Navier’s equation, associated with a point load in an 
infinite domain, which after performing integration by parts twice and applying the divergence theorem, 
leads to the following somigliana displacement identity (Cruse [29]) 
 

O�(P) = L Q�(&)R��(P, &)�6(&)5 − L O�(&)S��(P, &)�6(&)5                                                        (16) 

 
The displacements and tractions fundamental solutions are respectively as follows: 
 



 
 
 

Fahmy; JAMCS, 25(4): 1-18, 2017; Article no.JAMCS.37822 
 
 
 

5 
 
 

R��(P, &) = 18T%(1 − $′) × V(3 − 4$′)W�� ln Y1Z[ + Z,�Z,�\                                                          (17) 

 

S��(P, &) = − 14T(1 − $ ′) Y1Z[ × V.Z.] (1 − 2$ ′)W�� + 2Z,�Z,�\ 
                                               −(1 − 2$′)^]�Z,� − ]�Z,�_                                                                                               (18) 
 
where r = ‖ξ− η‖ is the Euclidean distance between the load point P = (P�, P�) and the field point & =(��, ��)  
 Z = b(�� − P�)(�� − P�)c�/�                                                                                                            (19) 
 
The derivatives of r(P, &) with respect to the field point coordinates and the unit normal vector at the field 
point are as follows  
 

Z,� = .Z.�� = 1Z (�� − P�) = − .Z.P�                                                                                                     (20) 

 .Z.] = .Z.�� ]�                                                                                                                                        (21) 

 
The boundary integral equation in the 
 

Oe(P) = L Qe(&)Ref(P, &)�6(&)5 − L Oe(&)Sef(P, &)�6(&)5                                         (22) 

 
The boundary integral equation resulting from the direct boundary element formulation for anisotropic 
structures, may be written as 
 

gefOe(P) + L Sef(P, &)Oe(&)�6(&)5 = L Ref(P, &)Qe(&)�6(&)5                                  (23) 

 
where P(P�, P�) and & = (�, �) are the load and field points, respectively. Ref(P, &) and Sef(P, &) are the 
fundamental solutions which represent the displacements and tractions, respectively,  
 
 The coefficient gef depends on the local geometry of the boundary at P, which lies on the smooth surface 
or a sharp corner, h, ] = 1, 2. 
 

4 Shape Design Sensitivity Analysis of 2D Anisotropic Structures 
 
Implicit differentiation of the boundary integral equation (23) with respect to the design variable �i yields 
the following equation [25] 
 

gef .Oe(P).�i + .gef.�i Oe(P) 

 

+ L j.Sef(P, &).�i Oe(&) + Sef(P, &) .Oe(&).�i k5 �6(&) 
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+ L Sef(P, &)Oe(&)5
.^�6(&)_.�i  

 

= L j.Ref(P, &).�i Qe(&) + Ref(P, &) .Qe(&).�i k5 �6(&) 

 

                                  + L Ref(P, &)Qe(&)5
.^�6(&)_.�i                                                                                                     (24) 

 hl�f is the unit vector in the tangential direction to the surface, and hl�f is the unit vector in the normal 
direction to the surface, let Oe, Qe , �ef  and �ef  be the displacements, tractions, strains and stresses, 
respectively. 
 
The tangential displacement is 
 O>e(P) = mn(P)Oen hl�f 
 
and the tangential strain is 
 

��̅�(P) = �mn(P)�P Oen hl�f 1o(P) 

 
The gradients of the tangential strain may be written as follows 
 .��̅�.�i = �mn(P)�P .Oen.�i hl�f 1o(P) + �mn(P)�P Oen .hl�f.�i

1o(P) 

 

                                         + �mn(P)�P Oen hl�f −1:o(P);� .:o(P);.�i                                                                                (25) 

 
The fundamental solutions can be written in a more concise form by introducing the following complex 
variables: 
 <� = (� − P�) + 7�(� − P�)                                                                                                         (26#) 
 
 <� = (� − P�) + 7�(� − P�)                                                                                                        (26=) 
 
In terms of above complex variables the fundamental solutions for displacements and tractions, respectively, 
may be written in the following form: 
 R�� = 2NJpZ�eq�� ln(<�) + Z�eq�� ln(<�)r,                                                                                (27) 

 

Se� = 2]�NJ s7��qe�<� + 7��qe�<� t − 2]�NJ u7�qe�<� + 7�qe�<� v                                             (28) 

 

Se� = −2]�NJ u7�qe�<� + 7�qe�<� v + 2]�NJ uqe�<� + qe�<� v                                                   (29) 

 
According to � − �  coordinate system, the ]e  are the outward unit normal components at &  and the 
constants Zfe are 
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Z�e = ���7e� + ��� − ���7e , Z�e = ���7e + ���/7e − ���                                      (30) 
 
and qef  are complex constants that can be determined from the following matrix equations 
 

:Imby�c Reby�c Imby�c Reby�c; =
|}
}~Rebqe�cImbqe�cRebqe�cImbqe�c��

��                                              
 

              =
|}
}}
}~− 14T We�14T We�00 ��

��
�� ; h = 1, 2                                          (31#) 

 byfc = b� %f Z�f Z�fc�;    ] = 1, 2                                                                                       (31=) 
 
For further details, we refer the reader to Cruse [29] 
 
According to the numerical procedure for the boundary element implementation of Fahmy [30-33], we 
obtain from equation (23) the following system of linear algebraic equations which has to be solved using 
any of the standard matrix reduction techniques to obtain the unknown displacements and tractions at the 
boundary as: 
 �� = �                                                                                                                                                (32) 
 
where � and � are the matrices that contain evaluated integrals of the fundamental displacement and traction 
kernels, respectively 
 

Let h�f is the tangential unit vector to the surface and h�f is the normal unit vector to the surface. Let Oe, �ef, �ef and Qe are, respectively, the displacements, stresses, strains and tractions in the local coordinates. 
 

The tangential displacement is 
 O>e(P) = mn(P)Oen h�f                                                                                                                     (33) 
 
where mn(P)  (( = 1, 2, 3) 
 
and tangential strain is 
 

��̅�(P) = �mn(P)�P Oen h�f 1o(P)                                                                                                       (34) 

 
In the local coordinates the stress components can be calculated by using the constitutive equation (2) 
 
The derivatives with respect to a design variable �i (ℎ = 1, 2) for anisotropic materials will be as follows:                  
 .Ref.�i = 2 ..�i :NJ(Zf�qe� ln(<�) + Zf�qe� ln(<�));                                                              (35) 
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.Se�.�i = 2]� ..�i sRe j7��qe�<� + 7��qe�<� kt + 2NJ j7��qe�<� + 7��qe�<� k .]�.�i                     
             −2]� ..�i uRe Y7�qe�<� + 7�qe�<� [v − 2Re Y7�qe�<� + 7�qe�<� [ .]�.�i               (36) 

 

 .Se�.�i = −2]� ..�i uRe Y7�qe�<� + 7�qe�<� [v − 2Re Y7�qe�<� + 7�qe�<� [ .]�.�i                      
 

               +2]� ..�i uRe Yqe�<� + qe�<� [v + 2Re Yqe�<� + qe�<� [ .]�.�i                                (37) 

 

To compute the previous derivatives, the complex values ln^<�_ and 
��� may be written as follows 

 ln^<�_ = ln�<�� + � arg^<�_ , 1<� = <�̅�<���                                                                                    (38) 

 
It is convenient to introduce the following real functions 
 �� = (�� − P�) +∝� (�� − P�)                                                                                                        (39) 

 �� = (�� − P�) +∝� (�� − P�)                                                                                                        (40) 
 

Ψ� = −��P� + ����                                                                                                                            (41) 
 

Ψ� = −��P� + ����                                                                                                                           (42) 
 

The complex coordinates and their complex conjugates can be written in the following form 
 <� = �� + �Ψ� ,   <�̅ = �� − �Ψ�  , � = 1, 2                                                                                           (43) 
 
By substituting from equations (38-43) into equations (35-37) we obtain 
 .Ref.�i = 2Re(Zf�qe�) ..�i :ln|<�|; + 2Re(Zf�qe��) ..�i :arg(<�); 

                                  +2Re(Zf�qe�) ..�i :ln|<�|; + 2Re(Zf�qe��) ..�i :arg(<�);     (44) 

 .Se�.�i = 2Re s7��qe�<� + 7��qe�<� t .]�.�i − 2Re Y7�qe�<� + 7�qe�<� [ .]�.�i 

 

                   +2]�NJ(7��qe�) ..�i Y ��|<�|�[  + 2]�NJ(−7��qe��) ..�i Y Ψ�|<�|�[ 

 

                   +2]�NJ(7��qe�) ..�i Y ��|<�|�[ + 2]�NJ(−7��qe��) ..�i Y Ψ�|<�|�[ 

 

                  −2]�Re(7�qe�) ..�i Y ��|<�|�[ − 2]�Re(−7�qe��) ..�i Y Ψ�|<�|�[ 

 

                              −2]�NJ(7�qe�) ..�i Y ��|<�|�[ − 2]�Re(−7�qe��) ..�i Y Ψ�|<�|�[  (45) 
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.Se�.�i = −2Re u7�qe�<� + 7�qe�<� v .]�.�i + 2Re Yqe�<� + qe�<� [ .]�.�i        
 

                 −2]�NJ(7�qe�) ..�i Y ��|<�|�[ − 2]�NJ(−7�qe��) ..�i Y Ψ�|<�|�[ 

 

                  −2]�NJ(7�qe�) ..�i Y ��|<�|�[ − 2]�Re(−7�qe��) ..�i Y Ψ�|<�|�[ 

 

         +2]�NJ(qe�) ..�i Y ��|<�|�[ + 2]�Re(−qe��) ..�i Y Ψ�|<�|�[ 

 

                              +2]�Re:qe�; ..�i Y ��|<�|�[ + 2]�Re(−qe��) ..�i Y Ψ�|<�|�[            (46) 

 
Thus, the design sensitivity analysis is performed by implicit differentiation of equation (32) that describes 
the structural response with respect to the design variables x� which are the coordinates of several nodes on 
the movable part of the boundary 
 .�.�i R + q .R.�i = .�.�i                                                                                                                        (47) 

 
Which may be expressed in the following form 
 

� .R.�i = Y .�.�i − .�.�i R[                                                                                                                  (48) 

 
This is a set of linear algebraic equations to compute the unknown displacement and traction gradients. After 
obtaining the displacement sensitivity, the stress sensitivity can be obtained. 
 
The tangential strain’s sensitivity can be obtained by differentiating equation (34) as follows 
 .��̅�.�i = �mn(P)�P .Ofn.�i h�f 1o(P) + �mn(P)�P Ofn .h�f.�i

1o(P)                                                          
 

              + �mn(P)�P O fn h�f −1:o(P);� .:o(P);.�i                                                                         (49) 

 

The elastic compliance can be computed as the strain energy of the structure  
 

"5 = 12 L QeOe�65                                                                                                                           (50) 

 

If the structure’s boundary is discretized into � quadratic boundary elements. Then, the elastic compliance 
can be computed as 
 

"5 = 12 � L :Qen (P)mn(P);5�
�

���
:Oe� (P)m�(P);o(P)�P                                                                   (51) 

 
After the displacements, stresses, tractions and their sensitivities are evaluated, the sensitivities of elastic 
compliance with respect to the boundary point coordinates x�  can also be calculated by implicit 
differentiation method as follows 
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."5.�i = 12 � L s�Qen��i mn(P) + Qen (P) �mn(P)��i t5�
�

���
p:Oe� (P)m�(P);o(P)�Pr 

 

+ 12 � L :Qen (P)mn(P);5�
�

��� s�Oe� (P)��i m�(P) + Oe� (P) �m�(P)��i t 
 

                        × o(ξ)�ξ + 12 � L :Qen (ξ)mn(ξ);��
�

���
:Oe� (ξ)m�(ξ); ∂o(ξ)∂�i �ξ                 (52) 

 

5 Numerical Shape Optimization of 2D Anisotropic Structures  
 
let N be a closed bounded plane region whose boundary ( consisting of a finite number of smooth curves and 
assuming that h and � are continuous functions and have continuous partial derivatives with respect to �� 
and �� 
 

� Y.�.�� − .h.��[M ������ = L (h ��� + � ���) n                                                                  (53) 

 

By using the Green's theorem, the area q̅ of the domain N  q̅ = ∬ ������M ¢ can be written in terms of a 

line integral over the boundary  
 

q̅ = 12 L (�� ��� − �� ���)n                                                                                                            (54) 

 
If the boundary of the structure is discretized into � quadratic isoparametric boundary elements, and the 
coordinates at nodal points can be expressed as  
 �e(P) = mn(P)�en                                                                                                                              (55) 
 
where mn(P) quadratic shape function corresponding to the (th quadrilateral element's node number, and P 
is the intrinsic coordinate for the element. Therefore, the area of the domain can be calculated as follows 
 

q̅ = 12 � L :��(P)]� + ��(P)]�;�
£�

�
��� o(P)�P                                                                                   (56) 

 o(P) is the Jacobian matrix of the transformation and ]� and ]� are direction cosines of the unit normal 
vector to the surface of the structure which may be written as 
 ]� = ����q̅ = ���/�P�q̅/�P = ���/�Po(P)                                                                                                    (57#) 

 

]� = − ����q̅ = − ���/�P�q̅/�P = − ���/�Po(P)                                                                                        (57=) 

 

Substitution of equations (57) into equation (56) yields  
 

q̅ = 12 � L u��(P) ����P − ��(P) ����P v�
£�

�
��� �P                                                                                   (58) 
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The weight derivative can be calculated by differentiating (56) with respect to the design variable based on 
the consideration that, if �i is the �� coordinate of a movable node, then 
 ..�i j���(P)�P k = 0                                                                                                                           (59#) 

 
and 
 ..�i ^��(P)_ = 0                                                                                                                               (59=) 

 
Therefore 
 .q̅.�i = 12 � L s.��(P).�i

����P − ��(P) ..�i Y����P [t�
£�

�
��� �P                                                                (60) 

 
If �i is the �� coordinate of a movable node, then  
 ..�i j���(P)�P k = 0                                                                                                                           (61#) 

 
and 
 ..�i ^��(P)_ = 0                                                                                                                              (61=) 

 
Therefore 
 .q̅.�i = 12 � L s��(P) ..�i Y����P [ − .��(P).�i Y����P [t�

£�
�

��� �P                                                           (62) 

 

where weight minimization is equivalent to area minimization. 
 
The general problem that we discuss in the present paper is the minimization of structural weight which must 
satisfy constraints on stresses and geometry. Since both stress and weight constraints are non-linear 
functions of the design variables, then the feasible direction approach has been employed as the 
computational optimization technique. This method determines a usable-feasible direction where the design 
point can be moved in the design space. 
 

Assuming the weight as the objective function q̅(�) that we want to minimize Subject to constraint function  ¤�(�) ≤ ¦� , � = 1, … , ¨ 
 
According to iterative unconstrained optimization approach, the design variable is updated during the 
iteration process to find the optimum result as follows 
 �i©� = �i + 6i�i                                                                                                                               (63) 
 

where the line step parameter 6i determines the amount of change in � to find the minimum design point 
along the search direction �i. 
 

The iteration process must satisfy the following condition 
 q̅(�i©�) − q̅(�i) ≤ �                                                                                                                         (64) 



where � is the predefined tolerance. 
 

The search direction can be defined as
 �i = −ªi«q̅(�i)      
 

where ªi is the ℎ − th approximation of the inverse Hessian matrix, which can be given by
 

ªi©� = s® − ¯i�i(¯i)��i
 
where ® denote the identity matrix and 
 ¯i = �i©� − �i          
 
and 
 �� = «q̅(�i©�) − «q̅
 ª° = ®                           
 

6 Numerical Results and Discussion
 
The two-dimensional anisotropic plate with an elliptic hole was used as the numerical example in order to 
verify the formulation and the implementation of BEM presented in this paper, the physical 
material of the considered plate for orthotropic (see [1]) and isotropic (see [2]) and for anisotropic is given as 
follows: 
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controlled by five master nodes as the design variables. In order to control the positions of the master nodes 
which control the shape of the structure, a five
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The variations of the stress components 
anisotropy which are very pronounced on the figures
 

 

The displacement sensitivities are plotted in Figs. 8 and 9 to verify the formulation and the 
of BEM. These results obtained with the BEM have been compared graphically with those obtained using 
the analytical solution of [35] and finite element method of [36].  It can be seen from these figures that the 
BEM results are in very good agreement with the analytical results and FEM, thus confirming the accuracy 
of the BEM. Our results thus confirm that our method is strong and efficient.
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anisotropy on the displacements and stresses is demonstrated and the displacement sensitivities with respect 
to design variables are calculated using implicit differentiation method (IDM). The numerical optimization 
method used in the program is the feasible direction approach, together with the golden-section search 
technique. The shape of anisotropic structures can be manipulated easily by varying a chosen set of the 
design parameters during the optimization process. The shape sensitivities can be directly derived from the 
variational form of the governing equations. The accuracy produced by the proposed method enables the use 
of gradient-based minimizers, that converges superlinearly. 
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