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ABSTRACT
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1 INTRODUCTION

A starting point in the study of differential geometry is
the analysis of curves in space. By introducing special
geometric properties, it is possible to produce new
curves from a given curve. In this context, there are
some special curves such as Bertrand, Mannheim,
Natural mate, Smarandache, involute, evolute, and
pedal curves which have important applications ranging
from physics to surface modeling in engineering and
computer graphics [1, 2, 3, 4, 5, 6, 7, 8]. For any
given unit speed curve α in E3 there is a unique unit
speed curve ᾱ whose tangent vector coincides with the
principal normal vector of α, called principal-direction
curve or Natural mate curve [9]. Some authors have
studied this class of curves: Abdel-Baky and Naghi
[10] study sweeping surfaces with Natural mate curves,
Deshmukh et al [11] prove some relationships between
a Frenet curve and its natural mate, Camci et al [12]
extend the natural mate ᾱ to sequential natural mates
{α1, α2, · · · , αnα} with α1 = ᾱ, Mak [13] introduce the
natural mate curves in a three dimensional Lie group
with bi-invariant metric and give some relationships
between a Frenet curve and its natural mate in this
group.

In differential geometry, the Smarandache geometry
has a significant role in the theory of relativity and
parallel universes [14]. In Smarandache geometry,
regular curves that are defined as having the position
vector being a combination of the tangent, normal and
binormal vectors of another regular curve are called
Smarandache curves.

Smarandache curves are used to expand traditional
concepts of differential geometry and discover new
geometric properties [15]. These curves allow for
detailed analyses in areas such as curve theory and
surface theory. Their applications span various fields,
including physics, engineering, robotics, computer
graphics, and biomechanics. In physics, they are
especially used in space-time geometry and general
relativity theory [16]. In engineering, they find
application in materials science and structural analysis.
In computer graphics and robotics, they play a crucial
role in motion planning and object recognition.

Special Smarandache curves have been studied by
some authors. Savas et al [17] studied special
Smarandache curves according to the Sabban frame
in hyperbolic space and new Smarandache partners

in de Sitter space, Ali [18] studied some special
Smarandache curves in the Euclidean space, Şenyurt
et al [19] studied the Smarandache curves of Bertrand
curves pair according to Frenet frame and expresses
its curvature and torsion in terms of the curvature
and torsion of the Bertrand curve and Şenyurt and
Kaya studied the NC- Samarandache curve and NW-
Smarandache curve according to alternative frame
[20]. These curves have been also studied widely
[21, 22, 23, 24, 25].

In this paper, we start by mentioning the Frenet
apparatus of any regular curve α parametrized by
arc-length in Euclidean space E3. Then, we relate
the Frenet frame of the Natural pair and we give the
definitions of the tn, tb, nb, tnb−Smarandache curves in
E3 for Natural mate curves and calculate the Frenet
apparatus of these curves using the curvature, torsion,
the unit Darboux vector and the function angle between
the Darboux vector and the binormal vector of α. We
calculate the Frenet apparatus for the case where α is a
helix and close with an example where α is a slant helix.

2 PRELIMINARIES
Consider the Euclidean space E3 with inner product

〈·, ·〉 = dx2 + dy2 + dz2,

where (x, y, z) ∈ E3 is a rectangular coordinate system.
Let α : I → E3 be a differentiable curve in the Euclidean
space defined on an open interval I, parametrized
by arc-length and let {t = α′, n, b} be Frenet frame
satisfying [15]


t′ = κn,
n′ = −κt+ τb,
b′ = −τn,

(2.1)

where κ and τ are differentiable functions on I called
the curvature and the torsion of α, respectively, t is the
tangent vector, n is the principal normal vector and b
is the binormal vector of α. The 5-uple (t, n, b, κ, τ) is
called a Frenet apparatus.

Definition 2.1. A curve ᾱ : J → E3 is called Natural
mate curve of α : I → E3 if ᾱ(s̄) is the integral curve
of the principal normal vector of α(s∗), and the pair
(α(s∗), ᾱ(s̄)) is called the Natural pair [11].
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The existence of Natural mate curves is guaranteed by existence theorem for differential equation and ᾱ is given
by ᾱ =

∫
nds∗. It can be also shown that the arc-lenght parameters of the curve ᾱ can be the same of α, that is,

s∗ = s̄ [26].

The relations between the Frenet frames {t, n, b} and {t̄, n̄, b̄} are given by [10]
t̄ = n,
n̄ = − cosψt+ sinψb,
b̄ = sinψt+ cosψb,

(2.2)

where ψ = ∠(b̄, b),

cosψ =
κ√

κ2 + τ2
and sinψ =

τ√
κ2 + τ2

. (2.3)

Let the Darboux vector defined by
W = τt+ κb.

The Darboux vector represents the Frenet frame’s angular momentum. Its direction determines the frame’s
momentary axis of motion (its centroid) and its length the angular speed, ‖W ‖=

√
κ2 + τ2.

If we consider the normalization of the Darboux C =
1

‖W ‖W we have,

sinϕ =
τ

‖W ‖ =
τ√

κ2 + τ2
and cosϕ =

κ

‖W ‖ =
κ√

κ2 + τ2
, (2.4)

where ϕ = ∠(W, b). Therefore, by the equations (2.3) and (2.4), we have ψ = ϕ, and consequently, the binormal
vector of the Natural mate curve ᾱ is equal to the Darboux vector of the curve α.

From equation (2.4), we obtain

ϕ′ =
κτ ′ − κ′τ
‖W ‖2 =

( τ
κ

)′ κ2

‖W ‖2 . (2.5)

Remark 2.1. A regular curve α is called a helix if the tangent lines of the curve make a constant angle with a fixed
direction and a helix is characterized by the property that

τ

κ
is constant. From equation (2.5), we have in this case

ϕ = constant.

3 SMARANDACHE CURVES OF NATURAL CURVES PAIR
ACCORDING TO FRENET FRAME

In this section, we investigate the Smarandache curves of Natural pair according to Frenet frame in Euclidean
3-space and we give the Frenet apparatus for these curves.

Definition 3.1. A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame
vectors on another regular curve, is called a Smarandache curve [27].

In the light of the above definition, Ali adapt it to regular curves in the Euclidean space the definition of Smarandache
curves [18]. For Natural pair we have
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Definition 3.2. Let (α, ᾱ) be a Natural pair in E3 and {t̄, n̄, b̄} be the Frenet frame of the Natural mate curve ᾱ.
The t̄n̄− Smarandache curve is defined by

β1(s) =
1√
2

(t̄(s̄) + n̄(s̄)). (3.6)

Theorem 3.1. The Frenet apparatus of the t̄n̄−Smarandache curve is given by

Tβ1 =
(ϕ′ sinϕ− κ)t− ‖W ‖ n+ (ϕ′ cosϕ+ τ)b√

(ϕ′)2 + 2 ‖W ‖2
, (3.7)

Nβ1 =
λ1t+ λ2n+ λ3b√
λ2
1 + λ2

2 + λ2
3

, (3.8)

Bβ1 =
σ1t+ σ2n+ σ3b√

(λ2
1 + λ2

2 + λ2
3)((ϕ′)2 + 2 ‖W ‖2)

, (3.9)

κβ1 =

√
2(λ2

1 + λ2
2 + λ2

3)

[(ϕ′)2 + 2 ‖W ‖2]2
, (3.10)

τβ1 =

√
2[(ϕ′)2 + 2 ‖W ‖2](σ1η1 + σ2η2 + σ3η3)

λ2
1 + λ2

2 + λ2
3

, (3.11)

where W = τt+ κb and the coefficients are given by

λ1 =
[
(ϕ′)2 cosϕ− κ′ + κ ‖W ‖

]
·
[
(ϕ′)2 + 2 ‖W ‖2

]
+ 2ϕ′′ ‖W ‖ τ

+ κ(ϕ′ϕ′′ + 2 ‖W ‖‖W ‖′),
λ2 = − ‖W ‖2 ·[(ϕ′)2 + 2 ‖W ‖2] + ϕ′(‖W ‖ ϕ′′− ‖W ‖′ ϕ′),
λ3 = [−(ϕ′)2 sinϕ+ τ ′ − τ ‖W ‖] · [(ϕ′)2 + 2 ‖W ‖2] + 2ϕ′′ ‖W ‖ κ

− τ(ϕ′ϕ′′ + 2 ‖W ‖‖W ‖′),

σ1 = −λ2(ϕ′ cosϕ+ τ)− λ3 ‖W ‖,
σ2 = λ1(ϕ′ cosϕ+ τ)− λ3(ϕ′ sinϕ− κ),

σ3 = λ1 ‖W ‖ +λ2(ϕ′ sinϕ− κ),

η1 =

(
λ1

[(ϕ′)2 + 2 ‖W ‖2]2

)′
− κλ2

[(ϕ′)2 + 2 ‖W ‖2]2
,

η2 =

(
λ2

[(ϕ′)2 + 2 ‖W ‖2]2

)′
+

κλ1 − τλ3

[(ϕ′)2 + 2 ‖W ‖2]2
,

η3 =

(
λ3

[(ϕ′)2 + 2 ‖W ‖2]2

)′
+

τλ2

[(ϕ′)2 + 2 ‖W ‖2]2
.

Proof. Substituting the equation (2.2) into equation (3.6), we obtain

β1 =
− cosϕt+ n+ sinϕb√

2
. (3.12)

Taking the derivative of the equation (3.12) with respect to s̄, we get

Tβ1
ds

ds̄
=

(ϕ′ sinϕ− κ)t− ‖W ‖ n+ (ϕ′ cosϕ+ τ)b√
2

.
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Thus

Tβ1 =
(ϕ′ sinϕ− κ)t− ‖W ‖ n+ (ϕ′ cosϕ+ τ)b√

(ϕ′)2 + 2 ‖W ‖2
, (3.13)

where

ds

ds̄
=

√
(ϕ′)2 + 2 ‖W ‖2√

2
. (3.14)

Taking the derivative of the equation (3.13) with respect to s̄ and use (3.14), we obtain

T ′β1 =

√
2(λ1t+ λ2n+ λ3b)

[(ϕ′)2 + 2 ‖W ‖2]2
,

where

λ1 = ((ϕ′)2 cosϕ− κ′ + κ ‖W ‖)[(ϕ′)2 + 2 ‖W ‖2] + 2ϕ′′ ‖W ‖ τ
+ κ(ϕ′ϕ′′ + 2 ‖W ‖‖W ‖′),

λ2 = − ‖W ‖2 [(ϕ′)2 + 2 ‖W ‖2] + ϕ′(‖W ‖ ϕ′′− ‖W ‖′ ϕ′),
λ3 = (−(ϕ′)2 sinϕ+ τ ′ − τ ‖W ‖)[(ϕ′)2 + 2 ‖W ‖2] + 2ϕ′′ ‖W ‖ κ

− τ(ϕ′ϕ′′ + 2 ‖W ‖‖W ‖′),

Therefore, the curvature, the principal normal vector and the binormal vector of the curve β1 are given by

κβ1 =

√
2(λ2

1 + λ2
2 + λ2

3)

[(ϕ′)2 + 2 ‖W ‖2]2
, Nβ1 =

λ1t+ λ2n+ λ3b√
λ2
1 + λ2

2 + λ2
3

,

Bβ1 = Tβ1 ×Nβ1

=
σ1t+ σ2n+ σ3b√

(λ2
1 + λ2

2 + λ2
3)((ϕ′)2 + 2 ‖W ‖2)

,

where

σ1 = −λ2(ϕ′ cosϕ+ τ)− λ3 ‖W ‖,
σ2 = λ1(ϕ′ cosϕ+ τ)− λ3(ϕ′ sinϕ− κ),

σ3 = λ1 ‖W ‖ +λ2(ϕ′ sinϕ− κ).

The torsion of curve β1 is given by

τβ1 =
det(β′1, β

′′
1 , β

′′′
1 )

‖ β′1 × β′′1 ‖2
=

√
2[(ϕ′)2 + 2 ‖W ‖2](σ1η1 + σ2η2 + σ3η3)

λ2
1 + λ2

2 + λ2
3

,

where

η1 =

(
λ1

[(ϕ′)2 + 2 ‖W ‖2]2

)′
− κλ2

[(ϕ′)2 + 2 ‖W ‖2]2
,

η2 =

(
λ2

[(ϕ′)2 + 2 ‖W ‖2]2

)′
+

κλ1 − τλ3

[(ϕ′)2 + 2 ‖W ‖2]2
,

η3 =

(
λ3

[(ϕ′)2 + 2 ‖W ‖2]2

)′
+

τλ2

[(ϕ′)2 + 2 ‖W ‖2]2
.
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From Remark (2.1) and Theorem (3.1), we get

Corollary 3.1. If α is a helix, then the Frenet apparatus of the t̄n̄−Smarandache curve of its Natural mate curve
is given by

Tβ1 = − 1√
2C1

t− 1√
2
n+

C√
2C1

b, Nβ1 =
1√
2C1

t− 1√
2
n− C√

2C1

b,

Bβ1 =
C

C1
t+

1

C1
b, κβ1 = 1, τβ1 = 0,

where
τ

κ
= C = constant and C1 =

√
1 + C2.

Definition 3.3. Let (α, ᾱ) be a Natural pair in E3 and {t̄, n̄, b̄} be the Frenet frame of the Natural mate curve ᾱ.
The n̄b̄−Smarandache curve is defined by

β2(s) =
1√
2

(n̄(s̄) + b̄(s̄)). (3.15)

Theorem 3.2. The Frenet apparatus of the n̄b̄−Smarandache curve is given by

Tβ2 =
ϕ′(sinϕ+ cosϕ)t− ‖W ‖ n+ ϕ′(cosϕ− sinϕ)b√

2(ϕ′)2+ ‖W ‖2
, (3.16)

Nβ2 =
λ1t+ λ2n+ λ3b√
λ2
1 + λ2

2 + λ2
3

, (3.17)

Bβ2 =
σ1t+ σ2n+ σ3b√

(λ2
1 + λ2

2 + λ2
3)(2(ϕ′)2+ ‖W ‖2)

, (3.18)

κβ2 =

√
2(λ2

1 + λ2
2 + λ2

3)

[2(ϕ′)2+ ‖W ‖2]2
, (3.19)

τβ2 =

√
2[2(ϕ′)2+ ‖W ‖2](σ1η1 + σ2η2 + σ3η3)

λ2
1 + λ2

2 + λ2
3

, (3.20)

where W = τt+ κb and the coefficients are given by

λ1 = ((ϕ′)2(cosϕ− sinϕ) + κ ‖W ‖)[2(ϕ′)2+ ‖W ‖2]

+ ‖W ‖ (sinϕ+ cosϕ)(ϕ′′ ‖W ‖ −ϕ′ ‖W ‖′),
λ2 = ϕ′(‖W ‖ [2(ϕ′)2+ ‖W ‖2] + 2(ϕ′′ ‖W ‖ −ϕ′ ‖W ‖′)),
λ3 = −((ϕ′)2(sinϕ+ cosϕ) + τ ‖W ‖)[2(ϕ′)2+ ‖W ‖2]

+ ‖W ‖ (cosϕ− sinϕ)(ϕ′′ ‖W ‖ +ϕ′ ‖W ‖′),

σ1 = −λ2ϕ
′(cosϕ− sinϕ)− λ3 ‖W ‖,

σ2 = λ1ϕ
′(cosϕ− sinϕ)− λ3ϕ

′(sinϕ+ cosϕ),

σ3 = λ1 ‖W ‖ +λ2ϕ
′(sinϕ+ cosϕ),
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η1 =

(
λ1

[2(ϕ′)2+ ‖W ‖2]2

)′
− κλ2

[2(ϕ′)2+ ‖W ‖2]2
,

η2 =

(
λ2

[2(ϕ′)2+ ‖W ‖2]2

)′
+

κλ1 − τλ3

[2(ϕ′)2+ ‖W ‖2]2
,

η3 =

(
λ3

[2(ϕ′)2+ ‖W ‖2]2

)′
+

τλ2

[2(ϕ′)2+ ‖W ‖2]2
.

Proof. The proof is similar to proof of Theorem 3.1.

Corollary 3.2. If α is a helix, then the Frenet apparatus of the n̄b̄−Smarandache curve of its Natural mate curve
is given by

Tβ2 = −n, Nβ2 =
1

C1
t− C

C1
b, Bβ2 =

C

C1
t+

1

C1
b,

κβ2 =
√

2, τβ2 = 0,

where
τ

κ
= C = constant and C1 =

√
1 + C2.

Definition 3.4. Let (α, ᾱ) be a Natural pair in E3 and {t̄, n̄, b̄} be the Frenet frame of the Natural mate curve ᾱ.
The t̄b̄−Smarandache curve is defined by

β3(s) =
1√
2

(t̄(s̄) + b̄(s̄)). (3.21)

Theorem 3.3. The Frenet apparatus of the t̄b̄−Smarandache curve is given by

Tβ3 =
(ϕ′ cosϕ− κ)t+ (−ϕ′ sinϕ+ τ)b

|ϕ′− ‖W ‖ | , (3.22)

Nβ3 =
λ1t+ ‖W ‖ (ϕ′− ‖W ‖)2n+ λ2b√
λ2
1+ ‖W ‖2 (ϕ′− ‖W ‖)4 + λ2

2

, (3.23)

Bβ3 =
σ1t+ σ2n+ σ3b

(ϕ′− ‖W ‖)
√

(λ2
1+ ‖W ‖2 (ϕ′− ‖W ‖)4 + λ2

2)
, (3.24)

κβ3 =

√
2(λ2

1+ ‖W ‖2 (ϕ′− ‖W ‖)4 + λ2
2)

|(ϕ′− ‖W ‖)|3 , (3.25)

τβ3 =

√
2(ϕ′− ‖W ‖)(σ1η1 + σ2η2 + σ3η3)

λ2
1+ ‖W ‖2 (ϕ′− ‖W ‖)4 + λ2

2

, (3.26)

where W = τt+ κb and the coefficients are given by

λ1 = −(ϕ′)3 sinϕ+ κ′(‖W ‖ −ϕ′) + τ(ϕ′)2+ ‖W ‖′ (ϕ′ cosϕ− κ),

λ2 = −(ϕ′)3 cosϕ− τ ′(‖W ‖ −ϕ′) + κ(ϕ′)2− ‖W ‖′ (ϕ′ sinϕ− τ),

σ1 = − ‖W ‖ (ϕ′− ‖W ‖)2(−ϕ′ sinϕ+ τ),

σ2 = λ1(−ϕ′ sinϕ+ τ)− λ2(ϕ′ cosϕ− κ),

σ3 = ‖W ‖ (ϕ′− ‖W ‖)2(ϕ′ cosϕ− κ),
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η1 =

(
λ1

(ϕ′− ‖W ‖)3

)′
− κ ‖W ‖
ϕ′− ‖W ‖ ,

η2 =

(
‖W ‖

ϕ′− ‖W ‖

)′
+

κλ1 − τλ2

(ϕ′− ‖W ‖)3 ,

η3 =

(
λ2

(ϕ′− ‖W ‖)3

)′
+

τ ‖W ‖
ϕ′− ‖W ‖ .

Proof. The proof is similar to proof of Theorem 3.1.

Corollary 3.3. If α is a helix, then the Frenet apparatus of the t̄b̄−Smarandache curve of its Natural mate curve is
given by

Tβ3 = − 1

C1
t+

C

C1
b, Nβ3 = n, Bβ3 = − C

C1
t− 1

C1
b,

κβ3 =
√

2, τβ3 = 0,

where
τ

κ
= C = constant and C1 =

√
1 + C2.

Definition 3.5. Let (α, ᾱ) be a Natural pair in E3 and {t̄, n̄, b̄} be the Frenet frame of the Natural mate curve ᾱ.
The t̄n̄b̄−Smarandache curve is defined by

β4(s) =
1√
3

(t̄(s̄) + n̄(s̄) + b̄(s̄)). (3.27)

Theorem 3.4. The Frenet apparatus of the t̄n̄b̄−Smarandache curve is given by

Tβ4 =
[ϕ′(cosϕ+ sinϕ)− κ]t− ‖W ‖ n+ [ϕ′(cosϕ− sinϕ) + τ ]b√

(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2
, (3.28)

Nβ4 =
λ1t+ λ2n+ λ3b√
λ2
1 + λ2

2 + λ2
3

, (3.29)

Bβ4 =
σ1t+ σ2n+ σ3b√

(λ2
1 + λ2

2 + λ2
3)[(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2]

, (3.30)

κβ4 =

√
3(λ2

1 + λ2
2 + λ2

3)

[(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2]2
, (3.31)

τβ4 =

√
3[(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2](σ1η1 + σ2η2 + σ3η3)

λ2
1 + λ2

2 + λ2
3

, (3.32)

where W = τt+ κb and the coefficients are given by

λ1 = [cosϕ(ϕ′′ + (ϕ′)2) + sinϕ(ϕ′′ − (ϕ′)2)− κ′ + κ ‖W ‖] · [(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2]

− (ϕ′(cosϕ+ sinϕ)− κ)((ϕ′)2+ ‖W ‖2 −ϕ′ ‖W ‖)′,
λ2 = [‖W ‖ (ϕ′− ‖W ‖)− ‖W ‖′] · [(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2]

+ ‖W ‖ ((ϕ′)2+ ‖W ‖2 −ϕ′ ‖W ‖)′,
λ3 = [cosϕ(ϕ′′ − (ϕ′)2)− sinϕ(ϕ′′ + (ϕ′)2) + τ ′ − τ ‖W ‖] · [(ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2]

− (ϕ′(cosϕ− sinϕ) + τ)((ϕ′)2+ ‖W ‖2 −ϕ′ ‖W ‖)′,
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σ1 = −λ2[ϕ′(cosϕ− sinϕ) + τ ]− λ3 ‖W ‖,
σ2 = λ1[ϕ′(cosϕ− sinϕ) + τ ]− λ3[ϕ′(cosϕ+ sinϕ)− κ],

σ3 = λ1 ‖W ‖ +λ2[ϕ′(cosϕ+ sinϕ)− κ],

η1 =

(
λ1

((ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2)2

)′
− κλ2

((ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2)2
,

η2 =

(
λ2

((ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2)2

)′
+

κλ1 − τλ3

((ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2)2
,

η3 =

(
λ3

((ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2)2

)′
+

τλ2

((ϕ′)2+ ‖W ‖2 +(ϕ′− ‖W ‖)2)2
.

Proof. The proof is similar to proof of Theorem 3.1.

Corollary 3.4. If α is a helix, then the Frenet apparatus of the t̄n̄b̄−Smarandache curve of its Natural mate curve
is given by

Tβ4 = − 1√
2C1

t− 1√
2
n+

C√
2C1

b, Nβ4 =
1√
2C1

t− 1√
2
n− C√

2C1

b,

Bβ4 =
C

C1
t+

1

C1
b, κβ4 =

√
3√
2
, τβ4 = 0,

where τ
κ

= C = constant and C1 =
√

1 + C2.

Example 1. Given the slant helix

α(s̄) =

(
3

4
cos(s̄) +

cos(3s̄)

12
,

3

4
sin(s̄) +

sin(3s̄)

12
,−
√

3

2
cos(s̄)

)
, s̄ ∈ [0, 2π].

After simple computation, we get

t =

(
− 3

4
sin(s̄)− sin(3s̄)

4
,

3

4
cos(s̄) +

cos(3s̄)

4
,

√
3

2
sin(s̄)

)
,

n =

(
−
√

3

2
cos(2s̄),−

√
3

2
sin(2s̄),

1

2

)
,

b =

(
1

4
(3 cos(s̄)− cos(3s̄)), sin3(s̄),

√
3

2
cos(s̄)

)
,

κ =
√

3 cos(s̄), τ =
√

3 sin(s̄).

The Natural mate curve of α is the helix

ᾱ(s̄) =

(
−
√

3

4
sin(2s̄),

√
3

4
cos(2s̄),

s̄

2

)
, s̄ ∈ [0, 2π].

From equation (2.5), we get ϕ(s̄) = s̄+ ϕ0. If we choose ϕ0 = 0, we have that

9
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t̄ =

(
−
√

3

2
cos(2s̄),−

√
3

2
sin(2s̄),

1

2

)
,

n̄ =

(
sin(2s̄),− cos(2s̄), 0

)
,

b̄ =

(
1

2
cos(2s̄),

1

2
sin(2s̄),

√
3

2

)
,

κ̄ =
√

3, τ̄ = 1.

The t̄n̄, n̄b̄, t̄b̄, t̄n̄b̄−Smarandache curves are, respectively

β1(s) =
1√
2

(
−
√

3

2
cos

(
2
√

2√
7
s

)
+ sin

(
2
√

2√
7
s

)
,−
√

3

2
sin

(
2
√

2√
7
s

)
− cos

(
2
√

2√
7
s

)
,

1

2

)
,

β2(s) =
1√
2

(
1

2
cos

(
2
√

2√
5
s

)
+ sin

(
2
√

2√
5
s

)
,

1

2
sin

(
2
√

2√
5
s

)
− cos

(
2
√

2√
5
s

)
,

√
3

2

)
,

β3(s) =
1√
2

(√
3− 1

2
cos

(
2
√

2√
3− 1

s

)
,−
√

3− 1

2
sin

(
2
√

2√
3− 1

s

)
,

√
3 + 1

2

)
,

β4(s) =
1√
3

(
1−
√

3

2
cos

(
2
√

3√
8− 2

√
3
s

)
+ sin

(
2
√

3√
8− 2

√
3
s

)
,

1−
√

3

2
sin

(
2
√

3√
8− 2

√
3
s

)
− cos

(
2
√

3√
8− 2

√
3
s

)
,

1 +
√

3

2

)
.

(a) Natural curve α (b) Natural mate curve ᾱ

Fig. 1. Natural Curves Pair (α, ᾱ)
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(a) t̄n̄−Smarandache curve (b) n̄b̄−Smarandache curve

(c) t̄b̄−Smarandache curve (d) t̄n̄b̄−Smarandache curve

Fig. 2. Samarandache’s curves of ᾱ

4 CONCLUSIONS

Smarandache curves have been receiving increasing
attention from researchers due to their utility in
differential geometry and their applications in various
fields such as physics, engineering, robotics, computer
graphics, and others. In this work, we study a special
class of curves called Smarandache curves of curves,
which are the natural mate of a curve α, according to
the Frenet frame in three-dimensional Euclidean space.
We calculate the Frenet apparatus for these curves and
provide as a corollary the Frenet apparatus for the case

where the curve α is a helix. Additionally, we present an
example in which we calculate the Smarandache curves
of the natural mate for the case where α is a slant helix.
We hope that the results presented here contribute to
the study of these curves and to the development of
their applications.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
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(ChatGPT, COPILOT, etc) and text-to-image generators
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natural mates of Frenet curves in Euclidean 3-
space, Journal of Geometry. 2021;112:46.

[13] Mak M, Natural and conjugate mates of
frenet curves in three-dimensinal lie group.
Communications Faculty of Sciences University
of Ankara Series A1 Mathematics and Statistics.
2021;70(1):522-540.

[14] Ashbacher C. Smarandache geometries.
Smarandache Notions Journal. 1997;8(13)212-
215.

[15] do Carmo MP. Differential geometry of curves
and surfaces. Prentice-Hall, Englewood Cliffs, NJ;
1976.

[16] Rabouski D, Smarandache F, Borisova L.
Neutrosophic methods in general relativity.
Phoenix: Hexis Publishers; 2005.

[17] Savas M, Yakut AT, Tamirci T. The smarandache
curves on H2

0, Gazi University Journal of Science.
2016;29(1):69-77.

[18] Ali AT. Smarandache Curves in the Euclidean
Space. International Journal of Mathematical
Combinatorics. 2010;2:30-36.
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