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Solar load is one of the key inputs in thermal analysis of all solar based

applications using ray tracing. Commercial and academic Computational

Fluid Dynamics (CFD) codes incorporate different solar load models for ray

tracing, i.e., Solar Position and Intensity (SOPLOS) theoretical maximum

function, American Society of Heating, Refrigeration, and Airconditioning

Engineers (ASHRAE) fair weather and constant solar load models. However,

solar load depends largely on weather conditions of the site whereas the solar

load models in CFD software do not accommodate changing weather patterns

and hence the CFD simulation results obtained are not representative of an

extended period of time. This paper studies the effect of changing weather

patterns on solar load assessment, using bifacial solar panels as a case study. In

this study, on-site data of a humid sub-tropical region for monsoon season,

mid-June to mid-August, has been used as an input for solar ray tracing due to

large temperature variations and cloud cover for longer duration. Comparative

study of SOPLOS and ASHRAE models with in situ model shows that they over

predict front side solar load, with only 0.5% and 13% matching in situ data

respectively, while both models under predict rear side solar load in the studied

time period, with 2% and 24% solar load estimation agreeing with in situ data

respectively.
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Introduction

The use of hydrocarbons in energy sector has resulted in unprecedented amount of

emissions of greenhouse gases which is leading to irreversible changes in our eco-system.

These drastic changes have compelled researchers to focus on renewable energy resources,

particularly solar energy as it is one of the cleanest and most abundant sources of

renewable energy. Earth’s atmosphere receives 3.85 million exajoules (EJ) of solar energy
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per year, and rooftop solar panels have the potential of producing

27 PWh of energy per annum (Joshi et al., 2021). A significant

disadvantage of conventional solar panels is insufficient energy

production on cloudy days, resulting in a low return on

investment in regions that receive less direct sun light,

necessitating solar irradiance studies. Additionally, the

growing focus on solar energy research has significantly

increased thermal analysis of solar based applications e.g.,

solar heaters, solar dryers, solar chimneys, solar panels etc.

Thermal analysis involves the computation of incident solar

radiations, their absorption and reflection to calculate

radiative flux and their corresponding radiation temperatures.

The efficiency of commercial PV cells is rated between 10 and

20% with $0.1–0.24/kwh (Photovoltaic Energy Factsheet, 2021)

(Soomar et al., 2022) while the remaining incident solar energy is

mostly wasted as heat, which further reduces their overall

efficiency by decreasing the voltage generated. In addition,

there are shading losses in a solar panel when every cell in

the panel has to operate at the reduced current set by shaded cells

which may be remedied by installing panels on the roof or in

open lots (Iqbal et al., 2022). Alternatively, there are ways to

increase overall energy yield of solar panels. In terms of

technological and economic viability, bifacial solar module

technology, which is projected to dominate PV installations in

the near future, represents an emerging trend in rooftop PV

systems for energy generation (Desai et al., 2022). One of them is

by using bifacial solar panels, which produce power from both

sides of the panel. They are particularly suitable for climatic

regions with higher diffused light since no shading effects are

caused by direct sun light and bifacial solar panels can exploit

light from all available direction. In studies by Sun et al. (2018)

and Kopecek and Libal (2021), bifacial solar panels are claimed to

increase energy yield by 10%–30% when used on highly reflecting

light-colored surfaces. Coupled with an efficient Maximum

Power Point Tracking (MPPT) algorithm such as learning-

based real-time hybrid global search adaptive approach of

Wang et al. (2022) can yield greater energy extracting

efficiency. Furthermore, different approaches can be used to

reduce the inherent noise of the system (Arshad et al., 2022;

Chen et al., 2022). Given the significance of bifacial solar modules

in increasing energy capture and the importance of rear side solar

load in its numerical analysis, it is used as a case study in our

assessment.

Several models are present to estimate solar irradiance and

insolation on front and rear faces of tilted surfaces, specially tilted

bifacial solar panels. Danks (2014) calculated annual solar

insolation for different cities of the world by using solar

position algorithm developed by the National Renewable

Energy Laboratory (Reda and Andreas, 2004), diffused light

obtained from Perez sky model (Perez et al., 1990) and

integrated both of them for solar ray tracing in OpenFoam

(OpenFoam.com, 2022). In 2015, Yusufoglu et al. (2015)

elaborated individual and combined effect of several site-

specific conditions of bifacial solar panels, such as albedo,

reflective surface size, module elevation, and tilt angle. They

utilized Perez model (Perez et al., 1990) to calculate diffuse solar

irradiance, while albedo coefficient was calculated using the

method proposed by Ineichen et al. (1990). A ray tracing

method was then used in (Yusufoglu et al., 2015) to measure

the rear side and average irradiance of bifacial solar panel on a

summer day in Cairo for different elevations and albedo

coefficients. To model energy yield in bifacial solar panels

through simulations, Wang et al. (2015) provided guidelines

for the modelling process, calculated total solar power received in

Germany and Singapore throughout a particular day in July and

compared it with power received on other days in January, April,

and October. They also calculated bifacial module power with

different panel elevations and background reflectivity values for

Konstanz, Germany, and equinox of Singapore. To assess the

performance of bifacial modules in every region of the world, Sun

et al. (2018) derived a set of empirical design rules, which

optimize bifacial solar modules across the world and provide

the groundwork for rapid assessment of the location-specific

performance. The study used National Renewable Energy

Laboratory (NREL) solar position algorithm (Reda and

Andreas, 2004) in PV Sandia modelling toolbox (Holmgren

et al., 2018) to calculate solar path. It combined irradiance

values at the interval of 1 minute using Haurwitz clear-sky

model (Haurwitz, 1945; Haurwitz, 1946), implemented in

PVLIB tool box (Holmgren et al., 2018) with NASA monthly

Surface Meteorology database to calculate irradiance for each

climatic region with a spatial resolution of 1 × 1° (latitude). Sun

et al. (2018) concluded that the NASA satellite derived insolation

database is suitable for preliminary estimation, while detailed

local meteorological data is essential for actual installation.

Models like Isotropic Sky Diffuse Model, Simple Sandia Sky

Diffuse Model, Hay and Davies Sky Diffuse Model, Reindl Sky

Diffuse Model, and Perez Sky Diffuse Model do not use real

weather conditions and additionally are not included in popular

commercial software.

A coupled optical-electrical-thermal model of bifacial solar

panels was presented by Gu et al. (2020) using database from

solarGIS to obtain Global Horizontal Irradiance (GHI) and

Diffuse Horizontal Irradiance (DHI). These two values were

used in equations developed by Yang (2016), Sun et al.

(2012), and Noorian et al. (2008) to calculate front and rear

side irradiance of bifacial solar panel along with view factors

which accommodate diffuse surface to surface radiation. To

model bifacial illumination of full photovoltaic systems using

ray tracing annually, Ernst et al. (2022) utilized acceleration

strategies that reduced heavy ray tracing requirements by nearly

90%. In Zhao et al. (2021)used DIVA for Rhino, a program that

uses backward ray tracing method based on Perez model (Perez

et al., 1990) and a cumulative sky approach (Robinson and Stone,

2004) to analyze shading and mismatch loss. An open source

python toolkit bifacial radiance (Pelaez and Deline, 2020) was
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developed in 2020 to automate PV systems performance in ray

tracing software tool called RADIANCE (Ward, 1994). Altan

et al. (Haider et al., 2022a; Haider et al., 2022b) used deep

learning algorithms to forecast short- and long-term solar

irradiance. Performance evaluation and enhancement of solar

panels has also been the subject of several researches leading to

different types of solar simulators. Shah et al. (2020) designed a

solar simulator using 1,000 W metal halide lamp coupled with a

truncated ellipsoidal reflector optimized through parametric

iterations.

Absorptivity and emissivity of all surfaces in the domain

along with spectral distribution are required for solar load

calculation in thermal analysis, while the irradiance tools

discussed above calculate incident radiations. Solar load

models first calculate the direction of sun with respect to the

domain followed by calculation of radiative flux on surface

obtained via solar ray tracing. The radiative flux includes

primary solar hits on the object, reflective fluxes and diffusive

sky radiative fluxes. This solar load is used as a heat source in

energy equation for heat transfer. The present radiance models

e.g., Hay and Davies, Perez, Reindl etc. calculate plane of array

irradiance but they require an interface for coupling the

calculated irradiance values with surface absorptivity and

emissivity to calculate solar loads for thermal analysis.

Different commercial and opensource Computational Fluid

Dynamics (CFD) software have embedded solar load models

to predict illumination energy source that results from incident

solar radiation via solar ray tracing. These solar load models

include theoretical maximum model derived from Solar Position

and Intensity (SOPLOS), American Society of Heating,

Refrigeration, and Airconditioning Engineers (ASHRAE) fair

weather model, and constant solar load models. However,

solar load depends largely on weather conditions of the site

whereas the solar load models that CFD software use for thermal

analysis do not accommodate changing weather patterns; hence

the CFD simulation results obtained are not representative of an

extended period of time. A number of studies on solar

applications have used SOPLOS theoretical maximum and

ASHRAE-fair weather models primarily using commercial

CFD software ANSYS to predict solar loads. Table 1 provides

a summary of works with the solar load models.

A constant solar load model was used by Jonsson (2007),

Patidar (2009), and Kuharat and Anwar Bég (2019) for solar ray

tracing to simulate car cabin climate and solar collector

performance. They employed a constant Direct Normal

Irradiance value and found that the temperature distribution

is strongly dependent on the accurate estimation of solar load.

In Table 1, “solar calculator” indicates that the ASHRAE-

Fair-weather or SOPLOS theoretical maximum model was used

to calculate DNI and DHI. Moon et al. (2016) and Hadi et al.

(2022) used solar calculator in ANSYS to estimate solar load and

analyze thermal comfort for a passenger compartment of vehicle.

Similarly, Jain et al. (2019), used solar calculator to calculate solar

load parameters of Ludhiana on 21st November for CFD study of

solar dryer. In 2022, Zeeshan et al. (2022) predicted thermal

comfort effect of trees in streets of Karachi, Pakistan by using

P1 radiation modelling along with fair weather solar ray tracing

for solar irradiation and radiative transfer. In these studies, it was

mostly assumed that weather was clear and sunny in the studied

period to support the solar calculator model.

ASHRAE-Fair weather model uses extraterrestrial solar

irradiance data from ASHRAE handbook to calculate DHI

and DNI values. Potgieter et al. (2020) used fair-weather

model for solar ray tracing and compared numerical results

with experimental ones for solar air heater on a particular

time in day. Another study by Xu et al. (2022) used ASHRAE

fair-weather solar radiation model to get temperature

distribution inside a greenhouse throughout a day.

Fairweather model has also been used by Zhong and Calautit

(2020) for thermal modelling of a stadium in Doha. Attig-Bahar

et al. (2019) used solar load calculator in 3D numerical analysis of

solar chimney power plant, but for longer period of simulations,

they used one dimensional mathematical model coupled with

real weather data. Al-Nehari et al. (2021) applied solar load

model in solar cooker analysis via two methods: first by using

experimental values of DNI and DHI and second where ANSYS

TABLE 1 Research studies that utilize solar load models.

Models Description Research studies

Constant solar load Sun position was calculated through solar calculator but a constant value of DNI
was used for solar ray tracing

(Jonsson, 2007; Patidar, 2009; Kuharat and Anwar
Bég, 2019)

Solar calculator One of the two solar loadmodels i.e fair weather and theoretical maximumwas used
in solar calculator

(Moon et al., 2016; Hadi et al., 2022; Jain et al.,
2019; Zeeshan et al., 2022)

Fair-weather model Built-in ASHRAE Fair-weather model was used for solar load calculation (Potgieter et al., 2020; Xu et al., 2022; Zhong and
Calautit, 2020)

Solar calculator + Real weather
DHI and DNI

Built-in solar load models were used for 3D domain but real weather DNI and DHI
values were used for reduced 1D domain

Attig-Bahar et al. (2019)

Experimental DNI and DHI +
solar calculator

Used experimental DNI and DHI inputs for solar load and compared results with
built-in solar load models (Fair-weather/theoretical maximum)

Al-Nehari et al. (2021)
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solar calculator is used for solar ray tracing throughout the day.

However, the percentage difference in results is minor because

the experiment was carried out on a fairly clear day.

Solar load estimation using CFD tools is often used to assess

potential of a site for installation of solar PV and solar thermal

systems. These estimates are based on models often derived from

theoretical considerations and overlook actual weather patterns.

Therefore, this paper focuses on solar load estimation based on

actual weather patterns by comparing the radiative heat fluxes

obtained from in situ solar load model (using experimental DNI

and DHI) with the ASHRAE fair weather model and theoretical

maximum model used for solar ray tracing in CFD codes.

The focus of this study is a humid subtropical region because

of the diversity and severity of weather patterns fluctuating from

clear skies, regularly cloudy, particularly during monsoon season.

The frequent variations in cloud cover can have a significant

impact on solar load, whereas in other climatic conditions such a

critical impact is not expected. In this work, the differences

between experimental input based solar ray tracing and

existing solar calculator, including SOPLOS theoretical

maximum and ASHRAE-fair-weather models, for humid sub-

tropical regions is analyzed so that the accuracy of models can be

checked, and the results can be generalized for all similar climatic

regions. It was observed that the ASHRAE fair weather model

and SOPLOS theoretical maximum model overpredict front side

solar load with only 0.5% and 13% of those predictions matching

actual data respectively, while both models under predict rear

side solar load with 2% and 24% of those predictions matching

actual data, respectively.

Methodology

To perform a comparative study of SOPLOS theoretical

maximum, ASHRAE fair weather model and in situ DNI and

DHI values for numerical solar ray tracing on a bifacial solar

panel, OpenFoam solar load model with reflected rays was used.

Solar ray tracing method in the solar load model is used to

estimate the direct solar energy produced from incident solar

radiations by using a face shading algorithm. Radiative flux from

the first reflected rays can be optionally included in OpenFoam.

To account for diffuse surface to surface radiative flux, view

factor model needs to be used along with solar load model.

Sun direction coordinates for the domain were calculated

from 15th June to 15th August with half hourly interval, using

solar calculator code (OpenFoam.com). This period is selected

for study because the weather changes from dry and hot to humid

and hot, with the arrival of rainy season in most sub tropical

regions. Experimental values of DHI and DNI were measured

from a shaded pyranometer mounted at a location in Islamabad,

Pakistan. Steady state numerical simulation was performed for

each time interval. The total computations for one model with

half hour interval from 15th June to 15th August sums up to

1,678 number of simulations per model with a total

5,034 simulations for the three models. To automate the

computations, a parametric tool was developed in python that

takes values of start time, start Day, sun direction coordinates,

experimental DNI and DHI with half hourly interval and

integrates it in the OpenFoam case files. Probes are defined

on the front and rear sides of solar panel which record

radiative flux values for each time interval. The python script

for automation then runs the 5,034 simulations for all of the three

models and stores results in separate folders for each time

step. Specifications of the server used to perform the

simulations are: 64 cores and 128 threads, 384 GB RAM,

Ubuntu 20.04 operating system, NVIDIA Tesla v100 GPU

and CUDA 11.2. The total time taken for 2 months

simulation of all models is 10 days. Front and back radiative

flux values of bifacial solar panel from each simulation were

extracted and graphs were drawn for comparative study.

Data collection and processing

The in situ data of Global Horizontal Irradiance (GHI),

Diffuse Horizontal Irradiance (DHI) and Direct Normal

irradiance (DNI) were recorded at regular intervals at a single

location in Islamabad. The specifications of instruments used are

given in Table 2. The daily uncertainty for DNI and GHI/DHI

values is approximately 1% and less than 2% respectively.

Data was collected with time intervals of 10 min, however,

the instantaneous data at every half an hour interval was used in

simulation so that the changing weather pattern can be

accommodated along with manageable computational resources.

Simulation framework

All three models were applied on a south facing bifacial solar

panel, tilted at 30° the optimal year-around tilt angle for the

location, and covering approximately 5% of the ground domain.

Average elevation of the panel was kept constant at 1.6 m for all

models with dimensions of 1.68 m × 1.02 m × 0.04 m for the

panel. In the domain shown in Figure 1, north and east directions

are taken along y-axis and x-axis respectively.

Opaque reflective boundary condition was defined for panel

and ground, while transparent boundary condition was applied

on the remaining boundaries of the computational domain.

Spectral distribution was defined for two bands i.e., visible

and infra-red, with specific absorption emission values for

concrete and glass (Engineering ToolBox, 2009).

Three models were used in solar load to calculate direct

normal and diffuse horizontal irradiance. First is the user defined

solar load model in which insitu DNI and DHI data obtained

from instruments mentioned in Table 2 was utilized in solar load

radiation model for solar ray tracing. The second is fair weather
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model, integrated in OpenFoam and commercial CFD software.

It is derived from Eq. 1 and extraterrestrial solar irradiance and

related data from ASHRAE Handbook (Curcija, 2001).

EDN � A

exp (B/ sin β)
, (1)

where.

A = apparent solar irradiation at air mass m = 0.

B = atmospheric extinction coefficient β = Solar altitude

above horizontal (in degrees).

Albedo value of 0.35 for grey concrete of roof top was taken

from (Marceau and Vangeem, 2008). In OpenFoam, a cloud

cover fraction is also incorporated in the above equation as

shown in Eq. 2:

EDN � (1 − 0.75 × skyCloudCover Fraction3) ×
A

exp (B/ sin β)
(2)

,

Where, (Spark, 2016) provides monthly average cloud coverage

values of Islamabad, Pakistan. To keep fair weather model

realistic, average values of 10%, 20%, and 25% cloud cover for

the months of June, July and August respectively, were taken

instead of using a constant fraction.

The third is theoretical maximum model developed by

National Renewable Energy Laboratory (NREL), integrated in

OpenFoam. It calculates the maximum possible values of solar

irradiance which are unlikely to be experienced due to

atmospheric conditions. The equation for theoretical

maximum model is shown in equation Eq. 3

EDN � Setrn* Sunprime, (3)
where Setrn is the direct normal solar irradiance at the top of the

atmosphere and Sunprime is correction factor to account for

attenuation in solar load through the atmosphere. Both

theoretical maximum and fair weather models use Eq. 4

(Curcija, 2001) for calculating diffuse radiations on a tilt surface.

ED � CEDN
(1 + cos ϵ)

2
, (4)

where ϵ = tilt angle of surface from horizontal plane C= Solar

diffusivity constant.

The ground reflected solar irradiance on a tilt surface is

calculated using Eq. 5 (Moon et al., 2016).

ER � EDN(C + sin β)ρg
(1 − cos ϵ)

2
, (5)

where ρg is the ground reflectivity. The total diffuse irradiation on

a surface is calculated to be the sum of ED and ER. Simulations

were automated using basic python libraries such as shutil, OS,

numpy and pandas. Each test case value was read from excel file

database and written to radiation properties file which was then

TABLE 2 Instrument specifications.

Variables Instruments Uncertainty Sensitivity

GHI/DHI K&Z CMP21 Pyranometer/CMP21 Pyranometer (shaded) ±2% 7–14 μV/W/m2

DNI K&Z CHP1 Pyrheliometer ±1% 7–14 μV/W/m2

FIGURE 1
Computational domain considered in the study.

Frontiers in Energy Research frontiersin.org05

Rasheed et al. 10.3389/fenrg.2022.1019595

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1019595


read by the simulator to process on pre-built mesh. After

OpenFoam processing, the output values were extracted from

probe folder of each case recursively into a csv file. The

simulations were run parallel on 64 cores. The script also

wrote time taken by all set of simulations on a text file.

Results and discussion

The data collected through probes on front and rear side of

the south facing panel was extracted from each steady state

simulation performed. Solar ray tracing of calculated solar

loads resulted in radiative heat flux, hence the radiative heat

flux is also used as a parameter for comparison as it is a direct

result of solar load models employed. The results of solar ray

tracing for the south facing panel are shown in Figure 2. While

Figure 2 shows four instances in a day, which are indicative,

simulations for all daylight hours at half hour intervals

averaging ~28 simulations for each day are represented in

Figures 3, 4.

Using results drawn from the three models, graphs were

plotted for front and rear side radiative heat flux as shown in

Figures 3, 4. These graphs show distribution of radiative heat flux

on front and rear side of panels for a total of 5,034 data points

FIGURE 2
Solar ray tracing with radiative heat flux (W/m2) on 25th June in Islamabad, Pakistan.

FIGURE 3
Graphical representation of half hourly front-side radiative flux (qr) for 15th June-15th Aug.
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spread across 5:30 a.m. to 7:30 p.m. from 15th June to 15th

August.

From the graphs, it can be noted that although fair weather

and theoretical maximum models over-predict front side

radiative heat flux, they under-predict solar load on the rear

side of bifacial solar panel. The solar loads calculated with in situ

based input show greater dispersion because of changing weather

patterns. The graphs also display how theoretical maximum and

fair-weather models match only a small percentage of actual solar

loads obtained over extended period of time through in situ

model. In situ based solar load calculations were compared with

theoretical maximum and fair-weather solar loads by applying a

tolerance of ±15%. It was found that for front side, fair-weather

model overlaps with only 13% of in situ data while theoretical

maximum gives non-realistic solar loads, with only 0.5% of its

values overlapping in situ data. Similarly, for rear side, fair-

weather covers 24% of in situ solar loads while theoretical

maximum covers only 2% of in situ rear side solar load.

FIGURE 4
Graphical representation of half hourly back-side radiative flux (qr) for 15th June-15th August.

FIGURE 5
In situ total radiative flux (qr).
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Moreover, Islamabad has a weather pattern that receives a high

direct irradiance components during sunny days while it receives

high diffuse component for the rainy monsoon season. This

study also indicates that in regions which have hot summers with

humid rainy weather patterns in between, bifacial modules have

higher gains.

FIGURE 6
Fair weather total radiative flux.

FIGURE 7
Theoretical maximum total radiative flux.
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The plots in Figures 5, 6, 7 show that radiative transfer from

in situ case has the greatest amount of dispersion across days,

with a standard deviation of 91.24 against an average of 560 W/

m2 in daily averages over 2 months. Total radiative flux of

theoretical maximum model shows little variation across days,

with a standard deviation of 43.18 against an average of 740 W/

FIGURE 8
Total radiative transfer comparison.

FIGURE 9
Front side radiative transfer comparison.
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m2 while fair weather model shows almost no variation of total

radiative flux with days, with a standard deviation of

20.03 against an average of 683 W/m2.

A comparative graph showing difference between solar

ray tracing of fair-weather model and theoretical maximum

model with the solar ray tracing of in situ data is drawn in

Figure 8.

The angular deviation and offset of theoretical maximum

total radiative flux from in situ case is 13° and 300W/m2

respectively while angular deviation and offset of fair weather

total radiative flux from in situ case is 8° and 170W/m2

respectively in Figure 8. Although total radiative transfer

comparison shows small deviations, the breakdown of total

radiative transfer into front and back radiative transfer shows

large differences as shown in Figures 9, 10. The reason for large

differences between theoretical maximum model and in situ

model is the lesser attenuation applied by theoretical

maximum model on the normal solar irradiance reaching the

atmosphere. Using this model for solar thermal analysis of solar

panels can lead to highly inaccurate results. The radiative heat

fluxes obtained from fair weather model for the front side are

comparable with the ones obtained from in situ data but for a

particular time period only i.e., near sun rise and sun set. There is

large discrepancy for the rear side solar loads gained through fair-

weather model. This is because the fair-weather model, derived

from ASHRAE handbook and integrated in commercial and

open source software, is based on the data obtained for 21st day

of each month during the base year of 1964 (Curcija, 2001).

Two sample z-test was performed in which in situ model was

compared against fair weather and theoretical maximummodels. The

significant value was taken to be 0.01 and p values were calculated for

each sample set. The details of two sets are given in Table 3.

Since the p-value is less than 0.01 for both sample sets, we

have sufficient evidence to reject null hypothesis. In other words,

the total radiation transfer is significantly different between the

two models. The details of different radiative fluxes calculated

from all three models are shown in Table 4.

It can be observed that although average total radiative transfer

of theoretical maximum and fair-weather cases is more than in situ

case, the rear side gain from in situmodel is the highest. The average

difference between in situ and fair-weather model, from Table 4, for

front and rear side radiative flux is approximately 6% and 26%

respectively. Similarly, for total radiative flux, the average fair

weather radiative flux varies from in situ radiative flux by 18%.

As evident through the differences, using both models in solar

thermal analysis that expands over long periods of time can lead to

large inaccuracies in the results. The theoretical maximum solar load

model is seldom used in literature, while the frequent use of fair

weather model employed by studies such as Potgieter et al. (2020);

Xu et al. (2022) and Zhong and Calautit (2020) is correct only across

a limited number of cases. Most of the studies that used fair weather

model or solar calculator assumed clear sky conditions in the studied

time periods. While such results are accurate for shorter period of

times, they are not accurate for an extended period of time, especially

in humid-sub tropical regions where summers are marked by the

arrival of heavy rainfall season. In such climatic conditions where the

FIGURE 10
Back side radiative transfer comparison.
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weather is often changing from sunny to overcast in a single day, the

assumption of clear skies for calculating solar loads can introduce

increased errors in the CFD results.

Conclusion

Solar load estimation leading to radiative heat flux, on a

bifacial solar panel with constant elevation and albedo, was

carried out using three methods over a period of 2 months

starting from mid-June to mid -August. The three methods

included SOPLOS theoretical maximum and ASHRAE-fair

weather solar load models, which are often used in

commercial and opensource CFD software. Both methods

were compared with the third method, the in situ solar load

approach that relies on on-site weather data and which has rarely

been employed in previous research. It was found that SOPLOS

theoretical maximum and ASHRAE fair weather models over

predict front side load, with only 0.5% and 13% matching in situ

data respectively while under predict rear side solar load, with 2%

and 24% solar load aligning with in situ data respectively. The

focus of this study is monsoon season as it is more diverse in solar

loads, this can be expanded to a whole year. Additionally, only

one albedo for concrete as was considered and tilt angle was

maintained at 30°, as both are optimal configurations, however

different albedo may be considered for vegetation as well as a

broader range of tilt angles.

It was observed that using theoretical maximum and fair-

weather models in studies can lead to high inaccuracies during

analysis of solar thermal systems. Standard deviation of in situ

daily averages was found to be 91.24 against an average of

560W/m2. Therefore, the approach of using daily averages

from in situ data is also not accurate since the daily average is

not consistent throughout the month. Consequently, the

results obtained through these models cannot be

generalized for longer time periods, extending over months

or years. The use of in situ data in conjunction with solar ray

tracing will provide more accurate assessment of irradiance on

solar photovoltaic panels.
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TABLE 3 z-test results.

In situ and fair-weather In situ and theoretical
max

Two sample z-test t-statistics 8.9725 14.7461

p-value 0.000 0.000

TABLE 4 Statistical properties of radiative transfer for different models.

Statistics qr back (W/m2) qr front (W/m2) Total qr (W/m2)

Theoretical max mean 96.97 681.44 740.44

max 422.2 1,235.4 1,657.5

Min 44.8 109.8 185.7

Fair weather mean 181.32 501.56 682.88

max 304.2 912.7 1,202.3

Min 0.00033 0.000194 0.000523

In situ mean 192.77 366.90 559.67

max 579.0 921.7 1,491.6

Min 0.64 0.64 1.28
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