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ABSTRACT
Accurate forecasting of natural gas production is crucial for economic stability, environmental sustainability, and
market investment. This study presents an advanced forecasting method using the fractional grey Bernoulli
model, which combines fractional accumulation and Bernoulli processes to enhance the predictive accuracy for
nonlinear datasets. The model’s versatility and flexibility allow it to adapt to various data characteristics and
complexities, thereby outperforming traditional grey models in forecasting performance. To optimize the model
parameters, this study employs the Particle Swarm Optimization (PSO) algorithm, further improving the model’s
effectiveness. Empirical analysis of natural gas production data from Brazil, Italy, and Qatar demonstrates that
the model exhibits significant advantages in both fitting and forecasting capabilities. The findings indicate that
the fractional grey Bernoulli model achieves high accuracy and reliability in predicting natural gas production in
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these countries, providing a robust framework for strategic energy planning and investment decision-making.
With average forecast errors of 1.9113%, 4.0353%, and 1.8902% for natural gas production in Brazil, Italy,
and Qatar respectively, this study underscores the model’s effectiveness in enhancing forecast reliability and
minimizing risk, providing valuable insights for sustainable energy development.

Keywords: Fractional order; Grey Bernoulli model; particle swarm optimization; natural gas production.

1 INTRODUCTION

Accurate predictions of natural gas production
are crucial for economic stability, environmental
sustainability, and informed investment decisions on
a global scale (Safari et al., 2019; Yemelyanov et al.,
2021). As a vital energy source, natural gas significantly
influences the energy landscape of countries like Brazil,
Italy, and Qatar. These forecasts are essential not
only for optimizing extraction strategies but also for
aiding policymakers and businesses in addressing the
environmental challenges linked to energy production,
including carbon emissions. Understanding the
dynamics of natural gas production is key to enhancing
energy policies and investment strategies in these
regions, ultimately contributing to a more sustainable
and resilient energy future.

Grey system theory was first proposed by Deng in
1982 (Deng, 1982), with the grey model GM being the
most important and fundamental model. It laid the
foundation for the development of grey system theory
and played a crucial role. Following the development
of NGM(1,1) (Cui et al., 2009), DGM (Xie and Liu,
2005) and other univariate models were subsequently
proposed. Moreover, beyond univariate models, grey
system modeling has gradually expanded to include
research on multivariate grey models. Based on the
GM(1,1) model, Deng (Deng, 1984) proposed the
GM(1,n) model in 1984, which is more general and
widely applicable than the GM(1,1) model. However, the
GM(1,n) model has some theoretical issues that were
pointed out by Tien (Tien, 2012) in 2012. Tien noted that
using the trapezoidal rule to discretize the convolution
integral of the analytical solution to the whitening
equation could lead to better prediction results. In 2005,
Tien (Tien, 2005) proposed the GMC(1,n) multivariable
grey model. Later, the models such as NGMC(1,n)
(Wang, 2014), DGMC(1,n)(Naiming and Sifeng, 2008)
were proposed soon. In 2008 and 2010, Chen (Chen
et al., 2008, 2010) et al. proposed a nonlinear
Bernoulli equation based on the GM(1,1) model,
which they referred to as the nonlinear grey Bernoulli
model(BernoulliGM), abbreviated as the NBGM model.

The above models are all traditional first-order(1-AGO)
accumulated grey models. They have played a crucial
role in the subsequent expansion, improvement, and
optimization of grey models.

The grey model, as an important tool for handling
uncertainty and small sample data, has demonstrated
its unique advantages in various fields (Zeng et al.,
2019). Existing research indicates that traditional large-
sample statistical models perform poorly when data is
insufficient, failing to provide accurate predictions and
analyses (Li et al., 2016). In contrast, grey models
are particularly suited for small sample data because
they can achieve high prediction accuracy even with
limited sample data through inherent mathematical
processing and model optimization (Wang and Ye,
2017). This capability makes grey models especially
important in practical applications, particularly in fields
such as energy (Ma et al., 2019b; Wu et al., 2020;
Ma et al., 2019a), where data collection is challenging
or sample sizes are small. Further research and
optimization of grey models’ small sample prediction
capabilities can enhance the accuracy of future trend
predictions and the scientific basis for decision-making
(Ma and Liu, 2018). In practical applications, due to the
difficulty in obtaining large, high-quality data samples,
small sample prediction becomes particularly important.
Especially in the energy sector, where data collection
is often limited, grey models are widely used for energy
forecasting. These models not only assist relevant
departments in formulating accurate energy policies but
also effectively assess energy demand, contributing to
the stability and sustainable development of the energy
market.

Various grey prediction models, such as the grey
model (GM(1,1)) (Deng, 1984), have been widely
used due to their simplicity and applicability to small
samples. However, these models often struggle with
complex, nonlinear datasets. Recent advancements
have led to the development of more sophisticated
grey models, including the fractional grey Bernoulli
model (FBernoulliGM) (Wu et al., 2019), nonlinear
grey Bernoulli model (BernoulliGM) (Chen, 2008; Chen
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et al., 2010), hybrid accululation grey model(HAGM)
(Zhao et al., 2023), new information priority nonlinear
grey Bernoulli model (NIPBernoulliGM) (Xiao and Xiao,
2023), fractional-order nonhomogeneous discrete grey
model (FNDGM) (Wu et al., 2014b), new information
priority grey model (NIPGM) (Wu et al., 2015), and
fractional grey model(FGM)(Wu et al., 2014a) to
improve prediction accuracy. The fractional grey
Bernoulli model(FBernoulliGM) stands out among
these models, demonstrating superior performance in
handling nonlinear relationships and providing more
reliable forecasts.

The fractional grey Bernoulli model (FBernoulliGM) (Wu
et al., 2019) emerges as a powerful tool for this purpose,
integrating the concepts of fractional accumulation and
Bernoulli processes to enhance predictive accuracy
in nonlinear scenarios (Yin and Mao, 2023; Şahin
and Şahin, 2020). Unlike traditional grey models, the
fractional grey Bernoulli model leverages fractional
orders to better capture the intricacies of real-world
data, accommodating the variability and uncertainty
inherent in energy systems. Its adaptability allows it to
effectively model both short-term fluctuations and long-
term trends in natural gas production.

Studies have shown that the fractional grey Bernoulli
model can significantly enhance forecasting accuracy
across diverse contexts. By employing this model,
we can obtain more precise estimates of natural gas
production, which are crucial for strategic planning and
policy formulation. The flexibility of the The fractional

grey Bernoulli model not only improves prediction
reliability but also facilitates a deeper understanding
of energy dynamics in the studied regions.

This paper focuses on utilizing the fractional grey
Bernoulli model to analyze and forecast natural gas
production in Brazil, Italy and Qatar. The research
aims to validate the model’s effectiveness through
empirical case studies, revealing its advantages over
traditional forecasting methods. The subsequent
sections will elaborate on the model’s structure, present
empirical findings, and draw conclusions regarding its
implications for energy forecasting and policy.

The remainder of this article is structured as follows:
Section 2 introduces the prediction model and the
fractional order optimization method. Section 3
presents three prediction cases, while Section 4
concludes the discussion.

2 RESEARCH METHODOLOGY

2.1 The Fractional Accumulation
Bernoulli Grey Model

From Ref.(Wu et al., 2014a), consider a nonnegative
original series X(0) =

{
X(0)(1), X(0)(2), ..., X(0)(t)

}
.

The r-order fractional accumulation (denoted as r-FOA)
of this series can be expressed as follows:

X(r)(m) =

m∑
j=1

(
m− j + r − 1

m− j

)
X(0)(j), m = 1, 2, . . . , t, (2.1)

where r represents the fractional order, and the binomial coefficient
(
m−j+r−1
m−j

)
is defined as:(

m− j + r − 1

m− j

)
=

(m− j + r − 1)(m− j + r − 2) · · · (r + 1)r

(m− j)! . (2.2)

Similarly, the inverse fractional accumulation of order r (referred to as r-IFOA) is defined by the following expression:

X(−r)(m) =

m∑
j=1

(
m− j − r − 1

m− j

)
X(0)(j), m = 1, 2, . . . , t. (2.3)

By utilizing these definitions, the relationship between r-FOA and r-IFOA can be established as:

(X(r)(m))(−r) =

m∑
j=1

(
m− j − r − 1

m− j

)
X(r)(j) = X(0)(m), m = 1, 2, . . . , t. (2.4)

Eq.(2.4) highlights the intrinsic connection between the accumulated series X(r)(m), the inverse accumulation
X(−r)(m), and the original series X(0)(m). This relationship is crucial for recovering the original series from
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predicted values X̂(r)(m) obtained through the fractional grey model, a process that will be further explained in
subsequent sections.

From Ref.(Wu et al., 2019), the fractional accumulation nonlinear Bernoulli grey model can be formulated as the
following nonlinear differential equation:

dX(r)(t)

dt
+ aX(r)(t) = b(X(r)(t))γ , (2.5)

where γ represents a nonlinear parameter. When γ = 0, this model simplifies to the traditional Bernoulli grey
model (BernoulliGM). If γ 6= 0 and γ 6= 1, the equation can be linearized as:

dY (r)(t)

dt
+ (1− γ)aY (r)(t) = (1− γ)b, (2.6)

where the transformation Y (r)(t) = (X(r)(t))1−γ is applied. This linear Eq.(2.6) is known as the whitening equation
of the fractional Bernoulli grey model (FBernoulliGM). The corresponding discrete form of this equation is:

Y (r)(m)− Y (r)(m− 1) + (1− γ)aZ(r)(m) = (1− γ)b, m = 2, 3, . . . , t, (2.7)

where the background value Z(r)(m) is given by:

Z(r)(m) =
1

2

[
Y (r)(m) + Y (r)(m− 1)

]
. (2.8)

Given the fractional order γ. To estimate the parameters a and b in Eq.(2.6), the least squares method can be
used. The estimation equation is:

[(1− γ)a, (1− γ)b]T = (BTB)−1BTY, (2.9)

where the matrices B and Y are constructed as follows:

B =


−Z(r)(2) 1

−Z(r)(3) 1
...

...
−Z(r)(t) 1


(t−1)×2

, Y =


Y (r)(2)− Y (r)(1)

Y (r)(3)− Y (r)(2)
...

Y (r)(t)− Y (r)(t− 1)


(t−1)×1

. (2.10)

Solving the differential Eq.(2.6) and substituting the values of (1 − γ)a and (1 − γ)b, we derive the solution for
Ŷ (r)(m) as:

Ŷ (r)(m) =

(
Y (r)(1)− b

a

)
e−a(1−γ)(m−1) +

b

a
, m = 1, 2, . . . , t, (2.11)

where Y (r)(1) = Y (0)(1). Finally, using equation (2.4) and the transformation in equation (2.6), the predicted
values for the original series can be expressed as:

X̂(0)(m) =
(
(Ŷ (r)(m))

1
1−γ

)(−r)
, m = 1, 2, . . . , t. (2.12)

2.2 Optimization Algorithm Solves Nonlinear Parameters
Based on the previous content, we can observe that the nonlinear parameter significantly affects the accuracy of
the model’s predictions to a considerable extent. This section provides a detailed discussion on optimizing the
algorithm for solving the optimal nonlinear parameters.

To solve this optimization problem, we reformulate it as an error-minimization task by tuning the parameters within
the constraints set by the proposed model’s structure. Among various error metrics, we choose the Mean Absolute
Percentage Error (MAPE) as the standard for assessing the model’s prediction accuracy. MAPE provides a
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straightforward representation of relative error, known for its robustness and interpretability, making it suitable
for different types of datasets.

The Mean Absolute Percentage Error (MAPE) for model fitting, validation, and forecasting is defined as follows:

MAPEfit =
1

n

n∑
m=1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (2.13)

MAPEvalid =
1

s

n+s∑
m=n+1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (2.14)

MAPEpred =
1

p

n+s+p∑
m=n+s+1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (2.15)

where n is the number of fitting points, s refers to the number of valid points, and p refers to the number of predicted
points.

Minimizing MAPE allows us to determine the optimal value of r, improving the accuracy of the model’s predictions.
The optimization problem can be mathematically expressed as:

minMAPEvalid =
1

s

n+s∑
m=n+1

∣∣∣∣∣ Ŷ (r)(m)− Y (r)(m)

Y (r)(m)

∣∣∣∣∣× 100% (2.16)

s.t.



[(1− γ)a, (1− γ)b]T = (BTB)−1BTY

B =


−Z(r)(2) 1

−Z(r)(3) 1
...

...
−Z(r)(t) 1


(t−1)×2

Y =


Y (r)(2)− Y (r)(1)

Y (r)(3)− Y (r)(2)
...

Y (r)(t)− Y (r)(t− 1)


(t−1)×1

Z(r)(m) =
1

2

[
Y (r)(m) + Y (r)(m− 1)

]
Ŷ (r)(m) =

(
Y (r)(1)− b

a

)
e−a(1−γ)(m−1) +

b

a
, m = 1, 2, . . . , t

X̂(0)(m) =
(
(Ŷ (r)(m))

1
1−γ

)(−r)
, m = 1, 2, . . . , t

The optimization problem above is solved using the Particle Swarm Optimization (PSO) algorithm.

Particle Swarm Optimization (PSO)(Marini and Walczak, 2015)(Wang et al., 2018) is a population-based optimization
technique inspired by the coordinated behaviors seen in bird flocking and fish schooling. Each individual in the
population, referred to as a particle, represents a candidate solution. By iteratively adjusting their positions,
particles explore the search space, leveraging both their personal experiences and information shared within
the swarm to approach the optimal or near-optimal solution.

To address the optimization challenge, we employ PSO, which utilizes both individual historical information and
collective knowledge to iteratively improve solutions. Each particle adjusts its position in the search space based
on its velocity, its own best-known position, and the best-known position found by the swarm as a whole.

The equations for updating each particle’s velocity and position are given as:

vi(t+ 1) = w · vi(t) + c1 · r1 · (pi − xi(t)) + c2 · r2 · (g − xi(t)), (2.17)
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xi(t+ 1) = xi(t) + vi(t+ 1), (2.18)

where vi(t) and xi(t) denote the velocity and position of the i-th particle at iteration t, w is the inertia weight, and
c1 and c2 are cognitive and social acceleration coefficients. r1 and r2 are random variables uniformly drawn from
[0, 1], pi represents the particle’s personal best position, and g denotes the global best position discovered by the
swarm.

Algorithm 1: PSO-based optimization of γ and least squares for a and b

input : The original series X(0) = {X(0)(1), X(0)(2), . . . , X(0)(t)}, max iterations, population size
output: The optimal values of (a, b, γ)

1 Initialize: PSO parameters (population size, inertia weight, cognitive and social coefficients), swarm
particles with random initial positions and velocities for γ

2 Set (MAPEmin) =∞
3 for each iteration up to max iterations do
4 for each particle in the swarm do

5 Step 1: Compute accumulative sequence Z(r)(m) using:

Z(r)(m) =
1

2
[Y (r)(m) + Y (r)(m− 1)]

6 Step 2: Construct matrices B and Y:

B =


−Z(r)(2) 1

−Z(r)(3) 1
...

...
−Z(r)(m) 1

 , Y =


Y (r)(2)− Y (r)(1)

Y (r)(3)− Y (r)(2)
...

Y (r)(m)− Y (r)(m− 1)


7 Step 3: Solve for (1− γ)a, (1− γ)b and compute a and b:

[(1− γ)a, (1− γ)b]T = (BTB)−1BTY

8 Step 4: Predict Y (r)(m):

Ŷ (r)(m) =

(
Y (r)(1)− b

a

)
e−a(1−γ)(m−1) +

b

a

9 Step 5: Compute X̂(1)(m) and X̂(0)(m) using:

X̂(1)(m) = Ŷ (r)(m)
1

1−γ , X̂(0)(m) = (X̂(1)(m))(−r)

10 Step 6: Evaluate the particle fitness using MAPE:

MAPEvalid =
1

n

n∑
m=1

∣∣∣∣∣X(0)(m)− X̂(0)(m)

X(0)(m)

∣∣∣∣∣
11 end
12 if MAPEvalid < MAPEmin then
13 Update MAPEmin ←MAPEvalid

14 Update the best values of γ∗

15 end
16 Update particle velocities and positions using PSO update rules
17 end

This algorithm iteratively reduces the objective function, guiding particles toward optimal solutions. Particle Swarm
Optimization (PSO) is chosen for its simplicity, adaptability, and strong global search performance. In this study,
Particle Swarm Optimization (PSO) is used to tune model parameters, aiming to minimize the Mean Absolute
Percentage Error (MAPE) during model validation.
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To address the optimization problem mentioned above,
we developed a solution process based on the Particle
Swarm Optimization (PSO) algorithm. The procedure is
outlined in Algorithm 1. This algorithm is implemented
using Python.

3 APPLICATIONS IN FORECASTING
NATURAL GAS PRODUCTION

Forecasting natural gas production trends in regions
such as Qatar, Brazil, and Italy is essential for
ensuring stability in the global energy landscape
and promoting economic growth. These countries
are significant players in the international natural
gas market, influencing supply dynamics and global
pricing mechanisms. Accurate predictions of their
production levels allow policymakers and businesses to
formulate effective energy strategies, ensuring market
stability while reducing risks and supporting economic
development. Furthermore, these insights contribute
to energy security and guide investment decisions,
ultimately fostering the sustainable growth of the global
energy sector.

We meticulously collected annual natural gas
production data from Qatar, Brazil, and Italy for the
years 2008 to 2016. This data is sourced from reference
(Ma et al., 2020), which clearly indicates that all figures
are extracted from the authoritative BP Statistical
Review of World Energy.

In our study, we utilized data from 2008 to 2012 for
model fitting to ensure the accuracy and reliability of
the constructed model and data from 2013 to 2014 for
model validation. Subsequently, we selected data from
2015 to 2016 for prediction to applicate the model’s
effectiveness and practicality. Through this process,
we aim to not only reveal the production trends of
these three countries in natural gas but also provide
robust data support and theoretical foundations for
future energy policy formulation, thereby promoting the
sustainable development of the global energy market.

3.1 Case 1: Forecasting Natural Gas
Production in Brazil

The study of natural gas production in Brazil is essential
for understanding the country’s growing role in the
global energy market. As Brazil emerges as a key
player in South America, its natural gas resources are
becoming increasingly significant for the region’s energy
security and economic development. By examining

production trends in Brazil, we can assess the country’s
potential to reduce its reliance on imported energy,
boost domestic industries, and contribute to a more
stable and diversified regional energy supply. Moreover,
Brazil’s advancements in natural gas production could
have a positive impact on its environmental policies,
promoting a cleaner energy transition within the region.

In Table 1, the prediction results and errors of
several models (FBernoulliGM, BernoulliGM, HAGM,
NIPBernoulliGM, NIPGM, FNDGM, GM, and FGM)
are compared against the original data from 2008 to
2016. Each model’s performance is measured by MAPE
values during fitting (MAPEfit), validation (MAPEvalid),
and prediction (MAPEpred).

Notably, the NIPGM model achieves the lowest fitting
error with a MAPEfit of 0.5771%, while HAGM
performs the best overall in fitting with the second-
lowest MAPEfit of 0.595%. FBernoulliGM, however,
stands out in the validation phase, achieving the
best MAPEvalid of 0.1408%, indicating its superior
capability in predicting validation data. In terms of
prediction, FBernoulliGM also excels, showing the
lowest of1.9113%, outperforming other models such
as NIPGM, which has a of17.3919%. The GM
model shows the worst prediction results with a
high of43.156%. Overall, FBernoulliGM demonstrates
strong prediction capabilities, while the NIPGM and
HAGM models excel in fitting performance.

As shown in Fig. 1, the comparison of the predicted
data for different models is thoroughly illustrated. The
parameters were fine-tuned through the PSO (Particle
Swarm Optimization) algorithm, with 1,000 iterations.
The convergence curve of MAPEvalid is displayed in
Fig. 2.

3.2 Case 2: Forecasting Natural Gas
Production in Italy

Research into Italy’s natural gas production is vital for
grasping its role in the European energy landscape.
As a major consumer and hub for energy distribution
in Europe, Italy’s production capabilities play a pivotal
role in balancing the region’s energy supply. By
analyzing Italy’s natural gas output, we can evaluate its
contribution to energy diversification, which is crucial for
reducing Europe’s dependence on external suppliers,
such as Russia, and strengthening energy resilience.
The study also highlights Italy’s efforts in fostering
sustainable energy practices and supporting Europe’s
transition toward greener energy sources.
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Table 1. Detailed results in Case 1

Year Original Data FBernoulliGM BernoulliGM HAGM NIPBernoulliGM NIPGM FNDGM GM FGM
2008 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00 14.00
2009 11.90 12.09 11.65 11.79 11.78 11.96 11.92 12.18 12.21
2010 14.60 14.23 14.43 14.60 14.46 14.43 14.43 14.22 14.23
2011 16.70 16.80 16.89 16.93 16.94 16.86 16.96 16.59 16.64
2012 19.30 19.23 19.07 19.17 19.15 19.25 19.19 19.37 19.35
2013 21.30 21.24 21.00 21.29 21.07 21.62 21.12 22.61 22.37
2014 22.70 22.70 22.70 23.30 22.70 23.94 22.81 26.39 25.75
2015 23.10 23.58 24.20 25.22 24.06 26.23 24.32 30.80 29.54
2016 23.50 23.91 25.53 27.04 25.18 28.49 25.69 35.95 33.81

MAPEfit 1.0185 1.1189 0.595 0.8363 0.5771 0.6919 1.1954 1.1515
MAPEvalid 0.1408 0.7042 1.3451 0.5399 3.4825 0.6648 11.2029 9.2298
MAPEpred 1.9113 6.7001 12.1207 5.6524 17.3919 7.3003 43.156 35.8756
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Fig. 1. Comparison of observed and fitted data in Case 1
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Fig. 2. MAPEvalid convergence trend in Case 1

In Table 2, a comparison of the original data and predictions from the same models over the years 2008 to 2016 is
presented. The fitting errors (MAPEfit) show that FNDGM provides the best fitting performance with a MAPEfit
of 0.3995%, significantly outperforming the other models. HAGM also performs well in fitting with a MAPEfit of
0.7401%. However, in the validation phase, NIPBernoulliGM performs the best with a perfect MAPEvalid of 0%,
making it the most accurate in predicting unseen data. Despite this, FBernoulliGM proves to be the best performer
in the prediction phase, achieving a MAPEpred of 4.0353%, slightly outperforming BernoulliGM and HAGM, which
have MAPEpred values of 4.3046% and 8.0386%, respectively. In contrast, NIPGM exhibits the highest error with
a MAPEpred of 32.6385%, indicating weak predictive ability.

Table 2. Detailed results in Case 2
Year Original Data FBernoulliGM BernoulliGM HAGM NIPBernoulliGM NIPGM FNDGM GM FGM
2008 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.40
2009 7.30 6.94 6.99 7.21 6.86 7.73 7.35 7.36 7.96
2010 7.60 7.76 7.74 7.64 7.81 7.65 7.52 7.52 7.73
2011 7.70 7.87 7.88 7.81 7.91 7.61 7.72 7.68 7.59
2012 7.80 7.60 7.62 7.76 7.53 7.59 7.80 7.84 7.50
2013 7.00 7.11 7.12 7.51 7.00 7.58 7.71 8.01 7.44
2014 6.50 6.50 6.50 7.09 6.50 7.58 7.43 8.18 7.39
2015 6.20 5.84 5.83 6.53 6.10 7.58 6.93 8.35 7.35
2016 5.30 5.18 5.16 5.87 5.81 7.58 6.19 8.53 7.32

MAPEfit 2.3617 2.1468 0.7401 2.9959 2.0819 0.3995 0.5294 3.2053
MAPEvalid 0.7857 0.8571 8.1813 0 12.4505 12.2253 20.1374 9.989
MAPEpred 4.0353 4.3046 8.0386 5.6178 32.6385 14.2833 47.8104 28.3308
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The comparison of the predicted results from each model is presented in detail in Fig. 3. The parameter
optimization is achieved using the PSO (Particle Swarm Optimization) algorithm, with the number of iterations
set to 1000. The convergence curve of MAPEvalid is shown in Fig. 4.
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Fig. 3. Comparison of observed and fitted data in Case 2
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3.3 Case 3: Forecasting Natural Gas
Production in Qatar

The significance of studying natural gas production
in Qatar lies in its status as one of the world’s
largest exporters of natural gas. Qatar’s production
levels have a profound influence on the global energy
market, particularly in meeting the energy demands of

Asia and Europe. By focusing on Qatar’s production
trends, we can understand its role in maintaining global
energy security, stabilizing natural gas prices, and
ensuring a steady supply to major importing countries.
Additionally, Qatar’s strategies in managing its vast
natural gas reserves provide valuable lessons for other
nations in optimizing resource utilization and advancing
environmental sustainability.

Table 3. Detailed results in Case 3
Year Original Data FBernoulliGM BernoulliGM HAGM NIPBernoulliGM NIPGM FNDGM GM FGM
2008 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00
2009 89.30 97.14 95.72 98.63 95.67 97.89 89.30 101.50 99.92
2010 131.20 123.57 123.35 122.52 122.68 121.56 131.16 118.87 121.51
2011 145.30 143.99 143.96 143.25 143.28 141.62 145.45 139.21 140.78
2012 157.00 158.66 158.63 157.68 158.35 158.61 156.86 163.04 157.87
2013 177.60 168.41 168.38 160.24 168.47 172.99 166.15 190.95 173.04
2014 174.10 174.10 174.10 140.78 174.10 185.18 174.10 223.64 186.49
2015 178.50 176.52 176.56 81.07 175.59 195.51 181.11 261.92 198.43
2016 181.20 176.36 176.41 -51.47 173.25 204.25 187.40 306.75 209.03

MAPEfit 3.3108 3.0266 3.7816 3.1755 4.105 0.0446 6.2196 4.5886
MAPEvalid 2.5873 2.5957 14.4566 2.5704 4.4799 3.2235 17.9859 4.8421
MAPEpred 1.8902 1.8652 91.4939 3.0088 11.1251 2.4419 58.011 13.262
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Fig. 5. Comparison of observed and fitted data in Case 3
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Fig. 6. MAPEvalid convergence trend in Case 3

In Table 3, predictions and errors from various models
are analyzed over the years 2008 to 2016. The FNDGM
model delivers the most accurate fitting performance
with a MAPEfit of 0.0446%, showcasing its superior
capacity to model the training data. In terms of
validation performance, NIPBernoulliGM emerges as
the best model with a MAPEvalid of 2.5704%, followed
closely by FBernoulliGM, which also performs well in
both validation (MAPEvalid of 2.5873%) and prediction
(of1.8902%), making it a top performer overall.
Meanwhile, BernoulliGM achieves the lowest prediction
error with a of1.8652%. In comparison, HAGM’s
of91.4939% highlights significant shortcomings in its
predictive ability. GM and FGM show poor predictive
performance, with values of 58.011% and 13.262%,
respectively.

Fig. 5 provides a detailed illustration of the prediction
results for each model. Parameters were optimized
using the PSO (Particle Swarm Optimization) algorithm,
with 1,000 iterations. The MAPEvalid convergence
curve is depicted in Fig. 6.

3.4 Discussion

In this study, based on the analysis of natural gas
production forecasts, we compared the FBernoulliGM
model with various classical grey models, such
as BernoulliGM, HAGM, NIPBernoulliGM, NIPGM,
FNDGM, GM, and FGM. The experimental results
demonstrate that FBernoulliGM excels in accuracy and
predictive power, particularly when handling nonlinear
and complex trends in the data.

Compared to traditional GM and FGM models,
FBernoulliGM, through the introduction of fractional-
order accumulation and the New Information Priority
Accumulation method, enhances the model’s sensitivity
to historical data, allowing it to better capture subtle
fluctuations and trends. This advantage is especially
evident when applied to natural gas production data
with small sample sizes and significant fluctuations,
significantly improving the model’s forecasting accuracy.

Additionally, the FBernoulliGM model has a more
simplified structure compared to more complex
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models like NIPBernoulliGM and HAGM, which offers
advantages in computational efficiency. Especially
when performing large-scale forecasting tasks,
FBernoulliGM converges faster and has lower
computational costs. This allows FBernoulliGM to strike
a better balance between accuracy and efficiency.

However, FBernoulliGM also has certain limitations. For
instance, when the data exhibits extreme nonlinearity or
abrupt trends, the prediction error of this model may
increase, making it less effective at handling all outliers.
Moreover, while the fractional-order accumulation
method enhances data adaptability, the selection of its
parameters still relies on experience, which may affect
the model’s generalizability.

Overall, the FBernoulliGM model demonstrates strong
adaptability and stability in natural gas production
forecasting, especially in small-sample scenarios,
where its forecasting performance significantly
surpasses other traditional grey models. This provides
new ideas and tools for data forecasting in the energy
sector, while also indicating that there is room for
improvement in future work, particularly in optimizing
model parameters and further enhancing the ability to
handle nonlinearities.

4 CONCLUSIONS

This study demonstrates that the FBernoulliGM model
exhibits significant effectiveness in predicting natural
gas production, especially in situations involving
small samples and fluctuating trends. By combining
the fractional-order accumulation method with the
New Information Priority accumulation method, the
FBernoulliGM model significantly improves prediction
accuracy and adaptability compared to traditional grey
models (such as GM, FGM, and NIPBernoulliGM). Its
ability to capture subtle data trends and fluctuations
makes it particularly well-suited for forecasting natural
gas production in different regions.

In this study, the particle swarm optimization (PSO)
algorithm was utilized to finely tune the model
parameters, and the Mean Absolute Percentage Error
(MAPE) was employed as the evaluation criterion
to systematically assess the performance of seven
models. The analysis results further confirm that the
FBernoulliGM model has significant advantages in
both fitting and predictive capabilities, demonstrating
its outstanding reliability in forecasting natural gas
production data. These findings provide a solid

theoretical foundation and practical reference for future
natural gas production forecasts.

However, despite the model’s excellent performance in
most scenarios, its predictive effectiveness may decline
in highly nonlinear conditions, and its dependence on
parameter selection remains a limitation. Nonetheless,
the FBernoulliGM model achieves a good balance
between prediction accuracy and computational
efficiency, providing a valuable tool for forecasting
in the energy sector. Future research can focus on
further optimizing parameter selection and enhancing
the model’s capability to handle extreme nonlinear
data. Overall, this study contributes significantly to the
application of grey system theory in the energy field,
particularly in natural gas production forecasting.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO
generative AI technologies such as Large Language
Models (ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or editing of
manuscripts.

COMPETING INTERESTS
Authors have declared that no competing interests
exist.

REFERENCES

Chen, C.-I. (2008). Application of the novel nonlinear
grey bernoulli model for forecasting unemployment
rate. Chaos, Solitons & Fractals, 37(1):278–287.

Chen, C.-I., Chen, H. L., and Chen, S.-P. (2008).
Forecasting of foreign exchange rates of taiwan’s
major trading partners by novel nonlinear grey
bernoulli model ngbm (1, 1). Communications
in Nonlinear Science and Numerical Simulation,
13(6):1194–1204.

Chen, C.-I., Hsin, P.-H., and Wu, C.-S. (2010).
Forecasting taiwan’s major stock indices by the nash
nonlinear grey bernoulli model. Expert Systems with
Applications, 37(12):7557–7562.

Cui, J., Dang, Y., and Liu, S. (2009). A new
grey prediction model and its modeling mechanism.
Control and Decision, 24:1702–1706.

13



Li and Deng; J. Energy Res. Rev., vol. 16, no. 11, pp. 1-15, 2024; Article no.JENRR.126338

Deng, J.-L. (1982). Control problems of grey systems.
Systems Control Lett., 1(5):288–294.

Deng, J.-L. (1984). The theory and method of social and
economic grey systems. Chinese Social Sciences,
pages 47–60.

Li, K., Liu, L., Zhai, J., Khoshgoftaar, T. M., and Li,
T. (2016). The improved grey model based on
particle swarm optimization algorithm for time series
prediction. Engineering Applications of Artificial
Intelligence, 55:285–291.

Ma, X., Liu, Z., and Wang, Y. (2019a). Application of
a novel nonlinear multivariate grey bernoulli model
to predict the tourist income of china. Journal of
Computational and Applied Mathematics, 347:84–
94.

Ma, X. and Liu, Z.-b. (2018). The kernel-
based nonlinear multivariate grey model. Applied
Mathematical Modelling, 56:217–238.

Ma, X., Wu, W., Zeng, B., Wang, Y., and Wu, X. (2020).
The conformable fractional grey system model. ISA
transactions, 96:255–271.

Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y., and Wu,
X. (2019b). The novel fractional discrete multivariate
grey system model and its applications. Applied
Mathematical Modelling, 70:402–424.

Marini, F. and Walczak, B. (2015). Particle swarm
optimization (pso). a tutorial. Chemometrics and
Intelligent Laboratory Systems, 149:153–165.

Naiming, X. and Sifeng, L. (2008). Multivariate discrete
grey model and its properties. Systems Engineering
Theory and Practice, 28(6):143–150.

Safari, A., Das, N., Langhelle, O., Roy, J., and Assadi,
M. (2019). Natural gas: A transition fuel for
sustainable energy system transformation? Energy
Science & Engineering, 7(4):1075–1094.
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