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Abstract

Many self-motivated and goal-directed behaviours display highly flexible, approximately 4

hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to

physical cycles in the environment, these ultradian rhythms may be involved in optimizing

functional interactions with the environment and reflect intrinsic neural dynamics. Current

evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation

of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations

remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-

dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentra-

tion at the midbrain-striatal synapses is governed through a dual-negative feedback-loop

structure, which naturally gives rise to rhythmicity. This model shows the propensity of stria-

tal DA to produce an ultradian oscillation characterized by a flexible period that is highly sen-

sitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the

ultradian oscillations and alters their response to the phase-dependent, rapid-resetting

effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm

orchestrates behavioural activity and enhances responsiveness to an external stimulus.

This suggests a role for the circadian-ultradian timekeeping hierarchy in governing orga-

nized behaviour and shaping daily experience through coordinating the motivation to

engage in recurring, albeit not highly predictable events, such as social interactions.

Author summary

Biological rhythms allow animals to carry out behaviours at a suitable time, but ultradian

rhythms with a period shorter than a day do not match the period of any cycles in the

physical environment. They remain mysterious in both their biochemical mechanisms

and their functional significance. Previous studies have demonstrated a link between stria-

tal dopamine (DA) and ultradian behavioural rhythms. Based on mechano-biological

findings of DA regulatory processes, we proposed a model where DA self-feedback

through D2 autoreceptors generates ultradian oscillations. Using simulations, we were

able to reproduce ultradian DA rhythms that resemble behavioural rhythms. We further
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explored how these rhythms respond to circadian regulation and external stimuli, the two

major signals of behavioural relevance. The results show that the presence of ultradian

rhythms within a functional circadian system offers organized daily behaviours, with

increased flexibility and heightened responsiveness to significantly arousing experiences.

Introduction

Biological rhythms are ubiquitous in the natural world. One functional significance of overt

rhythmicity is to synchronize the host’s physiological and behavioural states with regular

events in the environment. But unlike circadian rhythms that have a narrowly-defined period

of approximately 24 hours corresponding to the solar day, ultradian rhythms are defined

broadly as those with periods shorter than circadian and do not correspond to any known

physical cycles (see reviews: [1–4]). In mammals, ultradian rhythms have been recorded in var-

ious physiological and behavioural activities including heart rate, respiratory rate, body tem-

perature, wheel-running, horizontal movement, drinking, and eating. Amongst which, the

ultradian period of individual locomotor and feeding rhythms tends to dynamically fluctuate

around 3–5 hours when measured under both alternating light-darkness and constant condi-

tions, displaying considerable flexibility at both the inter- and intra-individual levels [5–8].

This period flexibility, along with the inconsistent characteristics among consecutive cycles,

has led to debates over whether these behavioural rhythms are generated by an ultradian oscil-

lator or a result of stochastic episodic events [4, 9].

Just like their circadian counterpart, the ultradian behavioural rhythms observed in lab

rodents retain their temporal structure in the absence of external time cues and after forced

behaviour alterations. The locomotion and foraging rhythms of voles, mice, and rats continue

under constant light and during food deprivation [6, 8, 10], while activity following rest depri-

vation retains the prior ultradian phase [6]. Locomotion in mice displays a strain-dependent

frequency structure in the ultradian range, implying at least a partial genetic predisposition to

the expression of ultradian rhythms [5]. These findings favour a hypothesis whereby a self-sus-

tained oscillator, rather than a homeostatic regulator, coordinates these rhythmic behaviours.

However, identifying the neural structures and biochemical reactions comprising the oscillator

is necessary to support this hypothesis.

Desynchronization of individual circadian clocks has been suggested to give rise to ultra-

dian rhythmicity, as ultradian behavioural rhythms are often superimposed on or masked by a

circadian rhythm. Simultaneous elimination of both circadian and ultradian rhythms has

occasionally been observed after lesion of the suprachiasmatic nucleus (SCN), the site of the

primary circadian pacemaker [11, 12]. However, considerable studies also have documented

persistent, if not actually enhanced, ultradian rhythms in animals rendered circadian-arrhyth-

mic after SCN lesions [6, 7, 13, 14] or clock genes disruptions [8]. This evidence favours the

independence of the ultradian oscillator from the circadian system. It is likely that the ultra-

dian behavioural rhythms are generated and sustained by anatomically-distinct mechanisms,

yet receive regulatory inputs from the circadian system and are thus partially affected by circa-

dian disruption.

Another proposed candidate location for the ultradian oscillator lies within the dopamine

(DA) system. In addition to a vital role in regulating voluntary activity and motivation, an

intact DA system also displays rhythmicity ranging from single neuronal fast oscillations to a

circadian rhythm in DA concentration [15, 16]. The circadian DA oscillations are believed to

underlie several SCN-independent behavioural rhythms, including the methamphetamine-
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induced rhythmic locomotion [17, 18], the feeding-entrained food anticipatory activity [19–

21], and the timestamped place-conditioned responses [22, 23]. A treatment targeting the DA

system alone is sufficient to abolish rhythms with a regular ultradian period. Individual manip-

ulations of DA transporters, DA receptors, and midbrain DAergic neurons all significantly

alter the ultradian behavioural rhythm [8]. The most likely location of an ultradian DA oscilla-

tor is the mesostriatal DAergic neuronal projection, which comprises the majority of DAergic

neurons in the central nervous system. In fact, striatal extracellular DA concentration displays

an ultradian fluctuation that correlates with and precedes the ultradian fluctuations in sponta-

neous activity levels [8].

While the ultradian behavioural rhythms are likely attributed to the ultradian striatal DA

rhythm, the mechanisms responsible for the generation of DA oscillations per se are more elu-

sive. Brain DA concentration is under considerable regulation by both external factors and

internal mechanisms [24]. Circadian rhythmicity has been observed for extracellular DA con-

centration [8, 25–27] but not in the DA level measured from microdissected brain regions

[28]. This suggests that there are more complex regulatory mechanisms at work determining

the intracellular and extracellular distribution of DA molecules. DA molecules are released

into the extracellular space via exocytosis and are removed through reuptake by the presynap-

tic dopamine transporters (DAT). Both the firing activity of midbrain DAergic neurons and

striatal DAT availability change throughout the day, bearing a partial but critical relationship

with the circadian variation in extracellular DA [27, 29]. If extracellular DA can temporarily

inhibit its own release and accelerate its own removal, then the DA self-regulation processes

could potentially form negative feedback loops, which constitute the core mechanistic struc-

ture of biological oscillators.

Autoreceptors are pre-synaptic receptors that can regulate subsequent neuron activity after

activation by ligands released from the neuron. The D2-type DA receptor is the dominant DA

autoreceptor regulating striatal DA concentration (see review: [30, 31]). D2 agonists induced a

similar effect as exogenous DA in suppressing neuron electrical activity [15, 29, 32, 33] and

increasing DAT-dependent DA reuptake [34, 35], while D2 antagonists produced opposite

effects [35, 36]. Co-administration of D2 antagonist can suppress the changes in release and

removal rates induced by exogenous DA [37, 38]. Signal transduction via D2 activates a cas-

cade of biochemical reactions which enhances potassium conductance [36, 39] and reduces

calcium conductance [40, 41] at the nerve terminal. It also accelerates unidirectional transloca-

tion and cell surface expression of DAT [27, 35] while decelerating the phosphorylation and

catalyzing capability of tyrosine hydroxylase, the rate-limiting enzyme of DA synthesis [42].

These downstream reactions ultimately decrease extracellular DA concentration [30, 31], but

the extent to which these responses are normally activated is not documented. The presynaptic

responses occur from seconds up to an hour after D2 activation and appear to be influenced

by circadian timing, suggesting that D2 modifies DA oscillations on multiple time scales. How-

ever, the role of this striatal DA-D2 self-feedback loop in ultradian DA rhythm generation and

ultradian behavioural rhythm expression has yet to be investigated.

Mathematical models have played a significant role in advancing our understanding of DA

regulation and rhythmic dynamics. Best et al. [43] have meticulously modelled cellular DA

processes to study DA dynamics involved in homeostasis. This model was then expanded by

Kim and Reed [44] to incorporate circadian regulation on DA synthesis, degradation, and

downstream signalling. Compared with circadian DA rhythm, the ultradian DA rhythm

relates more to local mechanisms regulating DA release and reuptake and is less affected by

the availability of DA cellular molecules [37]. A previous model of the hypothalamic-pituitary-

adrenal axis [45] demonstrated the capacity of individual neural networks to autonomously

produce ultradian rhythms through local processes involving negative feedback loops and
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respond to external inputs from the global circadian rhythm. It is thus possible that the ultra-

dian rhythm observed in striatal DA tone is generated through local synaptic processes while

modulated by the circadian system.

In this paper, we propose that a D2-mediated DA release-and-removal regulation generates

ultradian oscillations in the extracellular DA concentration at the midbrain-striatum synapses,

thereby driving the expression of ultradian behavioural rhythms. The following sections begin

by illustrating the critical biochemical elements that form the modular concepts of the Dopa-

mine Ultradian Synaptic Regulator (DUSR) model, described using ordinary differential equa-

tions and nominally based on data from nocturnal rodents, which are extensively studied in

both the behavioural and biological context. After showing that the DA-D2 self-regulation can

generate sustained ultradian oscillation, we proceed to investigate DUSR’s response to external

inputs of behavioural relevance, which include an inhibitory circadian signal from the circa-

dian system and transient excitatory stimulus corresponding to environmental events. The

simulation results highlight the DUSR’s strong response to partially predictable external inputs

comprising both a consistent circadian signal and a transient stimulus. Finally, we conclude

with a discussion of model assumptions and the biological significance of DUSR and ultradian

rhythms.

Results

Dopamine-D2 self-regulation produces an ultradian rhythm

The biochemical processes critical to striatal extracellular dopamine (DA) self-regulation are

depicted in Fig 1A, forming the foundation of the core Dopamine Ultradian Synaptic Regula-

tor (DUSR) model. A schematic overview of the DUSR model is presented in Fig 1B, which

shows the dynamic variables. Their corresponding biological meaning is listed in Table 1. The

signalling of striatal extracellular dopamine (DAex) at pre-synaptic D2 autoreceptors (D2AR) is

marked by electrically-stimulated release and terminated by transporter-dependent removal.

This presynaptic transmitter-receptor interaction forms the foundation of DA self-regulation.

Our model thus incorporates a dual-negative feedback loop structure of DA release and DA

removal respectively. Enhanced D2AR signalling 1) increases dopamine transporter availability

Fig 1. Biological processes and schematic representation of DA-D2 self-regulation. A: Striatal DA activates D2

autoreceptors, which triggers a reaction cascade through the G protein Gα/β that subsequently increases DA reuptake

and decreases DA release. VGCC represents the voltage-gated calcium channels and kV1, kV2 represent the voltage-

gated potassium channels. This picture is adapted from [30] B: Schematic diagram of the Dopamine Ultradian

Synaptic Regulation (DUSR) model. Variables are defined in Table 1.

https://doi.org/10.1371/journal.pcbi.1012082.g001
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(TDA) and thus increases DA removal rate, as well as 2) reduces the average DAergic neuron

membrane potential (V0), consequentially decreasing firing rate (F) and ultimately decreasing

DA release rate. Further details on the relevant neurophysiology are given in the methods sec-

tion, while the model statement is given below.

The dynamic variables D2AR, V0, and TDA evolve in time according to

dD2AR

dt
¼ kðD2tot � D2ARÞðDAexÞ � a � D2AR; ð1Þ

dV0

dt
¼ � c � V0 þ b � F � kV � D2AR; ð2Þ

tT
dTDA

dt
¼ 1þ

DT � 1

1þ e� kTðD2AR � D0Þ
� TDA: ð3Þ

The variable DAex evolves according to

dDAex

dt
¼ a � F �

kVmax � TDA

KM þ DAex
DAex � b � DAex: ð4Þ

However, because DAex evolves on a faster timescale than the other variables, as has been

observed in past measurements [46, 47] and apparent in the non-reduced model Eqs (1)–(4),

its instantaneous value is determined through a quasi-equilibrium instead:

DAex ¼
aF � bKM � kVmax � TDA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaF � bKM � kVmax � TDAÞ
2
þ 4baF � KM

q

2b
: ð5Þ

The variable F is determined by an instantaneous function of V0,

FðV0Þ ¼
Fmax

1þ exp y� V0

s

: ð6Þ

The sigmoidal relationship between F and V0 introduces strong nonlinearity that impacts the

evolution of V0 over time through self-regulation (second term of Eq (2)) and influences the

determined concentration of DAex in Eqs (4) and (5).

All parameters of the model and their values are listed in Table 2 along with sources, if

applicable. The parameter choices are discussed in detail in the methods section.

Upon simulation with the given parameter values and in the absence of further inputs, the

core DUSR model generates a sustained oscillation with a period of 4.0 h (Fig 2). The oscilla-

tion in our model aligns with the principles of biochemical oscillators [57]. While the core

requirement of a negative feedback loop is satisfied by the model’s dual-negative loop

Table 1. Variables of the DUSR model.

DAex (μM) Concentration of striatal extracellular dopamine

D2AR (μM) Concentration of activated pre-synaptic D2 autoreceptors

V0 (mV) Average DAergic neuron resting membrane potential

F (Hz) Average DAergic neuron firing rate

TDA (1) Pre-synaptic dopamine transporter availability

The state variables are D2AR, V0, and TDA, while DAex and F are determined instantaneously from the state variables.

https://doi.org/10.1371/journal.pcbi.1012082.t001
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structure, it alone does not ensure oscillations. It is also essential that each step in the feedback

loop introduces a similar amount of signal distortion with adequate delay [58, 59]. The delay

in our model is achieved implicitly within a minimal 3-stage loop with quasi-steady-state

assumptions. This structure could readily give rise to oscillations upon appropriate choices of

reaction rates [57, 60, 61]. Nonlinearity is present in both feedback loops through TDA and F;

Fig 2. Simulated output of the core DUSR model. An ultradian rhythm (period = 4.0 h) for key output variables:

extracellular dopamine (DAex), activated D2-autoreceptors (D2AR), dopamine transporter activity (TDA), and DAergic

neuron firing rate (F). F is plotted as a ratio over the maximum firing rate Fmax. Vertical lines indicate the peak phases

of DA; red circles on the plotted lines mark the peak phase of the respective variable. F of the release loop phase-leads

D2AR and TDA of the removal loop.

https://doi.org/10.1371/journal.pcbi.1012082.g002

Table 2. The DUSR model parameters.

parameter nominal value references

DA release / reuptake / other processes

α DA unit release amount 0.09 μM [48]

kVmax Baseline reuptake rate 2.63 × 3600 μM h−1 [48, 49]

KM Michaelis-Menten constant of reuptake 0.2 μM [48, 49]

β Other DA processes 144 h−1 [50, 51]

DA-D2 interaction

D2tot Total D2 0.1 μM [47]

k DA diffusion rate × DA-D2 binding rate 10.46 μM
−1 h−1 *

a DA-D2 unbinding rate 1.7 h−1 *
Dopaminergic neuron resting membrane potential regulation

c Neuron restoring rate 3.62 h−1 [52]

b Neuron-excitatory feedback rate 0.012 mV *
kV D2-induced hyperpolarization rate 2.73 × 3600 mV μM

−1 h−1 *
Determination of firing rate

Fmax Maximum firing rate 15 × 3600 h−1 [53]

θ Population average firing threshold 25 mV [54–56]

σ Population firing threshold variation 18 mV *
DAT cytosol-membrane translocation

ΔT Maximum DAT availability 1.8 [35]

D0 Half efficiency of D2 0.04 μM *
kT Plasticity factor of D2 on DAT translocation 87.5 μM

−1 *
τT Time delay of D2 regulation of DAT 0.15 h [35]

References of the nominal values are listed when applicable. Decisions on parameter value choices are described in the methods section.

https://doi.org/10.1371/journal.pcbi.1012082.t002
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each equation is balanced between the opposing processes; and the positive self-feedback in Eq

(2) amplifies deviation. Together, these factors create a conducive environment for oscillation

production. The given parameter set in Table 2 is tuned to satisfy nonlinearity and delay

requirements, leading to stable oscillations. The parameter dependence of this ultradian oscil-

lation is reported in the following section.

We report the following quantitative outputs of our model during stable oscillation along

the limit cycle: 1) Striatal extracellular DA concentration DAex oscillates between 4.9 nM and

120 nM around a mean value of 56 nM, remaining in the reported lower nanomolar range [8];

2) D2 autoreceptor occupancy D2AR oscillates between 7.8 nM to 37.6 nM with a mean value of

24 nM, conforming to the lower-tenth of baseline striatal D2 occupancy [30, 62, 63]; 3) Trans-

porter availability TDA of the removal feedback loop oscillates from approximately 87% to

approximately 115% of the average 1.2 throughout the cycle; 4) Midbrain DAergic firing rate F
of the release feedback loop oscillates between 0.8 and 13.3 Hz with an average value of 7.2 Hz;

5) The phase differences between D2AR, TDA, and F with DAex are 0.53 h, 0.74 h, and 0.21 h

respectively. The coordinated oscillation of both feedback loops at 4.0 h suggests that the struc-

tural organization of DA-D2 self-regulation is predisposed to joint oscillation.

The DUSR oscillation is flexible and sensitive to parameter choices

At the nominal period of 4.0 h, the oscillation period of the simulated ultradian rhythm is sen-

sitive to individual perturbations to most of the 17 model parameters, as shown in the results

of the local sensitivity analysis (Fig 3). The model displays the highest local period sensitivity

to parameter b governing excitatory neural regulations, for which a 1% change to the parame-

ter produces twelve times a change in the output period (12%). The period is most sensitive to

the parameters related to DAergic neuron activity (b, kV, Fmax) and is moderately sensitive to

most parameters involved in both regulatory feedback loops, including those determining D2

occupancy (D2tot, k, a) and the instantaneous DA concentration (α, kVmax, KM). The model

shows less sensitivity to parameters unique to the removal feedback loop defining the D2-regu-

lated availability of DAT (ΔT, D0, kT, τT). Additionally, the period is relatively insensitive to

the parameters (θ and σ) relating F to V0 in Eq (6). Alongside the period’s high sensitivity to

parameters regulating DA membrane potential, this justifies the direct computation of neural

firing activity from neural electrical properties, supporting the role of D2-regulation on neu-

ron excitability in ultradian oscillation production. Finally, parameter β, which is not directly

part of the DA feedback loops, has minimal effect on the period due to its lack of direct rela-

tionship with the output oscillation. The sensitivity coefficients of the DUSR rhythm’s period

Fig 3. Local sensitivity of the simulated ultradian period. Local period sensitivity analysis performed at the nominal

period of 4.0 h using Eq (7); Nominal parameter values listed in Table 2. The period is in general most sensitive to

parameters unique to the release loop, moderately sensitive to parameters shared by both feedback loops, less sensitive

to parameters unique to the removal loop, and not sensitive to parameters not directly involved in DA feedback (β).

https://doi.org/10.1371/journal.pcbi.1012082.g003
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at 4.0 h averages to 3.6 for the entire parameter set, which could be considered highly flexible

when compared to the circadian and other biological rhythms expected to remain in phase

with a precise physical cycle. Despite their biological correspondence to involved pathways,

some parameters with less impact on the period may be reduced while preserving ultradian

oscillations to increase model simplicity. This will be considered in future works and may fur-

ther enhance the overall flexibility of the ultradian rhythm to internal variations.

To further explore the range and limits of the DUSR-sustained ultradian oscillations, bifur-

cation analysis was performed for each of the nine parameters with the highest local period

sensitivity as shown in Fig 3. Starting from the nominal parameter value given in Table 2, the

qualitative behaviour of DAex at equilibrium and during limit cycle oscillations is plotted

beyond the oscillatory range in both directions (Fig 4A). These nine components are essential

for ultradian oscillation, such that oscillations are lost when a parameter is shifted beyond

around 5–20% from its nominal value. For each parameter, we observed that the ultradian DA

oscillation emerges with a period of roughly 2.5 h and an amplitude of zero at a supercritical

Hopf bifurcation. The oscillation disappears at a saddle node on an invariant circle (SNIC)

bifurcation [64]. As the parameter value approaches the vicinity of the SNIC bifurcation point,

the period tends toward infinity. The complex bifurcation behaviour of the DUSR system sug-

gests that it is possible to substantially extend the ultradian oscillation period through parame-

ter modifications, whereas decreasing the period is constrained by a lower threshold.

However, when shifting an individual parameter within its oscillatory range, the majority of

ultradian period changes fall within ± 2 hours (Fig 4B) before losing rhythmicity.

Fig 4. Bifurcation analysis of the core DUSR model. A: Bifurcation diagrams for nine parameters with top local period sensitivity. Black curves

indicate the stable (solid) and unstable (dotted) steady states for DAex. Coloured curves identify the limit-cycle oscillatory behaviours (max, min of the

oscillation; period in colours). Stable DA equilibrium is replaced with self-sustained oscillations marked at the supercritical Hopf bifurcation point

(red circle) and re-emerges from a saddle-node bifurcation (yellow star). An infinite period solution appears at the moment of the saddle-node

bifurcation, forming a saddle-node on invariant cycle (SNIC) bifurcation and is characterized by heightened sensitivity of both the presence and the

period of the DA oscillation to parameter values. B: The corresponding ultradian period at parameter values within the stable limit-cycle range. The

majority of the period flexibility occurs within ±2 h of the nominal period (4.0 h) when shifting individual parameters within their oscillatory range.

DAex timecourses for a long period (12 h) and a short period (3 h) are shown above and below the parameter legend.

https://doi.org/10.1371/journal.pcbi.1012082.g004

PLOS COMPUTATIONAL BIOLOGY DA-D2 self-regulation driven ultradian rhythms

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012082 May 3, 2024 8 / 30

https://doi.org/10.1371/journal.pcbi.1012082.g004
https://doi.org/10.1371/journal.pcbi.1012082


The presence of multiple bifurcation types further diminishes the robustness of the ultra-

dian rhythm against perturbations, enabling the DUSR to generate a spectrum of continuous

outputs with abrupt changes in DA behaviour in response to internal environmental changes

taking the form of parametric alterations. The system’s oscillatory behaviour becomes highly

sensitive to parameter values near the SNIC bifurcation point, resulting in considerable

increases in period length or the complete disappearance/emergence of oscillations. Around

this point, the prolonged oscillation period is associated with a substantial increase in equilib-

rium DA levels. While the parameter range for sustained oscillations may initially appear as

limited, the flexibility and unpredictability of the ultradian oscillator can lead to the sporadic

ultradian phase and period changes observed in animal behavioural recordings as well as the

inter-individual difference in striatal DA level [7, 8]. Furthermore, external inputs can induce

the ultradian oscillator to exhibit ultradian rhythms beyond its typical oscillatory range, as

demonstrated in the following section.

Circadian rhythm bidirectionally modifies the ultradian rhythm and

consolidates behaviour towards the early active phase

We choose to study the circadian system’s modulatory impact on the DUSR system by intro-

ducing an inhibitory signal that acts on V0 of the release loop. This inhibitory signal is aligned

with the antiphase relationship between the SCN and behaviour in nocturnal rodents [65, 66],

which we outline in the methods section ‘Effects of circadian inhibitory inputs on DA oscilla-

tions’. The addition of this circadian input results in DAex displaying an intrinsic ultradian

oscillation superimposed on a forced circadian oscillation (Fig 5A). Circadian-signal inputs

shape the ultradian rhythm to exhibit daily alterations between pronounced and suppressed

activity. Despite high inter-individual differences, striatal DA concentration exhibits a phasic

relationship with behaviour episodes, where local increases in DA concentration precede

heightened behavioural activity [8]. Consequently, the alterations in the amplitude of ultradian

DAex oscillations could correspond to the behaviourally active and inactive phase. A block-

wave circadian signal generates three distinct ultradian episodes during the active phase, while

continuous sinusoidal circadian inputs generate two or three ultradian episodes during the

active phase, with minor episodes extending into the inactive phase. As the amplitude of the

circadian input increases, its consolidating effect on the ultradian rhythm transitions into a

masking effect, where the forced circadian rhythm completely replaces the self-sustained ultra-

dian rhythm (Fig 5B).

Depending on the DUSR system’s oscillatory state, the circadian-signal input can either

mask or stimulate the ultradian oscillation (Fig 5C). When the system exhibits a stable limit

cycle, an inhibitory circadian signal input has a sole masking effect whose strength increases

with the signal amplitude. Upon suspension of the circadian signal, the ultradian rhythm grad-

ually resurfaces with increasing amplitude. When the system exhibits a stable equilibrium (Fig

5C, bottom plot. kV changed to 2.64 × 3600 mV μM
−1 h−1; other parameter values remain as

listed in Table 2), the non-oscillatory DUSR system can be induced to exhibit quasi-ultradian

oscillation with a moderate-strength circadian-signal input as the model becomes a forced

oscillator constantly pushed away from its equilibrium. In this case, removing the circadian

input results in DA gradually returning to its stable equilibrium, where both the circadian and

ultradian rhythms are lost. This finding that removing the circadian input leads to either

increased ultradian rhythms or complete arrhythmicity potentially reconciles previous contra-

dictory studies, which report either a complete loss or preservation of ultradian rhythms post-

SCN lesion [6–8, 11–14].
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The behavioural activity output of the model (Fig 6), derived from simulated DA dynamics

using a circadian moving average method detailed in the section ‘DA oscillations and beha-

vioural activity’, shows the impact of both circadian strength and waveform on daily beha-

vioural activity pattern. When subjected to moderate circadian input, the model generates

behavioural patterns characterized by distinct circadian and ultradian components (Fig 6A). A

block-wave circadian signal, with abrupt transitions between states, produces three clearly

defined ultradian bouts of approximately equal duration, all occurring within the off phase of

circadian inhibition. In contrast, sinusoidal circadian signals with smoother transitions pro-

duce behavioural active phases that encompass the trough of circadian modification and gen-

erate daily ultradian behavioural patterns consisting of a long episode followed by shorter

bouts. This corresponds with the SCN electrical and secretion activity in nocturnal rodents,

which peaks several hours before locomotor activity onset and remains low during the

Fig 5. Circadian regulation on the ultradian rhythm. The effect of an inhibitory circadian-signal input (yellow line)

Rcirc to V0 on extracellular dopamine concentration DAex (black line) over time. A: Circadian inputs of different

waveforms consolidate ultradian DA episodes within a circadian active phase. B: Increasing the circadian signal’s

strength substitutes its consolidating effect on the ultradian rhythm with a complete masking effect. C: Circadian-

signal modification has a bidirectional effect on the ultradian rhythm. Depending on the DUSR system’s intrinsic

oscillatory state, removal of circadian regulation results in either a more pronounced ultradian rhythm (upper panel)

or the loss of quasi-ultradian episodes (lower panel).

https://doi.org/10.1371/journal.pcbi.1012082.g005
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subjective night [67]. It also aligns with the behaviours of nocturnal rodents in laboratory con-

ditions, which tend to be confined within the subjective night and more concentrated towards

the earlier night [7, 68]. These alignments suggest that a smooth-transit circadian signal resem-

bling the waveform of SCN electrical activity better represents the circadian modulation

received by the mesostriatal dopamine system [65].

Varying the circadian signal strength on the DUSR system leads to a spectrum of beha-

vioural activity patterns (Fig 6B). A circadian signal with high amplitude confines all activity

bouts within the subjective active phase of the day. Reducing the amplitude of the circadian

signal results in more diffused activity bouts that extend into the subjective day, still superim-

posed upon a weak but significant circadian pattern. When the circadian signal weakens fur-

ther, ultradian activity bouts become increasingly evenly distributed. These diverse patterns

closely mirror behavioural changes in nocturnal rodents after partial and complete SCN

lesions, where the night-only behavioural activity becomes more heterogeneously and homo-

geneously distributed throughout the entire circadian day [7]. This highlights the possibility of

a common framework of varying circadian-ultradian coupling strength organizing the daily

temporal structure of activity.

Transient arousing inputs have a phase-dependent effect on the oscillation

properties

We also choose to study the impact of a transient arousing experience simulated as a single

excitatory pulse to V0. This pulse reflects the selective excitatory inputs to DAergic neurons

Fig 6. Behavioural activity output of the DUSR under circadian regulation. Double-plotted activity defined as when

DAex values exceed the previous day’s average, Eq (11). A: Behaviour activity for circadian signals of different

waveforms and same amplitude. Red lines mark the peak circadian input and blue lines mark the trough. B: Behaviour

activity output for increasing amplitudes of a symmetric sinusoidal circadian signal is increasingly refined within the

subjective night.

https://doi.org/10.1371/journal.pcbi.1012082.g006
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associated with the subjective perception of a significant event [69, 70], which we explain in

the methods section ‘Effects of transient excitatory inputs on DA oscillations’. This input has a

phase-dependent effect on both the phase and the amplitude of the ultradian DA oscillation

(Fig 7). An identical input could result in a spectrum of outcomes, including an advance or

delay to the DUSR oscillation while temporarily strengthening or suppressing its amplitude.

The duration of the pulse’s effect on DA trajectory also varies with phase, typically lasting for

no more than two ultradian cycles.

The phase response curve (PRC) of DAex to a single excitatory pulse is characterized by an

unimodal curve intersecting the x-axis slightly preceding the peak and the trough (Fig 7B). A

Fig 7. Phase-dependent effect of a transient excitatory pulse on the ultradian oscillation. A: DAex behaviour in

response to a single pulse input (Isens = 75, duration = 15 min) given at various phases. The black solid line represents

the DAex trajectory without additional input. The dotted and solid coloured lines represent DAex trajectories during

and after the pulse, with colours denoting the ultradian phase when the pulse is given. B: Phase response curve and

amplitude response curve of DAex to a pulse input of various magnitude/duration combinations. The evoked phase

shift and the percentage change of maximum-minimum DAex values within the immediate cycle are plotted against the

timing of a centred pulse on the ultradian cycle.

https://doi.org/10.1371/journal.pcbi.1012082.g007
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pulse received during the DA rising phase advances the DA rhythm and one during the falling

phase delays it. The corresponding amplitude response curve (ARC), determined as the transi-

tory difference in the maximum and minimum DAex values within a subsequent cycle post-

input, intersects the x-axis following the peak and the trough. It remains around zero during

the semi-plateau phase after the DA peak. Specifically, the ultradian DA oscillation’s amplitude

is augmented by the input during the rising phase, unaffected during the semi-plateau, and

slightly suppressed during the rapid falling phase. Increasing the strength and duration of the

input pulse broadens the augmenting range of the ARC, while skewing the PRC from a smooth

transition into a sawtooth curve (Fig 7B; deep blue, dotted line).

The strength and the duration of the stimulus are reciprocally related. Short, strong inputs

yield similar effects as long, milder inputs with equal products in magnitude and duration

(e.g., the 40 strength-20 min pulse and the 80 strength-10 min pulse), producing primarily

overlapping response curves. In the absence of other rhythms, a transient arousing input

received before a local peak advances and enhances the upcoming ultradian episode, while one

received during or after a high DA episode prolongs the current episode and delays the subse-

quent one without affecting its strength. The reciprocity between intensity and duration in

ultradian responses to arousal mirrors that seen in circadian responses to photic inputs. The

extent of this reciprocal effect depends on the cumulative strength between the stimulus’s per-

ceived valence received by the mesostriatal DA system and its seemingly prolonged duration

in minutes, which aligns with the organism’s need for a clock system responsive to potentially

significant and recurrent events while filtering out responses to minor stimuli.

Circadian-nested ultradian oscillators integrate and amplify external

stimuli

Both an inhibitory circadian signal and a transient excitatory input are applied to V0, simulat-

ing the response of striatal DA to external arousing experiences within a circadian context. In

comparison to the response observed in the absence of circadian modification as reported in

the previous subsection, the effect of an excitatory pulse is now significantly dependent on the

circadian phase (Fig 8C). Notably, excitatory pulses administered around the trough of the cir-

cadian signal have an immediate augmenting effect on the ultradian DA rhythm. Conversely,

pulses given around the acrophase of circadian inhibition produce a delayed stimulating effect

that could be observed during the subsequent DA active phase (Fig 8C, plot V). Both the mag-

nitude and the duration of response are now also prolonged to a circadian time course. This

effect is particularly evident when the circadian signal exerts a masking effect on the ultradian

rhythm (Fig 8B).

Fig 8A offers a comprehensive comparison of typical DA response trajectories to a transient

stimulus under various background conditions: I) the DUSR ultradian oscillation alone, II) the

DUSR under constant inhibition, III) the DUSR with normal inhibitory circadian regulation,

IV) the DUSR with strong, masking circadian regulation, and V) the DUSR with feedback

loops sequestered at D2AR and with normal circadian inhibition regulation. In the absence of a

circadian signal (Fig 8A, I and II), a transient stimulus slightly alters the amplitude of approxi-

mately one ultradian cycle and DUSR returns to its limit cycle oscillation quickly. In the

absence of the ultradian oscillation (Fig 8A, plot V), the inhibitory circadian signal suppresses

extracellular DA concentration to a low level and a transient stimulus induces a brief increase

in DA that is quickly reversed. In contrast, DUSR with circadian regulation (Fig 8A, III and

IV) showcases the largest relative change in amplitude, coupled with a prolonged response

duration. This behaviour likely arises from the circadian signal, an external oscillation of a dif-

ferent frequency, consistently perturbing the DUSR oscillation away from its limit cycle.
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Consequently, DUSR becomes both a forced oscillator at the circadian frequency and an oscil-

lator at its inherent ultradian frequency. This dual-frequency resonant behaviour necessitates

an extended recovery time after perturbations, resulting in a prolonged response observed in

DA concentration. The DUSR system, in this context, functions as a resonator for temporal

inputs from the circadian system in addition to being a self-sustained oscillator of its own.

This unique property enables external arousing events to induce amplified responses in striatal

DA. The nested circadian-ultradian structure of the striatal DUSR could thus function as a

local amplifier, organizing and amplifying subjective responsiveness to external stimuli

throughout the day.

Discussion

The current understanding of ultradian behavioural rhythms is limited by challenges in identi-

fying, isolating, and directly manipulating the underlying oscillator. Our initial goal was to

model an oscillation in striatal extracellular DA concentration known to correlate with

Fig 8. Circadian-ultradian interaction enhances responsiveness to transient stimulus. Simulated DAex trajectories

(black line) of the DUSR model with an inhibitory circadian signal (yellow curve) and a transient excitatory pulse

(vertical red line). A: The effect of a transient excitatory pulse on the DUSR model is amplified by the circadian

inhibitory signal. Plotted from top to bottom are the DAex response trajectories to (I) an excitatory pulse of the DUSR

model, (II) DUSR with a constant inhibitory signal, (III) with a circadian inhibitory signal, (IV) with a masking

circadian inhibitory signal, (V) with a circadian inhibitory signal and the ultradian DA feedback loop fixed so that

D2AR and TDA are held constant and DAex decreases in scale. B: Effect of an identical transient excitatory pulse given at

the same phase of on DAex under increasing circadian regulation. C: Effect of an identical transient excitatory pulse

given at different circadian phases on DAex.

https://doi.org/10.1371/journal.pcbi.1012082.g008
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ultradian behavioural episodes. Our mathematical model mechanistically links established DA

self-regulatory processes to the generation of ultradian oscillations. Striatal extracellular DA

concentration is both an output signal and a key component of the dopamine ultradian synap-

tic regulator (DUSR) and is driven by dual autoreceptor-dependent regulatory loops of DA

release and removal. To focus on extracellular DA dynamics, cytosolic processes were simpli-

fied using standard form kinetics that best capture the dynamics of DA release and DA

removal. By simulating the DUSR under different conditions, we observed flexible ultradian

oscillations with an adjustable period displaying diverse responses to the synergistic interac-

tions between a circadian inhibitory signal and a transient excitatory stimulus. We discuss the

biological implications of the results, focusing on the functional role of a circadian-ultradian

timekeeping hierarchy in organizing the temporal structures of subjective responsiveness.

Assumptions and limitations of the model

The regulation of extracellular dopamine concentration in the striatum is a complex process.

Our model simplifies presynaptic cytosolic processes of both feedback loops due to a focus on

extracellular signalling.

DA Release feedback loop. The release rate determines the increase in DA concentration

DAex with a linear dependence on the neuron firing rate F that represents the averaged popula-

tion behaviour. The model thus does not differentiate between burst and tonic firing patterns,

only using them as limiting factors for parameterization. While firing patterns are believed to

play a key role in single-neuron fast oscillations, there lacks substantial evidence to support a

relationship between firing patterns and longer rhythms.

Eqs (2), (4) and (6) capture the reduction in DA release by impulse-regulation on neuron

excitability and the quantal release size is denoted by a constant parameter α in the model. D2

can also affect DA release by regulating DA synthesis through the inhibition of tyrosine

hydroxylase, the rate-limiting enzyme that produces the DA precursor L-DOPA [42, 71].

However, administering exogenous L-DOPA did not replicate the effects on D2-dependent

DAT upregulation as seen in administering exogenous DA [37]. This suggests that DA synthe-

sis alone is insufficient to alter the DA feedback loops. This process is probably regulated to

accompany the storage demand upon altering neuron activity and could be of more impor-

tance in extreme conditions, such as DA storage depletion after a psychostimulant overdose.

DA removal feedback loop. For the removal feedback loop, we modelled DAT-depen-

dent reuptake using slightly modified Michaelis-Menten kinetics to account for a linear rela-

tionship between the maximum reuptake rate and the availability of DAT. The dynamics in

D2-regulated DAT availability were modelled phenomenologically in Eq (3), focusing on the

final consequences in DAT availability rather than the biochemical reactions. DAT availability

is represented as a state variable that gradually approaches a time-varying final value deter-

mined by D2 activation. This approach aligns with the current state of knowledge on D2 accel-

erating DAT trafficking and re-balancing the dynamic equilibrium. While deletion and

inhibition studies suggest that the process involves a signalling cascade of protein kinase Cβ
and subsequently extracellular signal-regulated kinase (ERK) activation [34, 35], the complete

regulatory pathway remains to be fully characterized and lacks quantitative information. The

alternate hypothesis on the potential D2-DAT regulatory mechanisms suggesting direct

D2-DAT interaction affecting individual DAT activity [72] was also excluded from the model

due to a lack of solid supporting evidence under regular conditions.

Spatial homogeneity of DA and D2. Focused on rhythmic outputs, our approach priori-

tizes DA’s temporal dynamics over its spatial variability. We opted for ordinary differential

equations (ODEs) over delayed differential equations (DDEs) in our model because all
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processes occur in close proximity and are based on rapid neurotransmitter actions. To sim-

plify the analysis and allow for easier interpretation of the simulated results, we also assume

spatial homogeneity of DA molecules and D2 autoreceptors in our model, representing the

entire striatal extracellular space and presynaptic membranes as a single compartment using

single variables. In reality, striatal D2 autoreceptors at different subcellular locations differ in

their likelihood of being activated and contribute unequally to presynaptic DA regulation.

Clusters of D2 autoreceptors can be found near active synapses, as well as on somas and unmy-

elinated axons distant from release sites [73–75]. While it is generally accepted that synapti-

cally released DA activates extra-synaptic D2 autoreceptors through overflow and volume

transmission, the subcellular localization of D2 relative to DA release sites may impact mea-

surements of DA-D2 binding kinetics and interpretations of D2-DA regulation.

Autoreceptors adjacent to DA release sites attend to firing patterns and finely regulate DA

[76]. Conversely, distant D2 autoreceptors likely respond to tonic DA signalling and DA over-

flow over longer timescales. Adjacent D2 autoreceptors are well-suited for exerting quick

responses responsible for rapid oscillations at the single-neuron level, while distant D2 may

contribute to longer rhythms in striatal extracellular DA concentration, such as the ultradian

DA oscillations. Subcellular D2 localization may also contribute to the presynaptic regulatory

effect of extracellular DA. Downstream processes of the D2 signalling cascade are proposed as

limiting factor of D2 regulation [30] and exhibit sensitivities to subcellular location. Regulation

of neural excitability by D2 is accomplished through regulating ion channels and would appear

more significant near DA release sites compared to distant unmyelinated axons. The cytosolic

regulation of DAT availability would be more consistent regardless of D2’s subcellular loca-

tion, leading to the reuptake feedback loop responding to striatal background DA at a slower

timescale.

In summary, our model simplifies by representing D2 and DA as single compartments

responding instantly to concentration changes. Despite this, our model provides a framework

for investigating more complex DA-related interactions. Future modifications of the model

may incorporate spatial distributions to explore the interlinked relationship between distant

D2 regulation, DAT regulation, and long rhythms in striatal DA tone. Determining whether

subcellular D2 location significantly impacts DA regulation, particularly DAT regulation, will

provide insights into the coordination of various rhythms. Considering the specificity of DAT

translocation to D2 regulation and the dynamic nature of neural activity regulation [77], the

removal loop may play a central role in establishing inherent ultradian rhythms, while the

release loop could serve as a hub for integrating external information.

Inputs and outputs to the core oscillator. Our results demonstrate the potential of the

DA negative feedback loops to function as an oscillator. But for the oscillator to be part of the

timekeeping system, it must be able to both receive inputs and generate outputs that convey

timing information. In our model, we considered the circadian system and external events as

two major time-dependent inputs and derived behavioural actograms from the DA concentra-

tion as the output. Our preliminary investigation of the DUSR model suggests that the ultra-

dian DA rhythm integrates mixed signals, organizing daily responsiveness to external stimuli

while retaining the ultradian temporal structure.

Our results show a parameter-dependent, biphasic masking effect of the circadian signal on

ultradian oscillations. It is important to note that, in our study, the circadian-signal inputs

have a one-sided effect on the DUSR rhythm, while biologically the DA system also provides

feedback to the circadian system, creating a complex interplay. The transient excitatory input

in our model reflects input from the ascending arousal system, conveying subjective percep-

tion of important stimuli and potentially guiding goal-directed behaviour. Future research

could explore the impact of transient arousing stimulations on coupled oscillators representing
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the dopamine system and the circadian system. This would provide a more holistic under-

standing of how these two systems mutually influence each other in different contexts.

For the behavioural output of the DUSR model, the actograms provide a visualization of

baseline responsiveness of the motor and motivation DAergic pathways. However, it’s essential

to recognize the heterogeneity of the mesostriatal DA system. Excitatory D1 receptors and

inhibitory D2 receptors differ in their responsiveness to prolonged DA activation, influencing

how the DA signal is interpreted post-synaptically. Different subregions of the striatum and

various subnuclei in the midbrain also regulate diverse behaviours, meaning that individual

interpretations of DA signal baselines could vary [69].

Midbrain-terminal D2 autoreceptors display a unique lack of internalization upon excess

activation in the striatum, suggesting an important role in strictly conveying current DA con-

centration in the striatum [78]. Our model, balancing structural accuracy with simplicity,

offers a generalizable framework for studying ultradian DA rhythms. The model aligns with

current knowledge of the double negative feedback loops governing DA release and removal,

providing a useful tool for investigating biochemical mechanisms and interpreting behavioural

phenomena. Future research includes refining model parameters to emerging experimental

data on the presynaptic regulatory processes and applying the model to diurnal animals. Addi-

tionally, exploring model reduction through small parameters may help simplify mathematical

analysis aimed at determining parameters essential for producing ultradian oscillation and

parameters contributing to the oscillation amplitude, which may underlie individual variations

in striatal DA measurements [8]. Nevertheless, the rhythmicity responses based on the link

between striatal DA oscillations and ultradian behavioural rhythms provide evidence that

ultradian rhythms might have had an evolutionary advantage, which we discuss in the follow-

ing section.

Functional implications of the simulation results and ultradian rhythms in

the timekeeping hierarchy

The pervasiveness and persistence of ultradian oscillations on the physiological level suggest

that they are the external manifestation of an internal timekeeping system. It is thus interesting

to consider the functional role of ultradian rhythms in the timekeeping hierarchy with their

distinct characteristics. The period of the simulated ultradian DA oscillation is easily modified

by endogenous parameter variation (Figs 3 and 4), reflecting the large intra- and inter-individ-

ual variability reported for ultradian behavioural rhythms [8, 79]. It is also consolidated and

confined by the circadian signal, as are the behavioural ultradian rhythms superimposed upon

the circadian rhythm. These characteristics of high period flexibility sustained and subject to

circadian regulation parallel other locally sustained ultradian rhythms in various biological

contexts, such as the pituitary-adrenal regulation and central nucleus mechanisms impacting

immune responses, metabolism, and development [4, 45, 80]. These distinct mechanisms

share a common structural feature in utilizing negative auto-regulation without additional sta-

bilizing loops commonly seen in circadian clocks. While their specific responses depend on

individual properties, they universally orchestrate network dynamics to transition from sus-

tained expression to pronounced ultradian oscillations upon encountering external stimuli.

Ultradian rhythms in central mechanisms are suggested to ensure synchronization of individ-

ual cellular fate decisions, initiating coordinated responses for group benefit [80]. Ultradian

rhythms likely tune to local biological needs alongside the overarching requirements corre-

sponding to the physical light-dark cycle. Dopamine rhythms may involve synchronized

responses at the individual organism level for collective benefits. We envision the ultradian

behavioural rhythms to facilitate social synchrony among the surrounding biological
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environment, as living organisms exhibit flexible time-dependent activity patterns within a cir-

cadian day.

Synchronized activities offer survival advantages, especially for social animals. Communal

animals demonstrate synchronized ultradian rhythms both in laboratory conditions and open

fields [81, 82]. Concerted group activities reduce individual risks by providing “safety in num-

bers”, while synchronized resting aids in heat conservation and resilience in stressful condi-

tions [83, 84]. Synchronized foraging provides increased protection via invigilation and

reduces competition for resource distribution [6, 85]. While estrous synchronization tends to

be studied on longer time scales, similar reproductive advantages could be generalized to syn-

chronization on the ultradian time scale. In contrast to the intra-species synchronization

described above, inter-species social synchrony remains less studied. Nevertheless, it is reason-

able to assume that the ability to partially anticipate predator or prey activity would be

favoured, given that DA oscillations are involved in fright-driven avoidance and food anticipa-

tion [23].

The flexibility of the DUSR provides a foundation for the functional role of ultradian

rhythms in social synchrony, prompting us to consider why the ultradian clock is anatomically

distinct from the circadian system and built within the DA system. Firstly, it is not uncommon

that biological clocks with distinct oscillatory mechanisms co-exist to accommodate diverse

requirements and functional roles. Many lower vertebrates, for instance, rely on the dynamic

interaction between three photoreceptive clocks that differ in their entrainment responses and

output mechanisms to regulate physiological and behavioural variations [86–89]. In mature

red blood cells lacking a nucleus to support the transcription-translation feedback loop

(TTFL) of clock genes, a persistent oscillation regulating metabolism is maintained via a cyto-

plasmic redox feedback loop [90, 91]. The distinct clocks differ in their sensitivity and

responses to various environmental stimuli as well as in their output mechanisms and targets.

The midbrain DAergic neurons, responsible for motor and motivation in spontaneous and

goal-directed behaviours, provide a natural platform for the emergence of flexible oscillations.

Given their involvement in voluntary interactions, the mammalian DA system is well suited

for generating ultradian rhythms, contributing to social synchrony by motivating engagement

in recurring events.

Social events recur within a day and the ultradian rhythm is inevitably contextualized by

circadian entrainment. The DA system likely relies on the circadian clock to establish stable

rhythms that could be utilized by the host, as indicated by the masking and coupling effect of a

circadian signal on the DUSR rhythm (Figs 5 and 6). Indeed, daily light onset has a strong syn-

chronizing effect on ultradian behaviour [83]. Clock-controlled genes, with their rhythmic

concentration, exert time-varying influences on DA self-regulation. Our model incorporates

circadian influence at the oscillator level, but its impact extends to both the input and output

of DUSR. Social synchrony can either arise directly through entrainment among individuals

or indirectly through individual entrainment to a shared circadian environment. In the former

case, coordinated behaviours constitute both the input and output of the ultradian oscillator,

while in the latter case, it is solely the output. It would be more functionally efficient if the

ultradian oscillator coordinating social synchrony is directly responsive to significant interac-

tions among the surrounding biological environment. But as all functional advantages are

adapted to the context of the surrounding physical environment, the ultradian oscillations

should also adapt to the changing requirements depending on the circadian time of day. We

propose that the DUSR acts as a coordinator between the biological and physical environment,

receiving inputs of circadian regulation and emotional arousal experiences.

The distinct responses of DUSR to both inputs do not result from a simple additive effect,

but rather reflect a coordinated response to their interactive effect (Fig 8). Within the ultradian
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oscillatory range, while the circadian coupling suppresses pre-existing ultradian oscillation, it

increases the DUSR’s response to a transient stimulus, reflecting increased sensitivity to signif-

icant experiences. It also reorganizes responses to stimuli, consolidating them during the indi-

vidual’s active phase of the day. This extended response to single significant experiences helps

maintain synchrony when the input is not constant, such as in social synchrony between non-

cohabiting individuals. We predict from our results that the ultradian rhythm is the default

rhythm of the DA system, but it requires circadian regulation to fulfill its functional role. Ani-

mals with acquired circadian-arrhythmicity might have a pronounced ultradian rhythm but a

reduced ability to maintain socially synchronized behaviours, leading to reduced entrainment

to social interactions and an increased tendency to desynchronize from companions. Further

animal experiments can confirm or refute these predictions and clarify the role of ultradian

rhythms in the timekeeping hierarchy.

Model and methods

Core model equation description

The core DUSR model consists of Eqs (1)–(4) and focuses on the DA-D2 self-regulatory pro-

cesses that form the core ultradian oscillator. A summary of the time-dependent external

inputs to the DUSR and a possible way to translate DA concentration to behavioural output

will be described in the sections following the analysis of the core model. A MATLAB .m and an

XPPAUT .ode of the model is provided in the Supporting Information S1 Files.

Extracellular DA concentration dynamics. Extracellular DA in the striatum is primarily

regulated by two processes: release through vesicular exocytosis initiated by successful action

potentials and removed through dopamine transporter (DAT)-dependent reuptake [50, 92].

Both processes bias DA concentration between the cytosolic and the extracellular space across

the pre-synaptic membrane.

For DA release, we assume a sufficient pre-synaptic vesicular DA storage and approximate

the change rate in DA concentration DAex as linearly dependent on two factors: the state-

derived variable F, which represents neuron firing frequency, and the rate constant α, which

represents the unit increase in DAex elicited by a single population firing event. A range of val-

ues for α, 117 ± 11/13 nM in the caudate putamen and 78/80 ± 8/7 nM in the nucleus accum-

bens respectively, have been measured in [48]. As our model focuses on general DA behaviour

in the entire striatum, we take around the average value α = 0.09 μM.

For DA removal, the uptake rate of DAex is given by the Michaelis-Menten kinetics (
Vmax�½S�
KMþ½S�

)

with DAex as the substrate concentration [S]. For consistency, the DA uptake and DA release

parameter values are extracted from the same studies [48, 49], such that KM = 0.2 μM and

Vmax = 4 − 5.5 μM s−1 in the caudate and 2.5 − 3.5 μM s−1 in the nucleus accumbens. KM reflects

the affinity of DA to DAT and exhibits minimal spatiotemporal variation, while Vmax reflects

the maximum achievable rate determined by transporter availability and is susceptible to D2

autoreceptor activation [93]. Vmax is thus made to depend on the state variable TDA such that

Vmax = kVmax � TDA. The value range for kVmax is derived from dividing the Vmax values by

TDA = 1.4, corresponding to when DAT is at the midway of its availability range. The parame-

ter value kVmax = 2.63 × 3600 μM h−1 is selected through simulation and gives a Vmax value that

oscillated between 2.75 and 3.55 μM s−1.

Compared to the exocytotic release and DAT-dependent reuptake, synaptic and post-

synaptic processes are slow and contribute insignificantly to striatal DA kinetics. For the

DUSR model, we simplify their combined rate into a first-order kinetics proportional to DAex

with a rate coefficient β = 144 h−1 based on the reported DA clearance rate of 0.02 − 0.04 s−1 in

DAT knock-out mice [50, 51]. Being only approximately 0.3% of the reuptake rate (linearized
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as
kVmax

KM
), β has minimal impact on all results, as expected for a parameter not involved in the

negative feedback loops.

D2 autoreceptor activation. Eq (1) captures the binding-dissociation kinetics of DA and

the D2 autoreceptors. Upon binding with DA, D2 switches from the free, inactive state to the

fully activated state in the form of a ligand-receptor complex. This process is reversible,

D2
inactive autoreceptors

þDAÐ
binding

unbinding
D2 � DA

activated autoreceptors
:

As the active state of D2 depends on the occupancy of a single binding site, a first-order reac-

tion determines the equation. The rate at which D2 becomes occupied by DA is dependent on

the ligand concentration DAex, the concentration of free D2 receptors (D2tot − D2AR), and the

rate constant k. D2tot represents the total concentration of membrane-bound D2 autoreceptors

at the striatum and D2AR represents the concentration of occupied D2 autoreceptors. The rate

k reflects both the diffusion rate of DA to autoreceptor sites and the binding coefficient of DA

to D2. The unbinding rate of D2-DA complexes is assumed proportional to its own concentra-

tion D2AR and governed by the dissociation coefficient a.

A previous model of striatal D2-binding [47] estimated striatal D2 concentration (D2tot) as

approximately 0.1 μM with a DA dissociation constant (Kd) of 25 nM
−1. However, the reliability

and reproducibility of biochemical measurements have been longstanding challenges [94, 95],

with reported D2-DA binding kinetics varying up to hundredfold between experiments (see

in: PDSP/IUPHAR database). Moreover, many experiments did not differentiate between D2’s

subcellular location against the synapse. Given the substantial variability in reported D2 kinet-

ics and the exclusive focus of our model on pre-synaptic D2 autoreceptors, we primarily deter-

mined our kinetic parameter values based on simulation. As D2 activation paves the

foundation step for both DA self-feedback loops, concurrently adjusting both constants with

the same factor modifies the oscillation period. The parameter values D2tot = 0.1 μM,

k = 10.46 μM
−1 h−1, and a = 1.7 h−1 result in an average D2 occupancy of around 20% when

DAex = 0.04 nM, consistent with literature estimates of baseline striatal D2 autoreceptor occu-

pancy in the lower tenth [30, 62, 63].

Pre-synaptic electrical activity. To capture the dynamics of impulse-dependent DA

release, midbrain DAergic neuron activity is modelled on the population level and represented

by V0, the average resting membrane potential. Accounting for all the excitatory and inhibitory

inputs to midbrain DAergic neurons is unrealistic and will unnecessarily complicate the

model. As our model emphasizes the evolution of DA neurodynamics over time, the time-

dependent inputs are extracted and the summarized effect of other inputs is represented as a

baseline firing rate corresponding to the baseline membrane potential at V0 = 0 mV. Eq (2)

describes the evolution of V0 over time due to self-regulation [52], which we describe on in

this section. The effects of time-dependent inputs from other brain regions onto midbrain

DAergic neurons will be discussed in later sections.

Neurons have a tendency to restore their electrochemical equilibrium maintained through

K+ disequilibrium within a certain time scale. This restoring rate is proportional to V0 at a rate

constant c, which is the reciprocal of the decay time. In the absence of further stimulations, V0

approaches its baseline exponentially. D2 autoreceptors exert a concentration-dependent

inhibitory control on pre-synaptic neuron excitability by increasing membrane potassium

conductance [39, 96] and decreasing membrane calcium conductance [41, 97]. We summarize

this D2-dependent inhibitory effect on V0 to be a rate constant kV times the current D2AR

value. In addition to the D2-dependent inhibitory regulation through negative feedback, mid-

brain DAergic neurons also exhibit D2-independent excitatory coupling through positive
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feedback [98–100]. These excitatory effects are defined as proportional to the current firing

rate F times a rate constant b that reflects the conversion strength from neuron activity to neu-

ron electrochemical state. The value of F is determined instantaneously from V0 as described

in the following paragraph. Parameter values c = 3.62 h−1, b = 0.012 mV, kV = 2.73 × 3600

mV μM
−1 h−1 are manually selected through simulation to reproduce an ultradian period of

4.0 h.

The firing rate of midbrain DAergic neurons alters between a low-rate tonic firing of below

4 Hz and a high-rate burst-firing capped at 15 Hz [46, 53, 56, 101–103]. The mean neuron fir-

ing rate F represents the population firing behaviour and is approximated as a sigmoid func-

tion of V0, whose midpoint and slope steepness are determined by parameters θ and σ
respectively. θ represents the input V0 value at which the output F is halfway towards the maxi-

mum and reflects the averaged population firing threshold relative to resting. σ determines

how quickly F saturates towards the maximum and reflects the threshold variation among

individual neurons. Past experiments suggest that an action potential could be triggered in

DAergic neurons when the membrane potential depolarizes 15 to 30 mV above resting poten-

tial and reported a lower variation among individual midbrain DAergic neurons [54–56].

With the chosen parameter values Fmax = 15 Hz, θ = 25 mV, and σ = 18 mV, F has the value of

2.98 Hz when V0 is at its baseline value, such that F remains well below the tonic firing rate

when V0 is below the baseline and then saturates exponentially fast to Fmax with increasing V0.

Dopamine transporter activity. Eq (3) describes the kinetics of the dimensionless vari-

able TDA, the availability of dopamine transporters (DAT) expressed as the ratio against its

minimal availability in the striatum. DA transporters are constantly translocated between the

internal cytoplasm and the surface membrane of pre-synaptic terminals, where they actively

participate in removing DA from the extracellular space [104, 105]. D2 activation contributes

significantly to the short-term modification of DAT cell-surface expression by accelerating its

forward-trafficking to the membrane (see review: [106]), such that increasing D2AR by

increased DAex leads to increased TDA and thus increased removal of DA from the extracellu-

lar space [35, 93]. We approximate TDA from D2AR with a sigmoidal curve between its mini-

mum (TDA = 1) and maximum availability (TDA = ΔT). The additional availability to the

minimum contributed by D2AR is DT� 1

1þe� kTðD2AR � D0Þ
, which is a positive value bounded above by

ΔT − 1. The most rapid increase in TDA occurs at D2AR = D0, which reflects the half-efficiency

of D2 autoreceptors on transporter regulation. The steepness of the slope is determined by the

parameter kT and, additionally, TDA requires a time delay of τT to reach the new dynamic

equilibrium.

Exciting the D2 regulatory pathway can increase cell-surface DAT expression to over 150%

and inhibiting the pathway decreased cell-surface DAT by almost 50% [34, 35]. These changes

in surface DAT ratio peaked between 5 to 15 min after the evoked D2 regulation and lasted for

less than an hour. Based on these findings, parameter values ΔT = 1.8 and τT = 0.15 h−1 are

chosen for the current model. As D2 agonists induced a larger relative change in membrane-

bound DAT ratio from baseline than did D2 antagonists, D0 = 0.04 μM and kT = 87.5 μM
−1

were chosen so that the simulated D2AR values remain below D0.

Simulation, local sensitivity, and bifurcation analysis

Model simulations were performed with an ODE solver in MATLAB 9.9.0 (The Mathworks, Inc.

Natick MA). To investigate the rhythmic behaviour of the model under different endogenous

conditions, local sensitivity analysis is performed on all parameters at a nominal period of 4.0
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hours using the equation,

Period Sensitivity Coefficient ¼
dðPeriodÞ
dðParamÞ

Nominal Param
Nominal Period

: ð7Þ

The period sensitivity is estimated under a perturbation of 1% for each parameter.

To further characterize the stability of the ultradian oscillation and determine the range of

ultradian period that could be generated by the model upon modification of individual pro-

cesses, bifurcation analysis was performed with XPPAUT AUTO [107] (Ntst = 60; Ds = 0.01;

Dsmin = 0.005; Dsmax = 0.05; other parameters at the default value). Simulations started at a

stable equilibrium below and above the oscillatory range containing the chosen value. The

results were verified with MATLAB simulations at various values chosen along the continuation

curve.

Effects of circadian inhibitory inputs on DA oscillations

The solar day is inarguably the most important rhythm for terrestrial mammals and multiple

modulatory signals on the DA system display a circadian rhythm (see review: [66]). The master

circadian clock located in the SCN solely determines the presence and the period of circadian

rhythms in spontaneous behavioural activity, entraining endogenous rhythms and peripheral

clocks located throughout the brain and body [108]; core clock genes expressed within mid-

brain DAergic neurons alter phenotype at the behaviour level [109, 110]; the midbrain-stria-

tum circuitry comprising mesostrial DAergic projections and retrograde striatomesencephalic

pathways plays a crucial role in the food-entrained and methamphetamine-induced circadian

rhythms [1]. In addition to circadian modulation on behaviour, mathematical simulations in

[44] further showed that the circadian molecular clock regulating DA synthesis and degrada-

tion leads to circadian rhythmicity in extracellular DA concentration. Because the overt circa-

dian rhythms of healthy individuals are normally synchronized, a single time-dependent term

Rcirc(t) is used to represent the collective circadian regulatory strength acting upon the DUSR.

The value Rcirc oscillates between 0 and the maximum at an endogenous period of Tcirc = 24 h.

In nocturnal rodents, SCN neural activity has an antiphase relationship with behavioural

activity and suppressing SCN activity induced behavioural activity [65]. Physiologically, con-

nections from the SCN and the striatum to the midbrain are mostly inhibitory [66, 111]. We

thus append the circadian regulatory signal as a negative term to Eq (2), so that the ODE for

V0 becomes

dV0

dt
¼ � cV0 þ b � F � kVD2 � RcircðtÞ: ð8Þ

The modified system of ODEs is simulated with Rcirc(t) as either a 12 h:12 h switch function

or a sine function reflecting the sinusoidal waveform of SCN neural activity [65, 67]. As SCN

neural activity may exhibit asymmetry between its daily rise and fall phases, we sought to

explore the effect of the circadian signal’s waveform on ultradian rhythm regulation by simu-

lating Rcirc(t) using both standard and tilted sine functions.

Effects of transient excitatory inputs on DA oscillations

Mesostriatal DA contributes to the execution of cue-triggered and goal-directed behaviours.

Encountering a single emotionally arousing event can have a time-dependent effect on DA-

associated behaviour [112]. Midbrain DAergic neurons projecting to the striatum receive

selective excitatory and dis-inhibitory inputs from cholinergic neurons, which encode per-

ceived saliency and participate in motivated behaviour [69, 113–115]. These inputs increase
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striatal extracellular DA by concentration increasing impulse-triggered DA release [69, 70,

115, 116]. We modelled a transient salient stimulus as a single rectangular pulse Isens spanning

the duration of an emotionally arousing event. This stimulus acts as an excitatory input that

increases the average membrane potential of the DAergic neurons as

dV0

dt
¼ � cV0 þ b � F � kVD2þ IsensðtÞ: ð9Þ

Circadian rhythms and salient stimulus interact at striatal DA to facilitate timestamping

and anticipating the recurrence of important events, hypothesized to involve an increase in

behavioural motivation [23, 112]. To gain insight into the combined effect of both a circadian-

rhythmic inhibitory signal and a transient excitatory signal, the DUSR is simulated with both

Rcirc and Isens appended, with the circadian time when Isens occurs chosen to depend on the

phase of Rcirc:

dV0

dt
¼ � cV0 þ b � F � kVD2 � RcircðtÞ þ IsensðtÞ: ð10Þ

To ensure complete processing of the brief stimulus, integration was stopped and restarted

at the times of the discontinuous input within the ODE solver simulation.

DA oscillations and behavioural activity

Behavioural rhythms are hypothesized to be both a physiological indicator and a regulated out-

put of striatal DA rhythms. We thus sought to reproduce behavioural activity patterns from

the simulated dynamics in DA concentration. However, the relationship between activity level

and DA concentration is mostly established in phase rather than in amplitude. Episodes of

behavioural activity are correlated with and preceded by a local peak in the striatal DA concen-

tration, rather than when DA exceeds a fixed threshold [8]. Striatal DA concentration displays

considerable intra-individual variation and rises drastically upon administration of psychosti-

mulants, while the changes in behavioural activity level are comparatively modest. This could

be due to a combined limiting and desensitizing effect of both post-synaptic D1 and D2 recep-

tors, as well as downstream pathways. It is thus difficult to predict whether an animal is active

or how active an animal will become from an isolated measurement of DA.

To convert the simulated striatal extracellular DA concentration values to behavioural

activity while accounting for the lack of a quantitative relationship, DA has to serve as its own

control. We applied a circadian moving threshold that outputs only two states, active (1) and

inactive (0), to the simulated DA values. The current DAex value is compared to the time-aver-

ages DAex value over the previous circadian cycle (ΔT = Tcirc = 24 h) and the output is regarded

as active if it surpasses the average. Therefore, we define activity as

ActivityðtÞ ¼
0; DAexðtÞ � hDAexðtÞi

Dt

1; DAexðtÞ > hDAexðtÞiDt

:

(

ð11Þ

Behavioural activity is visualized as double-plotted actograms starting from t = 24 h with the

Actiview software (version 1.2, Mini Mitter Co., Inc., Oregon, USA).

Supporting information

S1 Files. Model code. The model implemented in MATLAB file DUSR.m and XPPAUT file

DUSR.ode.

(ZIP)
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