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Md. Sazid Uddin1, Md. Khairul Alam Mazumder1,
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Cauliflower cultivation plays a pivotal role in the Indian Subcontinent’s winter

cropping landscape, contributing significantly to both agricultural output,

economy and public health. However, the susceptibility of cauliflower crops to

various diseases poses a threat to productivity and quality. This paper presents a

novel machine vision approach employing a modified YOLOv8 model called

Cauli-Det for automatic classification and localization of cauliflower diseases.

The proposed system utilizes images captured through smartphones and hand-

held devices, employing a finetuned pre-trained YOLOv8 architecture for

disease-affected region detection and extracting spatial features for disease

localization and classification. Three common cauliflower diseases, namely

‘Bacterial Soft Rot’, ‘Downey Mildew’ and ‘Black Rot’ are identified in a dataset

of 656 images. Evaluation of different modification and training methods reveals

the proposed custom YOLOv8 model achieves a precision, recall and mean

average precision (mAP) of 93.2%, 82.6% and 91.1% on the test dataset

respectively, showcasing the potential of this technology to empower

cauliflower farmers with a timely and efficient tool for disease management,

thereby enhancing overall agricultural productivity and sustainability
KEYWORDS

cauliflower disease detection, machine vision, YOLOv8, agricultural disease
management, vegetable disease detection
1 Introduction

Agriculture is not only the primary source of food security, in agriculturally driven

countries like Bangladesh, it is also one of the main sources of employment opportunities

(Eunice et al., 2022). The agricultural sector holds a crucial position in maintaining rural

communities, particularly in developing nations, as it provides the primary source of

sustenance, income, and employment. This sector contributes around 6.4% of global
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economic productivity which surmounts to over 5 million dollars

(Statistics Times, 2018). Bangladesh is considered an agricultural

nation, and its economy relies significantly on agricultural

production. According to The Global Economy, up until 2022,

more than 37% of the workforce is engaged in agriculture (The

Global Economy, 2021) and accounts for 11.50% of the GDP of the

nation (Bangladesh Bureau of Statistics, 2023). In Bangladesh,

where agriculture is crucial, Cauliflower is a notable vegetable

appreciated both for its popularity, health benefits and economic

significance. Cauliflower belongs to the Brassicaceae family and is

full of fiber and vitamins B (Pourdarbani and Sabzi, 2023), which

are beneficial to health. Being a cruciferous vegetable, it provides

heart-healthy fiber and choline, a substance critical for learning,

memory, muscles, and sleep. Cauliflower is incredibly versatile in

the kitchen, fitting seamlessly into various dishes whether

consumed fresh or cooked.

Cauliflower is cultivated in numerous countries. In terms of

production volume, the top countries include China, India, USA,

Mexico, Spain, Italy, Turkey and Bangladesh. Bangladesh produced

283 kilotons of cauliflower in 2020 (Helgi Library, 2022). The ideal

growing conditions for cauliflower are areas between 11 and 60° Nwith

typical temperatures ranging from 5 to 28°C. While developing, it can

tolerate temperatures ranging from -10°C to 40°C for a few days (Singh

et al., 2018). Cauliflower farming faces challenges from several diseases

like bacterial spot rot, black rot, downy mildew etc. The growth and

productivity of cauliflower can be significantly impacted by these

diseases. Farmers must identify these diseases early on and use the

right method to control them. There exists multiple approaches for the

control of cauliflower diseases such as physical control (hot water,

nanoparticles), chemical control (pesticides) and biological control

(Aqueous extracts, Bacillus etc.) (Liu et al., 2022). Pesticides used to

protect cauliflower can be harmful to human health, and diseases

caused by bacteria or fungus can cause problems including allergies

when consumed (Pathak et al., 2022). This has an impact on the

amount and quality of cauliflower as well as contributing to the annual

loss of a significant chunk of harvests to plant diseases. Traditional

ways of identifying cauliflower diseases in farming face significant

challenges. Frequently, they depend on manual inspection, which is

laborious, error-prone, and can miss early diseases. Most farmers,

especially those in remote areas, cannot afford to hire and retain

agricultural experts for disease identification.

The increasing adoption of optical imaging, machine vision and

artificial intelligence techniques in vegetable disease detection and

management has resulted in increasing demand for these

applications in various areas of precision agriculture (Teet and

Hashim, 2023). Convolutional Neural Network (CNN) approaches,

in particular, are a promising option offered by more recent techniques

utilizing modern technologies (Gu et al., 2018). These methods are

faster, more accurate, and scalable, allowing for continuous crop

monitoring. Many researchers are actively involved in identifying

cauliflower diseases using CNN approaches, but these methods,

while effective in disease classification, fall short in the problem of

disease localization. In our research, we analyzed the latest methods for

detecting and classifying crop diseases (especially cauliflower diseases)

and introduced an approach using the YOLOv8 object detection model

as a base which not only classifies cauliflower diseases but also identifies
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the region of affected areas in the images. Among all diseases, we

worked on Black Rot, Downy Mildew, and Bacterial Sport Rot.

This paper introduces a modified YOLOv8 model for the

localization and labelling of cauliflower diseases. This model

combines the pre-trained knowledge of the YOLOv8 model with

extra convolutional layers to improve the accuracy for identifying

cauliflower disease. The primary contributions of this paper are

enumerated as follows:
1. Custom YOLOv8s Model Development: The paper

introduces a tailored YOLOv8s model designed

specifically for identifying three prevalent cauliflower

diseases—Downey mildew, bacterial spot rot, and black

rot. The development of this custom model addresses the

unique challenges posed by cauliflower diseases.

2. Performance Evaluation of Base YOLOv8 Models: The

study conducts a comprehensive evaluation of base

YOLOv8 models on a cauliflower disease detection

dataset. By employing rigorous testing and comparison

methodologies, the paper sheds light on the baseline

performance of YOLOv8 models in the context of

cauliflower disease detection.

3. Systematic Model Modifications for Improved Detection

Performance: Building upon the baseline evaluation, the

paper systematically applies different modifications to

enhance the detection accuracy and average precision of

the base YOLOv8 model. This contributes valuable insights

into the specific adjustments and fine-tuning strategies that

yield improvements in the model’s ability to accurately

detect and classify cauliflower diseases.

4. Open Access to Annotated Dataset and Proposed Model:

The paper not only presents novel insights into custom

model development and systematic modifications but also

contributes to the research community by providing an

annotated version of the VegNet cauliflower disease

classification dataset (Sara et al., 2022). This dataset,

along with the proposed custom YOLOv8s model, is

made openly accessible. This contribution facilitates

reproducibility, encourages further research, and

establishes a foundation for ongoing advancements in the

field of computer vision applied to agriculture.
The remaining portions of the paper are organized as follows:

We discuss the existing literature for cauliflower disease detection

and related problems in Section 2. We talk about an overview of the

dataset and generally used image pre-processing techniques, and

the methodology of the paper is explained in Section 3. We present

the results of the performance observation of the models in Section

4. We discuss our findings in Section 5. The conclusion and

potential future research endeavors are discussed in Section 6.
2 Literature review

Crop diseases pose serious risks to food production, economic

stability, and food security, having a substantial impact on global
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agriculture. These diseases have the potential to cause significant

yield losses, endangering the livelihoods of millions of farmers and

putting vital crops needed for commerce and subsistence at risk. In

addition to being essential for maintaining a steady and secure food

supply, crop diseases highlight the need for novel approaches, like

the use of cutting-edge technologies like deep learning, to improve

disease detection and mitigation techniques in the agricultural

industry. The most recent and notable research endeavors in this

domain are discussed in this section.

(Arun and Umamaheswari, 2023) introduced the Complete

Concatenated Deep Learning (CCDL) framework, a multiple crop

disease classification model capable of labelling crop diseases across

many species of crop. The core functional unit of this architecture is

the Complete Concatenated Block (CCB), which strategically places

a point-wise convolution layer before each convolution layer to

limit the increment of parameters in the model. The reorganized

Plant Village dataset was used by the researchers to train this

architecture. The PCCDL-PSCT approach proposed by the

authors performed best, obtaining an impressive accuracy of

98.14% with a smaller model size of about 10 MB. (Chug et al.,

2023) presented an innovative framework that combines the

strengths of both machine learning and deep learning. The

proposed framework comprises 40 diverse Hybrid Deep Learning

(HDL) models. The performance of the HDL models was notably

impressive on the IARI-TomEBD dataset, achieving high accuracy

levels ranging from 87.55% to 100%. To validate the effectiveness of

the approach, the researchers conducted experiments using two

publicly available plant disease datasets, namely PlantVillage-

TomEBD and PlantVillage-BBLS. (Huang et al., 2023) introduced

an approach based on FC-SNDPN (Fully Convolutional –

Switchable Normalization Dual Path Networks) for the

automated detection and identification of crop leaf diseases. To

mitigate the impact of complex backgrounds on the recognition of

crop diseases and insect pests, the authors utilized a Full

Convolutional Network (FCN) algorithm based on the VGG-16

model for target crop image segmentation. The SNDPN approach

unites the connection method between DenseNet and ResNet

layers, forming a neural network util izing Switchable

Normalization (SN) layers. The method proposed combines

SNDPN for detecting diseases and FCN for segmenting the

foreground, demonstrated an identification accuracy of 97.59% on

the augmented dataset, affirming the efficacy of the proposed

methodology. (Haridasan et al., 2023) employed a computer

vision-centric approach, incorporating image processing, ML and

DL techniques to diminish reliance on traditional methods for

safeguarding paddy crops against diseases. The utilization of image

segmentation to pinpoint the afflicted regions of the paddy plant

was proposed, identifying diseases solely based on their visual

characteristics. A combination of a SVM classifier and CNN was

employed for the recognition and classification of specific types of

paddy diseases. By incorporating ReLU and SoftMax functions, the

proposed deep learning strategy achieved a validation accuracy

of 91.45%.

(Mallick et al., 2023) presented an innovative deep learning

approach for the identification of pests and diseases affecting mung

beans. To address the challenge posed by the limited number of
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available mung bean crop images available for training, the

researchers employed transfer learning, which yielded highly

promising results for swift and effective disease as well as pest

detection. The proposed model successfully distinguished 6 types of

mung bean diseases and 4 types of pests from healthy and diseased

leaves collected across various seasons. Through experimentation,

the proposed lightweight DL model for mung bean disease and pest

detection demonstrated an impressive average accuracy of 93.65%.

(Zhao et al., 2023) introduced enhancements to the YOLOv5s

model for improved crop disease detection. The modifications

included refining the CSP structure in the feature fusion stage,

incorporating a lightweight composition to reduce model

parameters, and extracting feature information through multiple

branches. Addressing scaling issues during training, an improved

DIoU loss function replaced the Generalized IoU loss function from

the original YOLOv5. Through transfer learning, the enhanced

model exhibited superior mean average precision (mAP)

compared to YOLOv3, YOLOv4, YOLOv4-tiny, YOLOv5s, Faster

R-CNN and SSD models, achieving recall, F1 and mAP mAP, F1

score, and recall of 87.89%, 91%, and 95.92%, respectively. These

values marked improvements of 4.58%, 5%, and 4.78%, respectively,

compared to YOLOv5s. (Lin et al., 2023) introduced an enhanced

YOLOX-Tiny network, denoted as YOLO-Tobacco, designed for

detecting brown spot disease in open-field tobacco crop images.

Their objective was to uncover crucial disease features and improve

the fusion of diverse feature levels, facilitating the detection of dense

disease spots across various scales. The YOLO-Tobacco network

demonstrated an AP (average precision) of 80.56% on the test set,

surpassing available lightweight detection models such as YOLOX-

Tiny, YOLOv5s, and YOLOv4-Tiny by 3.22%, 8.99%, and 12.03%,

respectively. (Hu et al., 2023a) introduced a novel Multi-Scale Dual-

branch model for pest identification from rice crop images,

employing a GAN (generative adversarial network) and an

enhanced ResNet to discern pests in complex background images.

To optimize the calculations ratio of residual blocks, the ConvNeXt

residual block was incorporated into the ResNet model and a dual-

branch structure was devised to extract features of disease affected

spots of varying sizes, adjusting the convolution kernel size for each

branch. Training the new model on a systematically expanded

dataset improved recognition accuracy by 2.66% compared to the

original ResNet model. In comparison with base networks like

AlexNet, DenseNet, VGG, ResNet, and Transformer under similar

conditions, the new model demonstrated superior performance,

achieving a disease recognition accuracy of 99.34%.

(Thakur et al., 2023) presented a lightweight CNN model

named ‘VGG-ICNN’ designed for identifying crop diseases through

plant-leaf images. The VGG-ICNNmodel comprises approximately

6 million parameters, significantly fewer than many existing high-

performing DL models. The model’s effectiveness was assessed

across five diverse public datasets encompassing various crop

types, including multi-crop datasets like Embrapa and

PlantVillage with 93 and 38 categories, respectively, and single

crop datasets like Maize, Rice and Apple each with four or five

categories. Experimental outcomes indicated that the proposed

method surpassed several recent DL approaches in crop disease

identification, achieving an accuracy of 99.16% on the PlantVillage
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dataset. (Zhu et al., 2023) introduced EADD-YOLO, a model for

accurate and efficient apple leaf disease detection model based on

YOLOv5. EADD-YOLO utilized the shufflenet inverted residual

blocks in the backbone and utilizing depthwise convolution to

propose an efficient feature learning module in the neck. To

improve detection accuracy for diseases of various sizes in

different scenes, a coordinate attention module was embedded in

critical locations to highlight crucial information and suppress

irrelevant details. Additionally, the SIoU was used as the

bounding box regression loss instead of CIoU to improve

prediction box localization accuracy. Experimental results

demonstrated mAP of 95.5% and 625 FPS inference on video on

the apple leaf disease dataset (ALDD). Compared to other recent

works on ALDD, the proposed method improved detection

accuracy and speed by 12.3% and 596 FPS, respectively, with

significantly fewer parameters and FLOPs. (Wang et al., 2023a)

introduced Cropformer, a novel deep learning method designed for

crop classification on multiple scenarios. Addressing the limitations

of existing approaches that focused on extracting a single feature,

Cropformer adopted a two-step classification process. In the initial

step, the model undergoes a pre-training phase of self-supervised

fashion to learn about crop growth features, followed by a second

step involving supervised fine-tuned classification using weights

derived from the first step. The study conducted comprehensive

experiments on multi-scenario crop classification, covering

scenarios regarding season and sample size, and transfer scenarios

in 5 study areas with diverse crop types. Comparison with existing

approaches revealed that the Cropformer not only achieved

significantly higher accuracy in crop classification, but also

demonstrated superior accuracy utilizing fewer samples. The

proposed approach presents a notable advancement in addressing

the challenges of multi-scenario crop classification through its

unique two-step classification strategy. (Hu et al., 2023b)

introduced a novel Lesion Proposal CNN based on Class-

Attention called CALP-CNN designed for strawberry disease

identification. The CALP-CNN employs a class response map to

pinpoint the primary lesion object and suggest distinctive lesion

details. Utilizing a cascading architecture, CALP-CNN concurrently

addresses challenges related to complex backgrounds and the

potential misclassification of similar but different instances.

Experimental evaluations conducted on a self-assembled dataset

of strawberry diseases attest to the effectiveness of CALP-CNN. The

classification results for CALP-CNN demonstrate metrics of

92.56%, 92.55%, 91.80%, and 91.96% for accuracy, precision,

recall, and F1-score, respectively. (Masood et al., 2023) introduced

MaizeNet, a deep learning (DL) approach designed for the accurate

identification and classification of diverse maize crop leaf diseases.

Their method, an enhanced Faster-RCNN approach, employed the

ResNet-50 model utilizing spatial channel attention as the

underlying network for computing deep keypoints, which were

subsequently localized and categorized across various classes.

MaizeNet demonstrated notable effectiveness with an accuracy of

97.89% and a mAP of 94%, underscoring its efficacy in accurately

locating and classifying different types of maize leaf infections.

Research on deep learning techniques for the diagnosis of

cauliflower disease is noticeably lacking. Although deep learning
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is being used more and more in agricultural settings, especially for

crop disease detection, the particular field of cauliflower diseases is

still not well studied. Few researchers attempted to employ the deep

learning techniques to identify cauliflower diseases. (Rajbongshi

et al., 2022) introduced an online expert system based on machine

vision designed for the identification of cauliflower diseases. The

system processed images captured via smartphones and handheld

devices then identifying them to recognize diseases and provide

assistance to cauliflower farmers. The feature extraction process

enabled the classification of four types of cauliflower diseases,

including ‘bacterial soft,’ ‘white rust,’ ‘black rot,’ and ‘downy

mildew.’ The experiment utilized 776 images, employing K-means

clustering for the segmentation of disease-affected regions, followed

by co-occurrence and statistical feature extraction. BayesNet, Kstar,

Random Forest, LMT, BPN, and J48 classification algorithms were

employed for classification of cauliflower diseases. The evaluation of

these algorithms revealed that the Random Forest classifier

superseded others with an accuracy approaching 89.00%. (Shakil

et al., 2023) developed an agro-medical expert system for the

diagnosis of cauliflower diseases. The affected portions of

cauliflowers were segmented using the k-means clustering

algorithm. Subsequently, 10 statistical and GLCM features were

extracted from the segmented images. After selecting the top N

features (where N = {5, 10}), the SMOTE technique was applied to

address training datasets with varying feature quantities. Five

machine learning (ML) algorithms were then utilized, and their

performance was assessed for non-augmented and augmented

datasets. The identical procedure was applied to both datasets,

and the classifier’s performance was tested on both. Logistic

regression (LR) was found as the most accurate method,

achieving a 90.77% accuracy based on top 9 features in the

augmented dataset. (Kanna et al., 2023) conducted experiments to

assess various pre-trained DL models for the early prediction of

diseases in cauliflower plants. The study focused on 3 classes of

cauliflower diseases, namely Bacterial spot rot, Black rot, Downy

Mildew, along with healthy cauliflower images, sourced from the

VegNet dataset. Transfer learning models like EfficientNetB0,

Xception, EfficientNetB1-B2-B3-B4, MobileNetV2, DenseNet201,

InceptionResNetV2, and ResNet152V2, were trained and evaluated

based RMS error, accuracy, precision, recall and F1-score. Notably,

EfficientNetB1 demonstrated the best validation accuracy (99.90%),

the smallest loss (0.16), and RMS error (0.40) during the

experimentation. (Maria et al., 2022) introduced several

methodologies for identifying diseases affecting cauliflower plants,

comparing the effectiveness of traditional ML and TL. In their

study, traditional machine learning involved image preprocessing

followed by k-means clustering for image segmentation, and then

the extraction of ten pertinent features. Various classification

techniques were compared, with the Random Forest algorithm

producing accuracy of 81.68%. Moreover, they explored CNN

architectures for TL, including InceptionV3, MobileNetV2,

ResNet50, and VGG16. Among these, InceptionV3 exhibited the

highest accuracy at 90.08%, showcasing superior performance

compared to the traditional machine learning approach. (Li et al.,

2022) introduced a detection and classification model for surface

defects in fresh-cut cauliflower based on a CNN with transfer
frontiersin.org
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learning. A dataset comprising 4,790 images of fresh-cut

cauliflower, categorized into healthy, diseased, browning, and

mildewed classes, was collected for the study. The authors fine-

tuned the pre-trained MobileNet model to enhance both training

speed and accuracy. Optimizing the model involved selecting the

best configuration of hyper-parameters and freezing layers. Tests

which combined VGG19, InceptionV3, and NASNetMobile, results

were compared. Experimental outcomes demonstrated that, with an

LR of 0.001, dropout set at 0.5, and 80 frozen layers, the MobileNet

model achieved a loss value of 0.033, an accuracy of 99.27%, and an

F1 score of 99.24% on the test dataset. (Abdul Malek et al., 2022)

conducted research on the classification of four distinct cauliflower

diseases, namely bacterial soft rot, black rot, buttoning, and white

rust, utilizing several CNN models in conjunction with transfer

learning. The dataset employed for this study comprised

approximately 2500 images. Notably, InceptionV3 emerged as the

most successful among the various CNN models investigated,

achieving a remarkable test accuracy of 93.93%. This performance

surpasses the outcomes observed in comparable experiments

conducted in recent times.

In summary, the aforementioned works reveal significant

advancements in the application of DL techniques for crop disease

classification, including diverse models. These models have

demonstrated high accuracy and efficiency in identifying diseases

across various crops, contributing to improved agricultural practices.

However, despite these notable achievements, the specific domain of

cauliflower disease detection has received limited attention. While

researchers have explored deep learning methods for cauliflower

disease identification, there is a noticeable gap in addressing the

precise localization of diseases within cauliflower images. Existing

studies primarily focus on classifying diseases without providing

information on the spatial distribution of symptoms within the

images. This lack of emphasis on detection and localization limits

the practical applicability of the models in precision agriculture, where

identifying not only the presence but also the location of diseases is

crucial for targeted interventions.

Motivated by this gap in the current state of cauliflower disease

detection, our research aims to address the challenge of cauliflower

disease detection and localization. By leveraging state-of-the-art DL

techniques and drawing inspiration from successful models like

YOLO, we developed a model that not only accurately classifies

cauliflower diseases but also provides insights into the spatial

distribution of disease symptoms within the images. This

approach aligns with the broader goal of advancing precision

agriculture by offering farmers a more comprehensive detection

system of disease patterns in their cauliflower crops. The

significance of our proposed approach lies in its potential to

enhance disease management strategies by enabling farmers to

pinpoint the specific locations where disease symptoms are most

prevalent. This information can guide targeted interventions, such

as precise application of pesticides or other treatments, minimizing

resource usage and environmental impact. Ultimately, our research

seeks to contribute to the development of a more robust and

practical solution for cauliflower disease detection and

localization, thereby addressing a critical need in the domain of

precision agriculture.
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3 Materials and methods

3.1 Dataset description

The VegNet dataset (Sara et al., 2022) has been meticulously

curated to facilitate the effective recognition of diseases in

cauliflower leaf and flower. This dataset encompasses well-

organized and technically valuable images of both diseased and

healthy cauliflower heads and leaves. The targeted diseases include

Downy Mildew, Black Rot, and Bacterial Spot Rot. The selection of

Downy Mildew, Black Rot, and Bacterial Spot Rot for this study was

based on three key factors. Firstly, despite extensive searches,

limited datasets covering cauliflower diseases were found, with

the VegNet dataset emerging as the primary resource due to its

comprehensive image coverage. Secondly, these diseases were

chosen due to their prevalence and economic significance in

global cauliflower crops, aligning our study with the pressing

concerns of cauliflower growers and agricultural stakeholders.

Lastly, each disease offers distinct visual characteristics and poses

unique challenges for detection algorithms, enriching the dataset

and enabling comprehensive evaluation of our proposed Cauli-Det

system. While Bacterial Spot Rot is a cauliflower head disease,

Downy Mildew and Black Rot mainly affect cauliflower leaves.

Symptoms and disease conditions were verified by a plant pathology

expert from the Bangladesh Agricultural Research Institute (BARI).

The images were captured manually from the Manikganj area of

Bangladesh during the period from 20 Dec to 15 Jan, 2022, when the

cauliflower flowers were in full bloom and diseases were

prominently observed. A Sony Cyber-Shot W-530 digital camera

with a resolution of 14MegaPixels was used to capture the images in

JPEG format which were then pre-processed using Python into a

standard image size of 256x256 pixels. Images in this standard

format are used as the input to the YOLOv8 model. The authors of

the dataset describe that the image preprocessing steps were

achieved by tweaking image brightness, contrast, hue and

saturation to bring forth the best visualization of disease features

for the ease of detection tasks. The VegNet dataset comprises a total

of 656 images, distributed among different categories based on the

observed conditions. The images were split in a 70%-15%-15% ratio

for training, validation and testing respectively. To ensure that the

model generalizes without bias in detecting cauliflower diseases

reliably, we evaluate the model’s performance on both seen data

(validation dataset) and unseen data (test dataset).

Table 1 summarizes the distribution of images in the dataset per

disease. Figure 1 shows sample images from the VegNet dataset

with hand drawn annotations.

3.1.1 Disease causes and symptoms
Downey Mildew: Due to a fungus called Peronospora parasitica

(Muimba-Kankolongo, 2018), which causes white, yellow, or

brownish patches on older leaves, accompanied by downy gray

mold on the undersides are observed on leaves. Lesions and

intrinsic holes facilitate penetration, releasing more spores.

Affected areas deepen in color, leading to the death of the leaf.

Environmental Factors for Downey Mildew include moisture and

low temperatures which favor the growth of this fungal parasite.
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Black Rot: Xanthomonas campestris bacterial Infection causes

dull, irregular yellow spots on leaf edges, progressing into V-shaped

patches (Sheng et al., 2020). The wide section of the “V” is at the

leaf’s border and attachment point to the plant. Symptoms may take

up to a month to appear after cauliflower growth begins which

renders cauliflowers unfit for sale or consumption.

Bacterial Spot Rot: Alternaria brassicicola (Tao et al., 2022) bacterial

infection results in lesions on flower heads soaked in water form a

rotting mass. Lesions often split, releasing a slimy goo that turns from

first brown, then to black when exposed in the atmosphere.
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Transmission occurs through tools and irrigation water. Warm, moist

conditions favor this disease which requires control through agricultural

practices such as crop rotation, well-draining soils, and avoiding negative

charges during harvest, since no chemical treatment is available.

3.1.2 Dataset annotation and disease localization
The VegNet dataset comprises of image-level labels, where each

whole image is labeled as either having one or no disease.

Recognizing the importance of finer-grained analysis for disease

management, the dataset has been enhanced through manual

annotation. Using the annotation tool Makesense.ai, bounding

boxes were manually drawn to localize specific regions within the

images that exhibit disease symptoms. This detailed annotation

approach provides a granular understanding of the spatial

distribution of diseases within cauliflower plants. By precisely

localizing disease-affected areas, farmers and agricultural

practitioners can administer targeted treatments. This enables the

application of pesticides, fungicides, or other control measures

specifically to the identified regions, minimizing the use of

resources and reducing environmental impact. The annotated

dataset availability is included in section 6.
A B

DC

FIGURE 1

Sample images from the VegNet dataset with annotations. (A) Healthy cauliflower, (B) Downey Mildew infected cauliflower leaf, (C) Black Rot
infected cauliflower leaf, (D) Bacterial Spot Rot infected cauliflower.
TABLE 1 VegNet dataset image distribution.

Class Name Percentage Training Validation Test Total

Downey Mildew 27.0% 125 26 26 177

Black Rot 15.2% 70 15 15 100

Bacterial Spot Rot 26.4% 121 26 26 173

Healthy 31.4% 144 31 31 206

Total 100% 460 98 98 656
The percentage column represents the distribution of images per class.
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3.2 Base YOLOv8 model

The YOLOv8 architecture begins with a series of convolutional

layers with stride and kernel size configurations, followed by a batch

normalization layer and an activation function. These layers reduce

spatial dimensions progressively and at the same time, increases the

channel number of the tensor. This is a downsampling process which

facilitates the extraction of high-level features (Khan et al., 2020).

A critical component of YOLOv8 is the Cross-Stage Partial Fusion

module, which incorporates bottleneck structures to enhance feature

representation (Wang et al., 2020). These bottlenecks consist of

multiple convolutional layers with batch normalization and

activation functions. A block of a convolutional layer followed by a

batch normalization layer and an activation function is called a Conv

block by the official implementation of YOLOv8 (Jocher et al., 2023).

This repository also uses a faster implementation of the Cross-Stage

Partial Fusion module and Spatial Pyramid Pooling module, called

the C2f and SPPFmodule. Figure 2 shows the implementation of the

Conv, C2f and SPPF block using PyTorch modules. The YOLOv8

uses the spatial pyramid poolingmodule (SPPF) to capture features at

multiple scales (He et al., 2015). This module utilizes max-pooling

operations with different kernel sizes to aggregate contextual

information. The architecture employs upsampling layers and

concatenation operations to fuse features from different stages. This

allows the model to refine and combine information from both high

and low-level representations.

The YOLOv8 architecture employs a multi-resolution feature

fusion strategy to effectively capture both detailed and high-level

information from different levels of the backbone. This process

involves upsampling, concatenation, and additional convolutions to

ensure that features of different resolutions are appropriately

combined in the neck of the network before being fed into the
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detection head. The Upsampling layers increase the spatial

resolution of the lower-resolution features to match that of

higher-resolution features. Upsampling is performed using a

specified scale factor, effectively enlarging the feature maps. C2f

modules are inserted in the neck after each concatenation of the

high and low-level features. The neck includes a subsequent

convolutional layers that transform the features and adjust their

channel dimensions. The output of this branch retains the original

spatial resolution but gains expressive power through convolutional

operations. The process of upsampling, fusion through C2f

modules, and concatenation is repeated until the features from all

levels of the backbone are combined. The final result is three feature

maps, each containing information from different resolutions.

These feature maps are then passed to the detection head for

further processing and prediction of bounding box coordinates

and class probabilities. The complete base YOLOv8 model

architecture is visualized in Figure 3. The head of the model

constitutes of two components:
1. Detection Head: The detection head receives three feature

tensors from the neck as inputs and puts them separately

through a series of Conv blocks and finally a convolutional

layer which converts the channel number to 16 ∗ 4, where

16 is the number of Distribution Focal Loss channels and 4

is the number that signifies the attributes of the bounding

box. These are [x,y,w,h], where x and y coordinates of the

center and the width and height of the bounding box.

2. Classification Head: The classification head also receives

the same three feature tensors and puts them through a

series of Conv blocks and a final convolutional layer which

converts the channel number to the number of classes, in

this case 3 for the types of cauliflower diseases.
FIGURE 2

(Jocher et al., 2023) Implementation of the Conv, C2f (Cross-Stage Partial Fusion) and SPPF (Spatial Pyramid Pooling) blocks.
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3.3 Modifications of YOLOv8 for
cauliflower disease detection

3.3.1 Adding extra Conv blocks to the head
The original Detection and Classification head of the YOLOv8

model utilizes Conv blocks with a kernel size of 3, yielding a tensor

with 64 channels for each of the three feature maps. Subsequently,

this tensor is transformed into the requisite channels for detection

and classification output through the application of a

convolutional layer. In an augmentation to the base model, 3

additional Conv blocks, each with a kernel size of 1, have been

inserted prior to the output convolutional layer. The introduction

of more Conv blocks facilitates an increased depth within the

model architecture while not increasing the number of parameters

significantly, which helps with more sophisticated processing of

the feature maps. Along with the capabilities of the pre-trained

model, these extra Conv blocks improve the model’s ability to

learn the domain specific information of cauliflower diseases.

Figure 4 shows the difference between the original YOLOv8

head and the proposed custom head.

3.3.2 Learning rate configuration
After adding extra Conv blocks, we conducted experimentation to

assess the ramifications of varying learning rates across discrete

sections of the network. The pre-trained YOLOv8s model comes

trained on the large COCO dataset. The pre-trained weights retain

the feature representation power of the COCO objects. We want to

preserve that knowledge and apply it to the domain of Cauliflower

Disease Detection. By varying the learning rate of different sections of

the network, we can control how much of the learned parameters are
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preserved. To find the optimal LR configuration, modifications are

established wherein the parameters of the network are bifurcated into

two distinct groups, denoted as the slow group and the fast group.

Learning rate for the fast group remains at default levels, while the

learning rate for the slow group undergoes a reduction by a factor of

100. The sections of the network subject to this parameter split

include, for instance, the Slow Backbone and Fast Neck and Head, as

well as the Slow Backbone and Neck and Fast Head, among others.

From the results observed, it was determined that the optimal LR

configuration is to use the same LR for all sections. The details of the

findings are discussed in Section 4.
3.3.3 Activation function of the Conv blocks
YOLOv8 by default employs the Swish or Sigmoid-Weighted

Linear Unit (SiLU) activation function. Through a series of systematic

experiments involving the exploration of diverse activation functions,

it was discerned that the utilization of the Hard swish activation

function yielded a marginal yet discernible enhancement in mean

Average Precision (mAP). The Swish activation function

(Ramachandran et al., 2017) is defined in Equation 1.

f (x) = x · s (x) (1)

where s represents the logistic sigmoid function.

Hard Swish (Howard et al., 2019), a modification of Swish, is

formulated in Equation 2.

h(x) =

0 if x ≤ −3,

x if x ≥ +3,

x · (x + 3)=6 otherwise

8>><
>>: (2)
FIGURE 3

Base YOLOv8 architecture. The output dimensions of each layer is based on an input image of size 256x256.
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While Swish and Hard Swish share a common foundation, the

key disparity lies in the non-linear component. Swish incorporates a

smooth sigmoid function, whereas Hard Swish introduces a clipped

linear function. This discrepancy while not resulting in distinct

shapes, provides an advantage. Swish exhibits stronger non-linear

characteristics, but the computational cost associated with its

smooth sigmoid component slows down training speed.

Conversely, Hard Swish provides a compromise by maintaining

non-linearity with a simpler clipped linear operation, leading to

improved efficiency without sacrificing performance. Figure 5

shows the Swish and Hard Swish activation functions shapes.
3.4 Experimental setup

3.4.1 Hardware and software specifications
The source code for our experiments was built upon the

Ultralytics YOLOv8 repository (Jocher et al., 2023) which was

modified to compare different modification configurations. The

software and hardware specifications are described in Table 2.

3.4.2 Hyperparameters
The default hyperparameters for our experiments are described

in Table 3. These parameters hold true for all experiments unless

stated otherwise.

3.4.3 Loss functions
YOLOv8 implements 3 loss functions, all of which are summed

together to form the total loss which is then passed to the optimizer.

The three losses are:

•Varifocal Loss: Varifocal Loss is a loss function to train a dense

object detector and predict the IoU Aware Classification Score

(IACS), inspired by focal loss (Lin et al., 2017) which is used as the

classification loss. Defined in Equation 3.

VFL(p, q) =
−q� (qlog (p) + (1 − q)� log (1 − p)) if q > 0,

−apg log (1 − p) if q = 0

(
(3)
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where p is the predicted IACS and q is the target IoU Score and

a is the weight coefficient.

• CIoU Loss: Complete IoU Loss, which is used as the first part

of the regression loss. Defined in Equation 4.

CIoU = 1 − IoU +
r2(b, bgt)

c2
+ aυ (4)

where, r is the distance between the predicted bounding box

and the correct bounding box

b and bgt represent the center point of the two bounding boxes

c is the diagonal distance of the closure area of the boxes

υ measures the consistency of the relative proportion of the boxes.

• DFL: Distribution Focal Loss which is the second part of the

regression loss, is calculated using the general distributions of

bounding boxes to force the networks to learn the probabilities of

values close to the target coordinates. Defined in Equation 5.

DFL = −(log(Si)� (yi+1 − y) + log(Si+1)� (y − yi)) (5)
FIGURE 4

Difference between the original YOLOv8 head and the proposed custom head. 3 extra Conv blocks have been inserted prior to the output
convolutional layer.
FIGURE 5

Swish and Hard Swish activation function shapes. While being very
similar in output, Hard Swish is more computationally efficient.
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where, Si and Si+1 represent the scores or probabilities assigned

to adjacent classes or categories. yi and yi+1 represent ground truth

labels or true probabilities associated with the classes i and i +

1 respectively

3.4.4 Evaluation metrics
Evaluation metrics are crucial for assessing the performance of

object detection models such as YOLO. Evaluating our proposed

model’s disease detection capabilities, and its performance requires

a set of metrics that can quantify its accuracy and efficiency. We

used the following evaluation metrics for our experiments:

• Intersection over Union (IoU): IoU measures the spatial

overlap between the predicted bounding boxes (BBpred) and

correct bounding boxes (BBgt). IoU is calculated as in Equation 6.

IoU =
BBpred ∩ BBgt

BBpred ∪ BBgt
(6)

• Precision: Precision calculates the ratio of true positives within

all positive predictions, evaluating the model’s capability to avoid

false positives. Precision is defined as in Equation 7.
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Precision =
TP

TP + FP
(7)

• Recall: Recall calculates the proportion of true positives among

all ground truth objects, evaluating the model’s ability to identify all

instances of objects in the dataset. Recall is defined as in Equation 8.

Recall =
TP

TP + FN
(8)

• Average Precision (AP): AP is calculating precision-recall

curves for different confidence thresholds and then computing the

area under the curve (AUC). Average Precision provides a single

scalar value that summarizes the model’s performance across

different precision-recall trade-offs for a class.

• Mean Average Precision (mAP): It is computed by averaging

the AP values across all classes. When nc is the number of classes,

mAP is defined as in Equation 9.

mAP =
1
nco

nc

c=1
AP(c) (9)

Two different mAP values are calculated for all experiments:

mAP50 (mAP is calculated with an IoU threshold of 0.5) and

mAP50-95 (mAP calculated at varying IoU thresholds ranging from

0.5 to 0.95).
4 Result analysis

The Mean Average Precision (mAP) serves as a comprehensive

metric to encapsulate the performance of object detection models,

providing a singular value that reflects both precision and recall. In

the context of cauliflower disease detection, the use of mAP is

particularly pertinent due to its ability to gauge the model’s

proficiency in identifying and localizing cauliflower disease

instances in an image. The mAP metric synthesizes precision-

recall curves across various thresholds, offering a concise

representation of the model’s overall effectiveness. This is why we

used mAP to assess the performance of baseline models as well as

different modification configurations of YOLOv8 in order to find

the best model for the problem of cauliflower disease detection.
4.1 Performance comparison of
baseline models

To find the best baseline model for the problem of cauliflower

disease detection, we compared the performance of YOLOv7

(Wang et al., 2023b), along with YOLOv8’s nano, small, medium,

large and extra large models. The results of these experiments are

shown in Table 4. All models were pretrained on the COCO object

detection dataset (Lin et al., 2014).

Figure 6 visualizes the performance and parameters counts

between mAP and parameters of baseline models. We observe

that, while YOLOv7 has the highest validation and test mAP

(95.5% and 92.6%) followed closely by YOLOv8s (92.9% and

91.0%), YOLOv7 has more than thrice the parameter count

(37.21 million) than YOLOv8s (11.14 million). Other larger sizes
TABLE 3 Default hyperparameters for training.

Hyperparameter Description
Default
Value

epochs Number of epochs 200

patience
Epochs to wait for
early stopping

50

batch Batch size 32

workers Concurrent Threads 16

imgsz Resize image to 256x256 pixels

pretrained Use Pre-Trained weights True

optimizer Optimizer AdamW

freeze
Disable weight update for
these layers

None

lr0 Initial Learning rate 0.001429

momentum Learning Rate momentum 0.9

box Box loss gain 7.5

cls Class loss gain 0.5

dfl DFL loss gain 1.5
TABLE 2 Hardware and software specifications.

Hardware Setup Software Setup

CPU Intel(R) Xeon(R) Programming
Language

Python 3.10.2

System Memory 12.7 GB Deep
Learning
Framework

PyTorch 2.1.0

GPU Tesla T4 GPU Support CUDA 11.1

GPU Memory 16 GB
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of YOLOv8 are observed to not perform up to the expectation that

comes with their higher parameter counts. This phenomenon can

be attributed to redundant network depth. Smaller models like the

YOLOv8s has enough depth to capture and model the features of

cauliflower disease images, resulting in bigger models unable to

perform better than YOLOv8s. Increased depth also results in these

models being unfit to be employed on lower-end devices for

practical applications like video inference. On the other hand,

YOLOv8s has the lowest validation and test mAP due its small

size. It is thus concluded that YOLOv8s has the best balance of

performance and parameter count, judging by the law of

diminishing return. Therefore we chose YOLOv8s for further

modification and evaluation with a goal of improving the

performance while not increasing the parameter count significantly.
4.2 Performance comparison of
modified YOLOv8s

4.2.1 Comparison of head configurations
The primary focus was on enhancing the performance of

YOLOv8s without significantly increasing the parameter count.

The approach employed involved the addition of extra Conv

blocks to both the detection and classification heads of YOLOv8s.

The goal of our experimentation was to discern the impact of

augmenting the head on the performance of YOLOv8s. The

configurations employed involved adding 1, 2, 3, 4, and 5 extra

Conv blocks to determine which is the best performing. Table 5

shows the results of adding different numbers of Conv blocks to the

head of YOLOv8s.

Figure 7 visualizes the performance and cost tradeoffs of adding

different numbers of Conv blocks. The analysis of the results

demonstrates that adding 3 extra Conv blocks yields the best mean

average precision on the test dataset. Intriguingly, further augmentation

to 5 Conv blocks do not bring a significant improvement in

performance. The diminishing returns observed with the addition of

more than 3 Conv blocks can be attributed to a phenomenon of

diminishing feature discriminability. While the initial addition of extra

convolutional blocks contributes to the model’s ability to capture and

learn complex features, the excessive introduction of these blocks can

lead to overfitting or redundant feature extraction. As a result, the

model may become overly specialized on the training data, impairing

its generalization ability on unseen data.
Frontiers in Plant Science 11
4.2.2 Comparison of different LR optimization
Following the incorporation of 3 additional Conv blocks that

demonstrated improved model performance, we further refined the

training strategy by exploring the impact of different learning rates

across distinct sections of the network. Given the utilization of a

pre-trained model as the base, the objective is to fine-tune the

learning rates strategically to balance the preservation of learned

parameters in the original layers with accelerated learning in the

newly added components. The experimentation encompassed six

distinct configurations:
• Default: All sections of the network share a uniform

learning rate.

• Freeze–Non–Extra–Conv: All layers except the newly added

Conv blocks are frozen during training.

• Freeze–Back: The backbone is frozen, while the neck and

head layers remain trainable with the same learning rate.

• Fast–Extra–Conv: Original layers of the model receive a

learning rate reduced by a factor of 100, while the extra

Conv blocks maintain their original learning rate.

• Fast–Head: Both the backbone and neck undergo a 100x

reduction in learning rate, while the head retains the

original learning rate.

• Fast–Head–Neck: Only the backbone experiences a 100x

reduction in learning rate, with the neck and head

maintaining their original learning rates.
Table 6 provides the results of these experiments. Surprisingly,

the experimentation revealed that freezing either the entire

backbone or all layers except the newly added layers resulted in a

significant decline in performance. This outcome was attributed to

the restrictive nature of preventing the adjustment of layer weights,

compelling the model to rely solely on the pretrained feature

extraction. This approach proved suboptimal for detecting

cauliflower diseases, as the model struggled to adapt its pre-

learned features to the specific nuances of this domain.

Moreover, the results indicated that employing a slower

learning rate for any section, even with the intention of

preserving pretrained knowledge, led to a small but noticeable

drop in performance. Consequently, the decision was made to

allow all layers to freely adjust their weights using the default

learning rate. This approach yielded the best LR configuration,
TABLE 4 Performance and parameters of base YOLOv7 and YOLOv8 models on the validation dataset and test dataset.

Model Precision
val | test

Recall
val | test

mAP50
val | test

mAP50-95
val | test

Parameters

YOLOv7 0.964 | 0.978 0.941 | 0.889 0.955 | 0.926 0.716 | 0.718 37.21 M

YOLOn8n 0.898 | 0.910 0.809 | 0.828 0.844 | 0.821 0.562 | 0.577 3.01 M

YOLOv8s 0.932 | 0.914 0.817 | 0.832 0.886 | 0.841 0.599 | 0.661 11.14 M

YOLOv8m 0.919 | 0.912 0.865 | 0.868 0.916 | 0.916 0.702 | 0.721 25.86 M

YOLOv8l 0.929 | 0.904 0.870 | 0.875 0.924 | 0.915 0.689 | 0.711 43.63 M

YOLOv8x 0.938 | 0.918 0.872 | 0.847 0.923 | 0.910 0.694 | 0.723 68.16 M
Bold values signify the value of the best performing base model under each metric.
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TABLE 5 Performance and parameter count of Base YOLOv8s and YOLOv8s with extra Conv blocks on the validation and test dataset.

Model Precision
val | test

Recall
val | test

mAP50
val | test

mAP50-95
val | test

Parameters

YOLOv8s 0.932 | 0.914 0.817 | 0.832 0.886 | 0.841 0.599 | 0.661 11.14 M

YOLOv8s+Conv 0.918 | 0.955 0.657 | 0.837 0.715 | 0.905 0.545 | 0.688 11.20 M

YOLOv8s+Conv2 0.943 | 0.901 0.829 | 0.852 0.894 | 0.894 0.670 | 0.694 11.26 M

YOLOv8s+Conv3 0.899 | 0.931 0.846 | 0.829 0.904 | 0.906 0.674 | 0.694 11.32 M

YOLOv8s+Conv4 0.931 | 0.936 0.852 | 0.859 0.905 | 0.903 0.657 | 0.686 11.38 M

YOLOv8s+Conv5 0.937 | 0.946 0.833 | 0.857 0.905 | 0.904 0.662 | 0.688 11.45 M
F
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Bold values signify the value of the best performing model configuration under each metric.
FIGURE 6

Comparison between performance and parameters of baseline models. YOLOv8s is evidently the most efficient model with similar validation and
test performance as the other larger models. (Scales are relative).
FIGURE 7

Comparison between performance and parameters of different head configurations. YOLOv8s with 3 extra Conv blocks is found to be the best
model with the highest mean average precision for the test dataset. (Scales are relative).
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striking a balance between leveraging the knowledge encoded in the

pretrained layers and enabling the model to fine-tune its parameters

for improved performance in the targeted cauliflower disease

detection domain.

4.2.3 Comparison of different activation functions
Building upon the optimal configuration identified in the

previous experiments, where 3 extra Conv blocks significantly

improved overall performance in YOLOv8s with all layers sharing

the same learning rate, we delved into the impact of altering the

default activation function. The original YOLOv8 utilizes SiLU, also

known as the swish activation function, as the default choice

throughout the network. In this subsequent experimentation, we

systematically replaced SiLU with alternative activation functions,

such as ReLU, Leaky ReLU, Tanh, and Hard Swish, to discern their

effects on model performance. The efficacy of Hard Swish can be

attributed to its unique characteristics, combining non-linearity

with bounded activation values. This enables the model to capture

complex patterns while mitigating issues related to vanishing

gradients or over-amplification of certain features. Table 7

summarizes the results of this experiment. Hard Swish was found

to be the overall best performing activation function, which is also

more computationally efficient than the default Swish since Hard

Swish doesn’t have to calculate a non-linear function like the
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sigmoid and has a linear mathematical definition which is better

for reducing training and inference time.

4.2.4 Evaluation of the proposed model
The proposed model, derived from the extensive experimentation

and fine-tuning process, was evaluated on the validation

and test dataset to assess its performance comprehensively.

Supplementary Figure 1 displays the normalized confusion

matrices, Supplementary Figure 2 displays the precision-confidence

curves, Supplementary Figure 3 displays the recall-confidence curve,

Supplementary Figure 4 displays the F1-confidence curve,

Supplementary Figure 5 displays the precision recall curves of our

proposed model on the validation and test dataset respectively.

Tables 8, 9 summarizes the performance of the proposed model on

the validation and test dataset by class respectively. Supplementary

Figure 6 displays the training and validation loss along with precision,

recall, mAP50 and mAP50-95 progression over the training period.
5 Discussion

The conducted experiments focused on enhancing the YOLOv8

model for cauliflower disease detection, aiming for improved

performance without significantly increasing parameters. Initial
TABLE 6 Comparison of different LR configurations on the validation dataset and test dataset.

Configuration Precision
val | test

Recall
val | test

mAP50
val | test

mAP50-95
val | test

Default
(YOLOv8s+Conv3)

0.899 | 0.931 0.846 | 0.829 0.904 | 0.906 0.674 | 0.694

Freeze–Non–
Extra–Conv

0.266 | 0.299 0.308 | 0.352 0.226 | 0.272 0.110 | 0.136

Freeze–Back 0.560 | 0.566 0.363 | 0.461 0.417 | 0.511 0.216 | 0.280

Fast–Extra–Conv 0.883 | 0.906 0.687 | 0.765 0.811 | 0.839 0.545 | 0.603

Fast–Head 0.853 | 0.920 0.750 | 0.778 0.830 | 0.846 0.549 | 0.615

Fast–Head–Neck 0.938 | 0.955 0.830 | 0.837 0.895 | 0.905 0.659 | 0.688
Bold values signify the value of the best performing LR configuration under each metric.
TABLE 7 Performance summary of YOLOv8s with additional 3 Conv blocks and alternative activation functions on the validation dataset.

Model Precision
val | test

Recall
val | test

mAP50
val | test

mAP50-95
val | test

YOLOv8s
+Conv3+SiLU

0.899 | 0.931 0.846 | 0.829 0.904 | 0.906 0.674 | 0.694

YOLOv8s
+Conv3+ReLU

0.905 | 0.906 0.815 | 0.829 0.878 | 0.875 0.626 | 0.668

YOLOv8s
+Conv3+LeakyReLU

0.915 | 0.942 0.834 | 0.840 0.892 | 0.900 0.642 | 0.677

YOLOv8s
+Conv3+Tanh

0.822 | 0.906 0.623 | 0.702 0.726 | 0.771 0.434 | 0.502

YOLOv8s+Conv3
+Hard Swish

0.919 | 0.932 0.851 | 0.826 0.920 | 0.911 0.677 | 0.701
Bold values signify the value of the best performing activation function configuration under each metric.
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analysis showed that YOLOv7 and YOLOv8l had high mean

average precision (mAP) but were impractical for lower-end

devices due to large parameter counts. YOLOv8s, with a balanced

trade-off between performance and parameters, was selected.

Modifications involved adding extra Conv blocks to detection and

classification heads was explored. Results indicated that

incorporating three additional blocks yielded the best

performance, with further augmentation leading to diminishing

returns likely due to overfitting and redundant feature extraction.

The study refined the training strategy, revealing that allowing all

layers to freely adjust weights using the default learning rate

achieved the optimal configuration. Freezing layers resulted in a

decline in performance. The impact of activation functions was

explored, with the default Swish emerging as the best-performing

choice. In summary, systematic exploration led to an optimized

YOLOv8s configuration, with three extra Conv blocks, balanced

learning rates, and Swish as the activation function, demonstrating

superior performance in cauliflower disease detection. However,

limited disease variety in the dataset is a major limitation of this

research which restricts the generalization scope of Cauli-Det,

which included only three types of cauliflower diseases. Given the

diverse range of diseases that can affect cauliflower leaves, flowers,

and stems, the model’s effectiveness may be limited when

confronted with other diseases not represented in the dataset. The

study focused on optimizing the YOLOv8s model for deployment

on lower-end devices. However, the performance evaluation may

not fully capture the nuances of diverse hardware configurations.

The model’s efficiency and accuracy could vary on different devices,

and further research may be required to fine-tune the model for

optimal performance across a wider range of computing resources.

The evaluation of the model’s performance was primarily
Frontiers in Plant Science 14
conducted based on offline analysis of collected data. Real-time

evaluation, crucial for practical deployment in agriculture, was not

explicitly addressed in this research. The model’s responsiveness to

dynamic changes in the field, such as disease progression or plant

growth, remains an unexplored aspect.
6 Conclusion

This research offers a tailored YOLOv8s model specifically

designed for detecting prevalent cauliflower diseases, addressing

unique challenges in disease identification. Additionally, it provides

a comprehensive evaluation of base YOLOv8 models on cauliflower

disease datasets, highlighting baseline performance and paving the

way for systematic model modifications. By systematically applying

adjustments to enhance detection accuracy and average precision,

the study offers valuable insights into improving the model’s ability

to classify cauliflower diseases effectively. Furthermore, the paper

contributes to the research community by providing open access to

an annotated dataset and the proposed model, fostering

reproducibility and facilitating further advancements in computer

vision applied to agriculture. We identified the limitations of the

proposed model and for future research approaches that may build

upon this work to build a better and more capable cauliflower

disease detection approach, we plan to address more diseases than

the three that were present in the dataset used in this work (Downey

Mildew, Black Rot, and Bacterial Soft Rot). We also believe that the

success of any disease detection model will be dependent on its real-

world applicability, which will rely on demonstrating the models

performance on lower end devices which are most likely to be

available on the hands of crop farmers. Additionally, another
TABLE 8 Performance summary of the proposed model on the validation dataset by class.

Class Images Instances Prec Rec AP50 AP50-95

All 98 332 0.919 0.851 0.920 0.677

Downey Mildew 26 77 0.919 0.844 0.941 0.703

Black Rot 15 215 0.852 0.758 0.845 0.532

Bacterial Spot Rot 26 40 0.987 0.950 0.974 0.797

Healthy 31 0 – – – –
TABLE 9 Performance summary of the proposed model on the test dataset by class.

Class Images Instances Prec Rec AP50 AP50-95

All 98 309 0.932 0.826 0.911 0.701

Downey Mildew 26 50 0.901 0.840 0.925 0.686

Black Rot 15 225 0.926 0.667 0.826 0.552

Bacterial Spot Rot 26 34 0.968 0.971 0.983 0.864

Healthy 31 0 – – – –
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challenge is the evaluation of these techniques in real-time disease

detection, for which video datasets will be required. In a real-time

system it is crucial to demonstrate the model’s responsiveness to

dynamic changes in the field. Drones may be employed to capture

live video feed from cauliflower fields which then may be streamed

into a model with fast inference to demonstrate the model’s real-

time disease detection capabilities. Some cauliflower diseases are

more prevalent than others depending on region and climate.

Conducting research on these diverse set of circumstances can

help other researchers on making informed choices when

developing tailored disease detection models that are fit for

addressing disease management problems according to region,

climate and the specific needs of cauliflower plantations. Lastly,

We believe that the proposed model will be a valuable addition to

the field of disease detection for the domain of precision agriculture.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author. The source code for the

modified YOLOv8 network is available at: https://github.com/

manchitro/vegnet-yolov8. Best weights are available at: https://

github.com/manchitro/vegnet-yolov8/releases.
Author contributions

MU: Conceptualization, Writing – original draft. MKAM: Data

curation, Methodology, Writing – original draft. AP: Formal

analysis, Validation, Writing – original draft. MFM: Writing –

review & editing. MS: Supervision, Validation, Writing – review &

editing. SA: Funding acquisition, Visualization, Writing – review &

editing. DC: Formal analysis, Validation, Writing – review

& editing.
Frontiers in Plant Science 15
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research is funded by the Researchers Supporting Project Number

(RSPD2024R890), King Saud University, Riyadh, Saudi Arabia.
Acknowledgments

The authors extend their appreciation to King Saud University for

funding this research through Researchers Supporting Project Number

(RSPD2024R890), King Saud University, Riyadh, Saudi Arabia.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1373590/

full#supplementary-material
References
Abdul Malek, M., Reya, S. S., Zahan, N., Zahid Hasan, M., and Uddin, M. S. (2022). Deep
learning-based cauliflower disease classification. in Computer Vision and Machine Learning
in Agriculture, vol. 2. (Singapore: Springer), 171–186. doi: 10.1007/978-981-16-9991-7_11

Arun, R. A., and Umamaheswari, S. (2023). Effective multi-crop disease detection
using pruned complete concatenated deep learning model. Expert Syst. Appl. 213,
118905. doi: 10.1016/j.eswa.2022.118905

Bangladesh Bureau of Statistics (2023) Gdp. Available online at: https://bbs.gov.bd/
site/page/dc2bc6ce-7080-48b3-9a04-73cec782d0df/Gross-Domestic-Product-(GDP)
(Accessed November 29, 2023).

Chug, A., Bhatia, A., Singh, A. P., and Singh, D. (2023). A novel framework for
image-based plant disease detection using hybrid deep learning approach. Soft Comput.
27, 13613–13638. doi: 10.1007/s00500-022-07177-7

Eunice, J., Popescu, D. E., Chowdary, M. K., and Hemanth, J. (2022). Deep learning-
based leaf disease detection in crops using images for agricultural applications.
Agronomy 12, 2395. doi: 10.3390/agronomy12102395

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent
advances in convolutional neural networks. Pattern Recognition 77, 354–377. doi:
10.1016/j.patcog.2017.10.013
Haridasan, A., Thomas, J., and Raj, E. D. (2023). Deep learning system for paddy
plant disease detection and classification. Environ. Monit. Assess. 195, 120. doi: 10.1007/
s10661-022-10656-x

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.
37, 1904–1916. doi: 10.1109/TPAMI.2015.2389824

Helgi Library (2022) Which country produces the most cauliflower? Available online
at: https://www.helgilibrary.com/charts/which-country-produces-the-most-
cauliflower/ (Accessed November 27, 2023).

Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., et al. (2019).
Searching for mobilenetv3. Proceedings of the IEEE/CVF international conference on
computer vision. (pp. 1314–1324).

Hu, K., Liu, Y., Nie, J., Zheng, X., Zhang, W., Liu, Y., et al. (2023a). Rice pest
identification based on multi-scale double-branch gan-resnet. Front. Plant Sci. 14,
1167121. doi: 10.3389/fpls.2023.1167121

Hu, X., Wang, R., Du, J., Hu, Y., Jiao, L., and Xu, T. (2023b). Class-attention-based
lesion proposal convolutional neural network for strawberry diseases identification.
Front. Plant Sci. 14, 1091600. doi: 10.3389/fpls.2023.1091600
frontiersin.org

https://github.com/manchitro/vegnet-yolov8
https://github.com/manchitro/vegnet-yolov8
https://github.com/manchitro/vegnet-yolov8/releases
https://github.com/manchitro/vegnet-yolov8/releases
https://www.frontiersin.org/articles/10.3389/fpls.2024.1373590/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1373590/full#supplementary-material
https://doi.org/10.1007/978-981-16-9991-7_11
https://doi.org/10.1016/j.eswa.2022.118905
https://bbs.gov.bd/site/page/dc2bc6ce-7080-48b3-9a04-73cec782d0df/Gross-Domestic-Product-(GDP)
https://bbs.gov.bd/site/page/dc2bc6ce-7080-48b3-9a04-73cec782d0df/Gross-Domestic-Product-(GDP)
https://doi.org/10.1007/s00500-022-07177-7
https://doi.org/10.3390/agronomy12102395
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1007/s10661-022-10656-x
https://doi.org/10.1007/s10661-022-10656-x
https://doi.org/10.1109/TPAMI.2015.2389824
https://www.helgilibrary.com/charts/which-country-produces-the-most-cauliflower/
https://www.helgilibrary.com/charts/which-country-produces-the-most-cauliflower/
https://doi.org/10.3389/fpls.2023.1167121
https://doi.org/10.3389/fpls.2023.1091600
https://doi.org/10.3389/fpls.2024.1373590
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Uddin et al. 10.3389/fpls.2024.1373590
Huang, X., Chen, A., Zhou, G., Zhang, X., Wang, J., Peng, N., et al. (2023). Tomato
leaf disease detection system based on fc-sndpn.Multimedia Tools Appl. 82, 2121–2144.
doi: 10.1007/s11042-021-11790-3

Jocher, G., Chaurasia, A., and Qiu, J. (2023) Ultralytics YOLOv8. Available online at:
https://github.com/ultralytics/ultralytics.

Kanna, G. P., Kumar, S. J., Kumar, Y., Changela, A., Woźniak, M., Shafi, J., et al.
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