
RESEARCH ARTICLE

Emergent spatial goals in an integrative model

of the insect central complex

Roman GoulardID
1*, Stanley HeinzeID

1, Barbara Webb2

1 Lund Vision Group, Department of Biology, Lund University, Lund, Sweden, 2 Institute for Perception,

Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom

* romangoulard@gmail.com

Abstract

The insect central complex appears to encode and process spatial information through vec-

tor manipulation. Here, we draw on recent insights into circuit structure to fuse previous

models of sensory-guided navigation, path integration and vector memory. Specifically, we

propose that the allocentric encoding of location provided by path integration creates a spa-

tially stable anchor for converging sensory signals that is relevant in multiple behavioural

contexts. The allocentric reference frame given by path integration transforms a goal direc-

tion into a goal location and we demonstrate through modelling that it can enhance approach

of a sensory target in noisy, cluttered environments or with temporally sparse stimuli. We

further show the same circuit can improve performance in the more complex navigational

task of route following. The model suggests specific functional roles for circuit elements of

the central complex that helps explain their high preservation across insect species.

Author summary

Even tiny animals with reduced neuronal resources need to solve 2 dimension spatial

problems. In this paper, we modelled a neural network, based on the central complex con-

nectivity, that sustains insect visual-guided navigation both to a landmark and following a

previously learned route. This combined different features that have been previously

highlighted in the insect brain, (1) an inner compass, allowing an allocentric representa-

tion of their orientation, (2) a positioning system, inherited from their ability to integrate

their path, (3) a long-term memory of relevant locations in the environment, that allows

insect to revisit feeders repeatedly for example, and (4) a sensory guidance system that

provides a stable goal direction when a rewarded signal is provided. We combined these

different circuits in an complementary fashion, suggesting a crucial role for path integra-

tion in all insect navigation, beyond simply ensuring homing behaviour. Specifically,

using the capability of the central complex neuronal circuit to store and manipulate navi-

gational vectors, our implementation encodes the allocentric position of the navigation

goal by combining a sensory-based vector, directed toward a goal, and a homing vector,

directed toward a stable origin. We show this improves significantly the navigation in two

visual-guidance paradigms, reaching a distant recognised target and following a route

based on a panoramic memory.
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Introduction

Mobile animals need to navigate through space for a diverse range of tasks: foraging for food

or hunting prey, searching for mates, avoiding danger, returning to a nest. The nature of the

neural encodings and computations that underlie spatial navigation have long been a central

question in cognitive neuroscience. In mammals, the discovery of place, head direction and

grid cells [1, 2] has been taken to support the existence of an internal “cognitive map” [3, 4]. In

insects, despite some species displaying remarkable navigational capabilities, the possibility

that their relatively small brains could support a cognitive map remains a point of debate [5–

7]. One way this debate could be resolved is by elucidating the actual neural mechanisms that

support navigation.

During the last decade, the discovery of an internal compass (resembling head direction

cells from mammals) in the central complex (CX) of insects [8, 9] has lead to a rapid advance

in understanding of how insect brains encode and process spatial information (Fig 1). The CX

has a crossroad position in the brain between sensory inputs and motor outputs [10] and its

structure is highly conserved across species [10, 11]; with many circuit properties interpretable

as functional components of navigation [12]. This includes what appears to be a complete cir-

cuit to support path integration [13]—monitoring displacement (direction and distance) over

time to estimate current position relative to an origin (maintaining a “home vector”) [14, 15],

and guiding the animal back to the origin. In addition to this positioning system, the CX hosts

circuits that effectively generate, transform and use navigation vectors (Fig 2): the projection

geometry of intrinsic neurons appears well suited to compute vector rotation and vector addi-

tion. Consequently, vectorial operations allow the computation of some of the circuit proper-

ties, for example the virtual 180˚ shift observed in the FB subserves the transformation of the

allocentric head direction into an egocentric representation of the insect’s traveling direction

[16, 17]. The same principle applied to wind compass input allows Drosophila to reverse their

up-wind/down-wind behaviour based on the odour context [18].

An important insight common to these models is that the CX provides a geometric repre-

sentation of space [7] and processes and combines spatial information through vector manipu-

lation [19, 20]. To explain some sophisticated abilities in bees, such as novel short-cuts

between food sources, and development of efficient trap-lines, i.e. the visit of multiple feeders

in a predictable and often optimised sequence, it has been hypothesised that the CX also sup-

ports vector memories [7, 20]. That is, at rewarded locations, the CX may store the current

state of the path integrator and selectively reload this memory to drive movement back to the

same location.

At the same time, the conserved nature of the CX circuit suggests it plays a role in the spatial

behaviour of all insects, not just central place foragers, species like wasps, bees or ants inhabit-

ing a nest, for which efficient relocation of the nest and food sources by individuals is crucial

to survival [21]. Indeed, path integration has also been observed, over smaller spatial scales, in

Drosophila which do not possess a fixed nest or home [22, 23]. The existence of homing in

“nomadic” insects allows them to revisit a rewarded location, i.e. a food source, while exploring

the environment in search for new ones [24], optimizing the exploitation of the resources.

This has been supported by the behavioural observation in Drosophila of a reset of the path

integration origin whenever an optogenetic simulation of food reward was experienced [25].

An even more basic role for the CX that we have suggested in previous work is to enhance

localisation of innate or learned attractive stimuli by creating persistence in a given motion

direction relative to other cues [26], which allows noisy, intermittently available, or currently

invisible stimuli to be tracked more efficiently. Insects shows particular ability to maintain a

straight route using a convergence of sensory information, so-called menotaxis, that have been
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related to the CX processing [27, 28]. The ability of the CX to generate and maintain naviga-

tion vectors to sustain an oriented behaviour even in absence of new sensory information is

particularly adapted to support menotactic behaviours. It is, in addition, supported by the

wide range of sensory streams converging to the CX, particularly in the fan-shaped body (FB)

[15, 29–31]. This CX substructure has been proposed to be the centre of the comparison

between the insect’s own orientation (compass) and its current goal orientation (Fig 2). The

coexistence of multiple directional vectors, potentially representing competing goals, in the

CX raises the question of their interactions together and with PI [32–34] to generate consistent

and optimized behaviour [35].

In the current work we consider whether the anatomy of the central complex could support

smooth interaction of these various forms of vectors to improve spatial navigation. More spe-

cifically, we explore whether visually guided navigation (to a visual target, or along a familiar

Fig 1. Overall model anatomical diagram. (A) Inputs to the CX from different other brain regions. We consider these inputs as three types. Sensory Compasses
Insects are sensitive to various cues that give information about their allocentric orientation. Sensory compass pathways converge to the ellipsoid body (EB) where they

connect with the EPGs, mostly through Ring Neurons (ER). Movement perception The CX receives information about self motion at the level of the Noduli (NO),

mostly from visual (optic flow) and/or mechanosensory (proprioception) origin. Higher level neuropils The CX receives a large number of inputs from higher level

regions that process multisensory information. Mushroom Bodies (MB) and Lateral Horns (LH), for example, mostly connect to the CX at the level of the fan-shaped

body (FB) through FB tangential (FBt) neurons. (B) CX neuropils and the different modeled neuron type connectivity. The whole circuitry can roughly be segmented

in three different functional parts, (1) the inner compass circuit (Fig D in S1 Text), represented on the top right by 4 cell types, EPG, PEG, PEN and Δ7, and projecting

in-between the EB to the protocerebral bridge (PB), (2) the steering circuit (Fig 3), represented on the top left, is located between the PB, the FB and the lateral

accessory lobes (LAL), including mainly 3 cell types, PFN, hΔ and PFL, and (3) a long-term vector memory circuit (Fig 4), represented by the parallel neural types FBt
and DAN (Dopaminergic neurons) presenting a tangential projection pattern across the whole FB functional columns.

https://doi.org/10.1371/journal.pcbi.1011480.g001

PLOS COMPUTATIONAL BIOLOGY Emergent spatial goals in the insect central complex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011480 December 18, 2023 3 / 33

https://doi.org/10.1371/journal.pcbi.1011480.g001
https://doi.org/10.1371/journal.pcbi.1011480


route) can be enhanced by CX memory, using an anatomically plausible circuit model that

incorporates new connectivity data. The key idea is that progress towards a goal in noisy, clut-

tered environments or with temporally sparse information can be scaffolded by memory of the

PI location and heading direction when the insect last knew it was ‘on course’, which together

produce an emergent internal goal. As such, this is a generic mechanism for enhancing spatial

behaviour that could be common to a wide range of insects, yet easily co-opted to support the

more sophisticated navigation of central place foragers.

Model

Overview and biological motivation

The CX model implemented for this paper builds on our previous work [26]. The model and

its biological counterparts are shown in Fig 1. A core component of the model is constituted

by the inner compass system in the insect brain [11]. This circuit in the CX (specifically in the

EB, see Compass circuit section) is composed of four neuron subsets called EPGs, PEGs, PENs
and Δ7 (see Table 1 for name correspondence with other insects species) constituting a so-

called ring attractor [10], i.e. a circuit that generates a stable representation of a circular vari-

able, here the immediate heading direction. This head direction circuit generates an activity

Fig 2. Functional principle of the CX steering circuit. A-C Different model abstraction levels. (A) Vector operations underlying the transformation

of the current and desired headings into a steering output signal. (C) Neurons population activity through the different CX neuropils involved in the

steering circuit. (B) Mathematical principles of the transformation of the neuron population activities into a steering output signal. I-IV Steps of the

transformation from a heading and desired heading to the steering output signal. (I) Compass level. The neuron activity has a bump at the level of

the ellipsoid body that follows the allocentric orientation of the agent. This bump, as well as the bump representing the goal orientation, take the form of

a sinusoid in the model, where the peak position and amplitude can be interpreted as respectively the direction and length of a vector. (II) Compass

signal copy. At the level of the protocerebral bridge the compass signal is copied into 2 corresponding hemispheric signals. This allows idiothetic

rotation cues to move the compass (see Fig D in S1 Text) and, downstream, a comparison of the compass with the goal direction signals. (III) Compass

and goal direction comparison. At the level of the fan-shaped body, the two copies of the compass signal are compared with rightward and leftward

shifted copies of the desired heading. This allows the identification of the required direction of rotation to align with the desired orientation. (IV) Left

and right hemisphere comparison. The summation of resulting population activity in each hemisphere, at the level of the lateral accessory lobes, results

in a differential signal (left-right) that can be used to generate the appropriate turn toward the desired orientation. Clipart(s) in the figure have been
modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g002
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‘bump’, in the form of a sinusoidal activity pattern across the population of neurons (EPGs)
that tracks the animal’s allocentric heading [9, 37].

To generate the ‘bump’, we assume an accurate perception of orientation is provided by the

multiplicity of sensory pathways in insects that detect directional cues [38–40] (Fig 1A). In

insects these include visual cues, both from the sky (sun [41] and polarised light [42]) and the

landscape [43], and also wind cues sensed by antennal displacement [44–46]. This information

is carried to the EB by so-called ring neurons (ER), their topology forming plastic inhibitory

synapses across the whole EB compartments [8, 43, 47]. The orientation of the different sen-

sory compasses are dynamically imprinted, linking the egocentric orientation of a specific cue

(visual, wind, . . .) with a stable inhibitory pattern, in a unified reference frame [48]. ER neu-

rons modulate downstream EPG population activity to generate an integrative inner compass.

In addition, the EB receives input, via the PENs, from sensing self-rotation through optic flow

or proprioception, which can move the compass bump even in the absence of external orienta-

tion cues [49, 50].

This compass circuit then feeds into a steering circuit, which is based on a previous model

of the CX as a circuit for path integration (PI) [13]. The steering circuit function is based on

the phase-shift observed in the connectivity pattern of neuron groups projecting to or into the

FB [16–18](Fig 1B). This particular geometry allows the comparison, at the PFL neurons level,

of the current heading, carried by the direct inhibitory connection from Δ7 to PFL, with out-

puts from the PFN and hΔ, both excitatory, carrying the desired heading, e.g. goal direction

(Fig 2). These two pathways can be used alternatively in the model to define this goal vector

based either on the head direction circuit [26] or on the PI [13]. PFL project onto descending

neurons directly involved in the motor control of turns in Drosophila [51]. The hypothesised

ability of the CX circuit to compare heading and goal direction have been recently supported

by functional neuroimaging and modeling studies [31, 52].

To form the homing vector in the model, we assume that sensory information about self-

translation (from optic flow [13, 53, 54] or proprioception [55, 56]) is projected via the noduli

to PFN[36]. Similarly to [13], we assume accumulation of this signal across a set of direction-

ally tuned neurons forms the home vector memory, however, in contrast to the previous

model, here we locate this accumulation in the hΔ neurons. As yet, there is no direct evidence

for such an accumulation property in either the PFN or hΔ neurons, and the previous sugges-

tion [13] that recurrent connections within a CX column might support integration has been

Table 1. Interspecies central complex neuropil and neuron names correspondence. Originally from Sayre et al., 2021 [36].

Neuropils Columnar neurons FB interneurons Tangential neurons

Drosophila Other insects Drosophila Other insects Drosophila Other insects Drosophila Other insects

EB CBL EPG/PEG CL1a/b hΔ Pontines Δ7 TB1

PB PB PEN CL2 vΔ unknown FBx TU

FB CBL PFL1,3 CPU11/2 ER TL
NO NO PFL2 CPU2 LNO TN

PFN CPU4

PFR unknown
PFG unknown
FX CU

unknown PF1

unknown PFx1,2,3,4

unknown PFLx

https://doi.org/10.1371/journal.pcbi.1011480.t001
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challenged by cold anesthesia experiments on ants [57] and dung beetles [58], which observed

a memory impairment of the PI distance only, while on bumblebees no effect was observed at

smaller scale [59]. Nevertheless, the FB remains the most likely location of PI.

Finally, we implement a long-term vector memory based on a previous model of the CX as

a vector-based navigation center [20]. This is consistent with the projection pattern of a set of

neurons, FBt, that are known to receive inputs from different sensory/memory streams outside

the CX (including from the mushroom bodies) and project across the whole columns of the

FB [36, 60]. Moreover, we assume these neurons are modulated by context and valence, and

by connecting to either PFN or hΔ, the system as a whole can dynamically adjust its navigation

behaviour to changing needs or motivation. Recently, a complete pathway has been unravelled

from the MB to the FB and functionally shown to control upwind behaviour in the presence of

a specific odor [18], supporting the existence of several context-dependent goals and justifying

the position of the FB as a modulator of them.

Implementation

The model was implemented in Python 3.6. Each neuron is represented by a simple firing rate

model [61]. The neuron activation rule can be of two types, either a linear function of the

input (linear simple perceptron) capped between 0 and 1 or a logic function (active or inactive

based on a threshold). The input function is the sum of the activity rate of the pre-synaptic

neurons. The specific connectivity between neurons is defined in a connectivity matrix (Fig C

in S1 Text) and the activity level at each time step is calculated by the multiplication of the

activity vector of the neurons on the previous time step by this matrix:

NactðtÞ ¼ Nactðt � 1Þ MCX ð1Þ

With Nact a vector containing the rate activity of all the neurons of the CX model and MCX a

matrix of connectivity between these neurons. The connectivity matrix is derived from known

connectomic data of the main CX neuron groups (Fig 1). We particularly make use of the

repeated columnar organisation of the different neuron types across the CX neuropils (EB$
PB$ FB). Although interspecific differences exist in the CX connections, we aimed here at

unraveling general function and therefore did not target a specific species connectome but

rather use representative projection patterns.

Inputs. Sensory compasses. Insects brain rely on a variety of sensory inputs to generate

the activity bump in the EB [8, 9] which acts as an inner compass able to sustain navigation

[62]. In this model, we simplify the contribution of the different sensory compasses by having

the EPGs receive input from Compass Units (ICo
EB , for Input from the Compasses to the EB,

n = 8) with activity directly based on the agent’s orientation in space (Fig D in S1 Text). Each

unit has a preferred orientation, homogeneously distributed every 45˚ to cover the entire 360˚

around the agent. Their activity is calculated following a winner-take-all rule, such that only

the unit with its preferred orientation closest to the agent orientation is active (1) while all the

other are inactive (0). Note that, with adjustment of the gain between EPG and Δ7 (kEPG
D7

), the

circuit also supports a compass input as a form of a sinusoid-shaped signal (Fig E in S1 Text).

Self-motion perception. Insects, and animals in general, keep track of their movements,

both rotations and translations, in space for different purposes [63, 64] through sensory path-

ways that are fairly conserved in the insect brain [65]. In this model, we represented the per-

ception of self-motion in the insect through two independent pathways based on the agent’s

translational and rotational speed respectively. In practice, the agent is moving at constant

speed in its heading direction, so the translational speed pathway consists of a single neuron

(ITS
NO, for Inputs of the Translational Speed to the Noduli) with a constant activity, which
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projects to both noduli and synapses with the PFNs (ITS
NO ! PFN1� 16). The rotational speed is

variable and is segmented laterally into two inputs, one for each hemisphere (Fig D in S1

Text). The activity of the neurons (ITRNO, for Inputs of the Rotational Speed to the Noduli) is

binary, set to 1 (turn) in the left or right hemisphere in response to right or left turns respec-

tively. The binary nature of these inputs might impact the ability of the compass to be main-

tained accurately in absence of compass inputs. As we did not simulate any disturbance in the

compass inputs here, the role of the PEN is not crucial and have been included only to match

the complete head direction circuit.

Contextual inputs. In addition to current sensory and self-motion inputs, the model

assumes that the behavioural context provides internal states that influence the CX through

tangential neuron inputs to the FB (Fig 1). We treat these inputs as two independent signals:

FBt which controls the navigational goal (e.g. home or food); and DANs which signal reward

in a given context and control the formation of vector memory.

Compass circuit. The compass circuit is designed to transform external information,

acquired by diverse sensory pathways described in insects, into an inner sinusoidal function

representing the immediate orientation of the agent at any time. It is similar to the one we

used in our previous model work [26] and is composed of 4 different cell types, EPG, PEG,

PEN and Δ7 (Fig D in S1 Text). The EPG layer receives external inputs from the sensory com-

pass (Fig D in S1 Text). The activity rate of the different neuron types is calculated by the fol-

lowing set of equations:

EPGiðtÞ ¼ kI
EPGI

Co
EBiðtÞ þ kPEG

EPGPEGiðt � 1Þ þ kPEN
EPGPENi�1ðt � 1Þ

PEGiðtÞ ¼ kEPG
PEGEPGiðt � 1Þ � kD7

PEGD7iþ4ðt � 1Þ

PENiðtÞ ¼ kI
PENITR

NOðtÞ þ kEPG
PENEPGiðt � 1Þ � kD7

PEND7iþ4ðt � 1Þ

D7iðtÞ ¼ kEPG
D7

Piþ2

i� 2
EPGiðt � 1Þ � kD7

D7
D7iþ4ðt � 1Þ

8
>>>>>>><

>>>>>>>:

ð2Þ

Where ki
j indicates the different gain parameters regulating the strength of inputs from the cell

type i to the cell type j (see Table A in S1 Text for the value of the different k parameters). All

together, this circuit transforms the signal from a single activity bump, inherited from the sen-

sory compass inputs into a temporally smoothed sinusodial signal at the level of the Δ7 neu-

rons (Fig D in S1 Text), that persists after the input is removed and can be moved by rotational

self-motion perception. This inner allocentric compass is then transmitted further in the CX

to the steering circuit, the PFNs and the PFLs layers by PB intrinsic neurons called Δ7 (Fig 1B).

Steering circuit. The steering circuit is primarily designed to compute the error between

the compass and goal vectors [31, 52] and generates an asymmetrical signal that is decoded as

the turning force for the agent (Fig 2). In addition, it holds the two navigation vectors, the

heading and homing vectors, that are used to generate the behaviour through the vector mem-

ory (see next section). The circuit is largely inspired by the PI circuit previously described by

Stone et al. [13] and is composed here of 3 neuron types (Fig 3A), PFN, hΔ, and PFL. Both

PFNs and PFLs receive inhibitory inputs from the compass via Δ7. In addition, PFNs receive

translational self-motion inputs from the noduli, consequently building a copy of the current

compass orientation vector, modulated in amplitude by the translational speed. Note that in

our model, the velocity of the agent being constant and without holonomic component, this

scaling is simply a constant factor, equal on both brain hemispheres. We note that a more real-

istic model with holonomic motion and offset optic flow preferences [13], PFN activity could

differ in each hemisphere and the circuit might need some adjustment to function correctly.

PFNs connect downstream to PFL via two pathways (Fig 3B). The direct pathway implements
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a one column shift in the projection pattern. The indirect pathway, formed by hΔ neurons,

receives inputs from PFN and gives outputs to PFL with a projection pattern producing a 180˚

phase-shift [16–18]. In addition, hΔ integrate their input, i.e. the compass orientation inherited

from PFNs, over time, supporting a homing vector [13]. As a result PFL receive inputs from

the compass (Δ7) which is compared both with the current heading vector delayed by 1 simu-

lation step (PFN) and the homing vector (hΔ). The composition of the complete PI circuit is

represented in Fig 3A. The activity rate of the different neurons of the circuit is calculated by

the following set of equations:

PFNiðtÞ ¼ kD7
PFND7iþ4ðt � 1Þ þ kI

PFNITS
NOðtÞ

hDiðtÞ ¼ hDiðt � 1Þ þ aðPFNi�1ðt � 1Þ � sPFNðt � 1ÞÞ ½hDið0Þ ¼ 0:5�

PFLiðtÞ ¼ kD7
PFLD7iþ4ðt � 1Þ � kPFN

PFL PFNi�1ðt � 1Þ � khD
PFLhDi�8ðt � 1Þ

SteerCmdðtÞ ¼ ksteerðSPFL1� 8 � SPFL9� 16Þ þ �

8
>>>>>>><

>>>>>>>:

ð3Þ

With ITS
NO the translational self-motion inputs from the noduli, α a free parameter control-

ling the PI memory rate, kD7
PFL, kPFN and khΔ parameters that control the relative influence of

each pathway on the steering (kPFN = 1 − khΔ = 0.5 by default), ksteer a parameter that scales the

steering command and � a gaussian motor noise (σ� = 10˚). σPFN is the median activity of the

whole array of PFNs, and is used to make the average contribution of PFN activity to the PI

integration zero. That is, addition to the PI sum in the heading direction is always balanced by

subtraction in the opposite direction. To support this symmetric positive-negative update of

the PI, the initial activity rate of the hΔ is set to 0.5 and limited to the range [0 1]. The outcome

of the whole circuit is the encoding of two vectors (Fig 3B), one instantaneous orientation vec-

tor from the PFN − PFL pathway, with a virtual length determined by the PFN activity, itself

determined by the ITS
NO (constant in our model), and another continuously updated homing

vector from the PFN − hΔ − PFL pathway.

Fig 3. Path integration circuit. (A) Circuit diagram incorporating the direct PFN − to − PFL and the indirect PFN − to − hΔ − to − PFL pathways. The

activity rate of hΔ is updated continuously based on the PFN inputs to retain the PI memory. (B) Detailed connectivity diagram of the PI circuit, from

the compass circuit output (Δ7) to the steering generator (Comparison of summed outputs of the PFL from both hemispheres). (C) Vectors encoded by

the PI circuit over the path of the agent. The direct PFN − PFL pathway encodes a vector of constant length and with the immediate orientation of the

agent. Note that, because we did not use a purely theoretical sinusoidal signal to represent the inner compass, the PFN population signal inherit some

variability, in amplitude and shape, that can modify the length of this vector in a relative small magnitude. The indirect PFN − hΔ-PFL pathway encodes

the integrated homing vector that points to the starting location of the path (nest/home). Clipart(s) in the figure have been modified from https://

openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g003
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Vector memory circuit. The vector memory circuit is designed to store memory of either

hΔ, carrying the PI homing vector, or PFN activity rate, carrying the immediate head direction

vector. A reward signal induces the copying of one or both of these vectors into memory by

modulating the synaptic weight of FBt inputs to the corresponding neuron type (hΔ or PFN).

The memory can then be used later, under the control of an associated contextual signal that

gates FBt activity.

The circuit. We implement a similar circuit to that proposed by Le Moël et al, 2019 [20]

and generalise it to support visual navigation. The model circuit is composed of two neuron

types, FBt and DANCX, so-called for its hypothetical dopaminergic neurotransmitter. Both

have a similar projection pattern across the functional columns of the FB and interact in simi-

lar regions of the axons of both PFN and hΔ cells. FBt cells comprise two subtypes that form

inhibitory synapses with either PFN (FBtPFN) or hΔ (FBthΔ). In contrast, a single DANCX neu-

ron innervates both pathways simultaneously (Fig 4A) and triggers neuromodulation of the

Fig 4. Vector memory circuit. (A) PI circuit with the addition of vector memory. The FBt pathways receive control from contextual/motivational

signals based on the inner state (e.g. hunger). The DANs pathway receives inputs from reward signal(s) that define when a condition (dependent also on

the context/task) is fulfilled and trigger a modulation of the FBt − PFN or FBt − hΔ synaptic strength at the level of PFN and/or hΔ axons to PFL. (B)

Proposed mechanism for vector memory by synaptic modulation within the FBt − DAN − PFN/hΔ trios. Whenever a DAN is activated, any active FBt
has its synaptic strength in every column modified proportionally to the activity rate of the corresponding PFN or the hΔ. The modulation of the

synaptic weight could happen at the level of either the presynaptic partner (FBt), the postsynaptic level (PFN/hΔ), or both. An activity rate of PFN/hΔ
greater than 0.5 (more active than inactive) induces an increase of the strength of the inhibitory FBt synapse; and an activity rate of PFN/hΔ lower than

0.5 (more inactive than active) induces a decrease of the synaptic strength. (C) Applied to all the functional columns, this mechanism stores a copy of

the PFN and hΔ activity rates, at the time of reward via DANs, in the form of altered FBt synaptic strengths. The amplitude of the “copy” depends on the

learning rate parameters, βPFN and βhΔ. Clipart(s) in the figure have been modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g004
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FBt − PFN and FBt − hΔ synapses (Fig 4A). Finally, each cell type receives different inputs, fol-

lowing the logic of their functionality. FBt receives input from contextual or state dependent

signals of the agent, whereas DANCX receives input from a reward signal, also based on the

agent’s current state. This circuit therefore modulates the connection from both PFN and hΔ
to PFL, changing their update equations from Eq (3), to:

IPFN
i PFLðtÞ ¼ kPFN

PFL ðPFNi�1ðtÞ �
P

j ½FBtPFN
j Sj�Þ

IhD
i PFLðtÞ ¼ khD

PFLðhDi�8ðt � 1Þ �
P

j½FBthDj Sj�Þ

PFLiðtÞ ¼ kD7
PFLD7iþ4ðt � 1Þ þ I PFN

i PFLðtÞ þ I hD
i PFLðtÞ

8
>><

>>:

ð4Þ

IPFN
PFL and IhD

PFL represent the inputs to PFL cells from, respectively, PFN and hΔ. Constants are

inherited from Eq (3). Sj represents the state j, which in the present model is limited to two dif-

ferent motivational states, exploration for food or returning to the nest.

Synaptic plasticity memory. To generate a vector memory, and more generally a goal

direction, associated with a specific context or motivation, the active DANs trigger the mod-

ulation of the synaptic weights between FBtPFN − PFN and FBthΔ-hΔ (Fig 4B). In each col-

umn, the modulation of the synaptic strength is proportional to the activity rate of the

respective PFN or hΔ. Because the length of the vector encoded is dependent on the popula-

tion sinusoid signal (Fig 2B), we use two gain parameters, respectively βPFN and βhΔ, to mod-

ulate the amplitude of the memory encoded at the level of the FBt synapses. These

parameters can be set over a range of values to test their effect on the simulated behaviour.

The modulation of the synaptic strength can be either positive, if the PFN/hΔ activity rate

is greater than 0.5, or negative, if it is lower than 0.5. This results in a stable copy of the

PFN/hΔ activity rate across the FB columns at the time of DANs activation (Fig 4C) that can

be used to modify the PFN/hΔ inputs to the steering neurons PFL (Eq 4). To avoid any insta-

bility over time, the modulation of the memory at the synaptic level is made independent of

the previous state of the synapses, i.e. the memory is flushed (the synapses are reset to their

initial strength) and rewritten (the synaptic weight modulation is applied) every time the

DAN is activated, as follow:

FBtPFN
i ðtÞ & DANCXðtÞ > 0 $ oPFN

i ðt þ 1Þ ¼ � 0:5 � b
PFN
ðPFNiðtÞ � sPFNðtÞÞ

FBthD
i ðtÞ & DANCXðtÞ > 0 $ ohD

i ðt þ 1Þ ¼ � 0:5 � b
hD
ðhDiðtÞ � shDðtÞÞ

ð5Þ

Where o
PFN=hD
i is the synaptic weight between each FBt and either PFN or hΔ and βPFN/hΔ is

a free parameter representing the rate of the synaptic strength modulation. βPFN and βhΔ

thus modulate the vector length kept in memory on each pathway. σPFN and σhΔ are the

instant mean activity level of the population of respectively PFN and hΔ. Thus, the term that

modulates the memory is centered around 0, positive for PFNs greater than the population

mean activity and negative for PFNs lower. Consequently, the vector memory created is cen-

tered around its initial value, represented by the constant -0.5 (inhibitory) term in the equa-

tion. This implies that the creation of a new memory wipes any previous memory, i.e. the

new FBt − PFN/hΔ synaptic weights are independent from the previous ones. Note that it

also keeps the location memory (FBt − hΔ) consistent with the hΔ population activity (PI),

centered on 0.5 in the model.

Simulations and results

To evaluate the model in different contexts, we defined different simulation paradigms in

which we observed its navigation behaviour. The simulations are done in a custom made

PLOS COMPUTATIONAL BIOLOGY Emergent spatial goals in the insect central complex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011480 December 18, 2023 10 / 33

https://doi.org/10.1371/journal.pcbi.1011480


pyOpenGL environment (using the pyglet library). The virtual world used is composed of a

blue sky, a brown ground and can either be empty or enriched by red or green objects such as

vertical cylinders, cones and cubes depending on the paradigms (Fig A in S1 Text).

Setting the model: Replication of previous implementations

Navigation using PI and vector memory. The first task we set consists in navigating

from the nest to a known food source. It is a replication of the the work from Le Moël et al

[20]. The main novelty of our implementation is the use of hΔ cells as the substrate for the PI.

For this task we only focused on the vector memory of the PI and therefore omitted the direct

connections from PFN to PFL in the model (Fig 5A.a). The simulations are composed of 3

parts, (1) the first outbound journey to find a food source and set the vector memory of this

source, (2) the return to the nest based on the PI homing vector, and finally (3) a second out-

bound journey based on the interaction between the vector memory and the PI.

Fig 5. Experimental paradigms. (A) Navigation using PI and vector memory, replicating [20]. a. The steering circuit in this simulation is only

composed of the hΔ pathway, supporting path integration. When the agent is lacking food (food = 0) it promotes the exploration behaviour through the

excitation of a specific FBt. When food is found, the DAN circuit triggers memory formation. The motivation then switches to the return state (food = 1)

where the FBt is inhibited, leading to homing behaviour. b. Sequence of behaviour implemented: (1) the agent leaves the nest to explore (pre-determined

zig-zag pattern). (2) When the agent reach 200l.u. from the nest, it is provided with a food reward, triggering the formation of the memory while

simultaneously switching the motivation to the return mode. (3) Homing behaviour to the nest (catchment area of 20l.u. diameter) c. Reset of the

motivation to the exploration mode (food=0). This time, the behaviour of the agent is left under the control of the steering circuit which should bring it

back to the memorised location. See results in Fig 6. (B) Navigation using visual guidance and vector memory, replicating and extending [26]. a. For

visual navigation without PI the steering circuit is only composed of the PFN to PFL pathway. The DAN reward circuit receives inputs from the sum of

the target-detection ommatidia activity (see B.b), so the circuit forms a vector memory of its direction when facing the target. See results in Fig 7. b.
Visual circuit used to control the recognition of a green object in the central visual field (Fig B in S1 Text). c. For visual navigation with PI, the circuit

includes both PFN and hΔ pathways to the PFL. The agent thus forms a memory of both the direction of the visual target and the location from which it

was seen, further improving its ability to locate the target. See results in Fig 8. Clipart(s) in the figure have been modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g005
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To simulate the first outbound journey (Fig 5A.b), we define a Z trajectory from the nest to

the food source. The agent starts with a random direction and executes two random turns in

opposite directions (of respectively 100 − 120˚ and 30 − 60˚) at defined distances from the

starting point (d = 80l.u. & d = 160l.u.), generating the zig-zag pattern. When the agent reaches

200l.u. from the nest, we then simulate an encounter with food. The first consequence is the

activation of the DAN pathway. This induces the synaptic change at the FBt − hΔ level and

forms a vector memory at the food location. The second consequence is the activation of the

return pathway, leading to a complete inhibition of the FBt cells. This inhibition releases the

hΔ pathway, which carries the PI, and thus generates the homing behaviour. Note that we

could have used the FBt directly to generate an outbound journey by presetting a memory to a

far away location, we decided to keep the zigzag pattern instead as this gave us the opportunity

as well to check on the stability of the PI memory accumulation with non-linear trajectories.

The agent then returns to the nest and it is caught when it approaches within 20l.u. of the

nest. Once the agent has reached the nest, the hΔs activity rate is homogeneously reset to its

initial value (0.5), resetting the PI. The feeding state is also reset to 0, stimulating again the

exploration FBt.
Finally, the second outbound journey is initiated. This time the inhibition by FBt of the hΔ

inputs to PFL corresponds to the vector memory formed at the food location. The agent should

thus be steered to the position where its PI (hΔ) activity and memory (FBt activity) cancel out, i.e.

the food location. In order to evaluate whether a vector memory was created that included both

the direction and the distance from the nest, the agent is not stopped when it reaches the 200l.u.

limit, but rather left in exploration mode until the simulation reaches a fixed number of steps.

Fig 6A shows an example of the 2 first phases of the simulation (first outbound journey and

return to the nest). The hΔ activity rate encodes correctly the home vector of the agent through

Fig 6. PI and vector memory of a food location. (A) PI during the outbound journey (black path) and inbound journey (green path). The activity rate

of the hΔ neurons is indicated for different location of both journeys; it encodes the home vector as a sine wave with amplitude corresponding to length

and phase corresponding to angle. The agent is rewarded (finds food) when it reaches a set distance from the nest (200 l.u.) and triggers the creation of

the synaptic long-term memory at the level of the FBt − to − hΔ axonal connections. (B) Retrieval outbound journey. The long-term FBt memory

induces the steering circuit to drive the agent towards the location where the memory and PI cancel, i.e., the rewarded location. The distance between

the search peak and target is used as a measure of precision in C. (C) Effect of varying the learning parameter βhΔ on the precision of retrieval journey:

this modulates the vector length stored in memory. Each point represents one simulation with a fixed βhΔ randomly chosen in the [0 4] range. Note that

because we modulated the motivational input to the FBt with a factor IFBt = 0.5, we corrected the value of βhΔ to verify that the best retrieval was achieve

with a perfect memory (βhΔxIFBt� 1).

https://doi.org/10.1371/journal.pcbi.1011480.g006
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the PI. At the location of the reward, the hΔ activity rate is efficiently copied in the synaptic

weight from FBt to hΔ. Symmetric update of hΔ activity allows the activity to return near to its

original level when it reaches the catchment area of the nest (20l.u.). Subsequently, the acti-

vated FBt leads the agent correctly toward the previously visited and rewarded location (Fig

6B). In addition, once it reaches the vicinity of the location, it clearly initiates a search behav-

iour from which we can calculate a search centre. To optimise the encoding of the vector mem-

ory, we varied the learning parameter βhΔ in different simulations (n = 200) and evaluate the

distance between the search centre and the rewarded location to estimate the influence of βhΔ.

The distance between the memorised location and the search pattern centre increases linearly

when βhΔ is further from its perfect memory value (βhΔxIFBt� 1).

Navigation using visual guidance. The second task we investigated was whether the

model could enhance guidance to a visual target. This replicates the task in [26]. The agent was

placed in a 3D virtual world containing one target: a green vertical cylinder (Fig A in S1 Text).

The key constraint on this task is that the visual system cannot estimate the target’s egocentric

orientation directly to drive steering, but instead can only recognise when the target is in the

frontal visual field. We use an insect-inspired eye model (Fig B in S1 Text) in which a subset of

ommatidia oriented toward the front (azimuth ±10˚) and above the horizon (elevation >0˚),

are set to be green-sensitive: any summed activity level above 0 is considered as an alignment

with the target. Target detection is used as the input to the DAN reward pathway (Fig 5B). In

this task, the desired vector memory is the current orientation of the agent, i.e., the direction it

is facing when the target is seen. Hence, we only consider the PFN − PFL pathway and ignore

the hΔ − PFL pathway (Fig 5B.a). Detection of the target triggers the creation of a vector mem-

ory at the level of the FBt to PFN axon synapses. The virtual length of this vector is determined

arbitrarily by a learning rate parameter, βPFN.

Fig 7A shows 4 examples of paths using the visual guidance circuit. The model clearly suc-

ceeds in navigating in the direction of the target. However, in some cases when the target is

missed the agent keeps heading in a constant direction, beyond the target (Fig 7A-top-right
panel). The reward pathway, associated with the detection of the target in the frontal visual

Fig 7. Visually guided navigation. (A) Examples of trajectories from the nest to the target. (B) Left panel Example of reward input activity over time

steps. Right panel Boxplot of the reward activity rate across all simulations. (C) Success rate and time to reach the target. Time is between first sighting

the target and reaching it, normalised by the distance to the target at the first sighting. (D) Success to reach the target as a function of the learning

parameter βPFN. (E) Time to reach the target as a function of the learning parameter βPFN. Clipart(s) in the figure have been modified from https://

openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g007
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field, follows an intermittent pattern of activation, with a rate of activation between 0.1 to 0.2

(Fig 8B). The overall success rate to reach the target is relatively high (around 75%, Fig 7C)

considering the simple target detection system. In addition, most of the unsuccessful simula-

tions are observed with a low learning parameter βPFN (Fig 7D). It seems for any value of βPFN

between 0.5 and 3 the success rate and time is similar (Fig 7D).

Adding PI vector memory to visual guidance

In the previous simulations we separately examined the effects of PI and PI-vector memory

(subserved by the hΔ circuit) and memory of the current heading (subserved by the PFN cir-

cuit). Here we examine the consequences of combining both circuits, with associated FBt
memory, for the visual guidance task. A single DAN neuron triggers the synaptic

Fig 8. Visually guided navigation including PI memory. (A) Examples of trajectories from the nest to the target. (B) Left panel Example of a

simulation reward input activity over time steps. Right panel Boxplot of the reward activity rate during the simulations (n = 200). (C) Success rate and

time to reach the target. (D) Success to reach the target as a function of the learning parameter βPFN. Dots indicate individual simulation outcome. (E)

Time to reach the target as a function of the learning parameter βPFN. (F) Conceptual comparison of the models with and without the hΔ/PI pathway for

visual guidance. a. Without hΔ/PI pathway, the agent tries to correct its heading to be the same as the heading when the target was last sighted. b. With

hΔ/PI pathway, the agent is steered towards the vector sum of the location where the target was last sighted, and the heading in which it was sighted,

preventing overshoot. Clipart(s) in the figure have been modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g008
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modulation of both FBtΔ and FBtPFN synapses simultaneously (Fig 5D). Therefore, any

detection of the target induces both the formation of a synaptic memory of the location (hΔ
pathway) and of the heading direction (PFN pathway) at the last target sight. To ensure the

location memory inherited from hΔ is reliable, we set the learning parameter βhΔ to its opti-

mal value (βhΔxIFBt = 1.059, see Fig 6C), while βPFN is randomly assigned in the range [0.0

4.0] as previously.

Fig 8A shows 4 examples of simulated paths. The paths observed with this model do not

strongly differ from the model without PI except, critically, it no longer proceeds in a constant

direction beyond the target (Fig 7A). The reward activity rate, of similar magnitude ranging

from 0.1 to 0.2, is slightly above the model without PI showing a better ability to observe the

target (Fig 8B). However, the success rate climbs to 95% (Fig 8C), and the failed attempts only

happened with a very low βPFN values (<0.5, Fig 8D). Failed attempt paths mostly show really

high sinuosity but still a global movement toward the target (Fig 8A-top right panel), probably

resulting from a too short vector memory formed at the FBtPFN level. Finally, the success rate

and time is not drastically modified by the variations of the learning parameter βPFN, when it is

above 0.5 (Fig 8E).

To explain the improved performance after inclusion of PI memory in the model for visual

guidance, we observe that the circuit effectively sums two vectors, such that the the visually-

guided vector memory (FBtPFN) formed by the reward encounter is anchored at an allocentric

reference point by the PI vector memory (FBthΔ) and this is maintained if there is no new

observation of the target (Fig 8F). Thus, successive observations of the visual target (or of any

cue characterising the goal) trigger the creation of spatial representations of successive aims/

checkpoints around which the centre of the search pattern generated by the PI is moved. This

generates more stable navigation that converges on the direct route between the last observa-

tion of the target and the target itself, whereas without the PI anchor, the visually-guided vector

memory alone could quickly diverge without repeated observation of the target. Additionally,

this stable spatial on-route anchor generated by the PI increases the chance to observe again

the cue(s) associated with the goal.

Effect of target disappearance. To verify the formation of a spatial representation of the

aim by the PI and visual guidance integration, we ran simulations in which the target disap-

pears when the agent gets within a certain distance of it(Fig 9A–9C). Therefore, the behaviour

of the model in the absence of any new visual information to the CX (Fig 9C) will give us

insight into the emergent spatial properties in the modeled CX circuit. We tested this scenario

with both the model with visual guidance circuit alone (hΔ-PI pathway shutdown, Fig 9D–9G)

and the model combining the PI memory (Fig 9H–9K).

The visual guidance pathway alone (PFN − PFL) keeps track of the agent’s orientation at

the last sight of of the target (Fig 9D). When it disappears, the agent is unable to stop. Com-

bined with the motor noise in the simulation (σnoise = 10˚), the probability to reach the target is

decreased to around 40% (Fig 9E), compared with the baseline of around 75% (Fig 7C). The

decrease of the success rate seems independent of the value of βPFN (Fig 9F).

In comparison, the addition of the PI vector memory to the model allows the agent to initi-

ate search behaviour in the vicinity of the target even when it has disappeared (Fig 9H). It pre-

serves the high overall success rate (Fig 9I), over a wide range of values of βPFN(Fig 9J). Finally,

when comparing the mean distance to the target/last sight, after this last sight, we observe a

strong dependence to the βPFN value. That is due to the behaviour converging to the end of the

summed FBthΔ vector and FBtPFN vector (Fig 8F.b), whose length depends upon βPFN. These

results support the creation of a spatial representation of the navigation goal in the CX based

on the allocentric positioning system generated by the addition of PI.
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Using a mushroom body model of visual long-term memory to navigate

In addition to navigating towards a conspicuous beacon, insects can also orient themselves

based on visual memory [66, 67], aligning themselves in a particular direction with respect to

surrounding landmarks or the panorama. This ability, which has been particularly associated

with following familiar routes under conditions when PI information is removed, has been

linked to the MB [68, 69]. The MB network, known for olfactory discrimination, can be used

to discriminate on-route memorised views from off-route views [70]. However, as imple-

mented, the MB model appear to encode valence of the visual scenery (familiar vs unfamiliar),

and spatial information is encoded only implicitly in the use of retinotopic memories, such

that familiarity is highest when aligned in the same direction as when the memory was stored.

The quick degradation of valence with translation and rotation around a learned position [71]

makes it challenging to derive robust navigation from MB output alone. If motor noise moves

an agent just slightly off the route, the MB provides no useful information and it is lost. How-

ever, MB output neurons (MBONs) have been identified as strong partners for FBt neurons

projecting into the CX in Drosophila [60], for example in the control of olfactory wind-guided

behaviour [18]. We proposed previously a theoretical layout using the CX steering circuit to

integrate the MB output, discriminate learned views oriented toward a feeder, and generate a

robust navigation to this feeder [26] which is supported by the impact of CX lesions on learned

visual navigation in ants [72].

Because the model we implemented in the current paper works very well with intermittent

observation of the target (Fig 9), we tested its potential to integrate MB valence output. We

implemented a similar MB circuit (Fig 10A) to the one we previously modeled [26]. Images

from a simulated world cluttered with geometric objects are passed through an insect eye

model, and lateral inhibition between blue channel ommatidia used to detect a skyline. This

activates 1000 visual projection neurons (vPNs) which form random connections with the

Kenyon Cells (KC, nKC = 20000) with a rate of 2–5 vPNs per KC. A sparse, binary activation

pattern in the KCs is produced using a moving threshold to maintain the number of active

KCs to 200 (1%), mimicking the inhibitory feedback regulating the KC activity found in

numerous species [73]. Each of these KCs connects to a single MBON with an initial synaptic

weight of 1. Finally, a single DAN neuron controls the learning process by stimulating neuro-

modulation at the level of every KC − MBON synapse.

The MB model is trained on a straight route (starting at the origin [0,0], randomly oriented

and of 100l.u. length). Memories are stored at regularly spaced locations (15 locations; every

6.7l.u.) by activating the DANMB which casuses the decrease to 0 of the KC − MBON synaptic

weight of any currently active KC. After this training process, the agent is replaced near the ori-

gin of the learned route to observe its ability to detect and follow it. The model generates an

MBON activity rate inversely proportional to the visual familiarity. This rate is normalised,

using the fact that the active proportion of KCs is maintained constant, and binarized using an

arbitrary threshold (TMBON = 0.01). To evaluate the performance of the MB model itself, we

estimated a MB performance index, based on the alignment between the orientation of the

agent when MBON was inactive (recognising on-route views) and the orientation at the near-

est location on the route, and determined a threshold score above which the MB is considered

to work better than random (i.e. appears to be more inactive when near the correct orienta-

tion) based on our data (Fig H in S1 Text). Note that we eliminated simulations with a score

lower than this threshold as well as simulations where the MBON are never inactivated (mean-

ing no views were recognised as on-route) from route following analysis.

The binarized MBON output produces a switching signal which can be used by the existing

CX circuit. The MBON input to the CX DAN is set to be inhibitory, only releasing its activity
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when an on-route view is detected (reward). The CX model remains identical to the previous

version, generating memories in FBt whenever the CX DAN is activated. As before we com-

pare the model with the PFN pathway only (memory of direction) to a model with a combined

memory of direction from the PFN pathway and PI location from the hΔ pathway.

The MB model performance index shows the route views are being detected with a score

above the random threshold (see Fig H in S1 Text for the definition of this threshold) in both

versions of the model. However, the MB model index ranges from -1 to 1 in simulation with

the model without PI, while it is tightly constrained close to 1 in simulations with the model

with PI. The integration of the MB model in the CX without PI (using the PFN pathway only)

managed to globally orient in the region of the route orientation but failed to achieve properly

the following of the learned straight route all the way to the end (Fig 10C). The combined heat-

maps of 6 simulations (2D histogram corrected by the orientation of each learned route) only

shows a weak tendency to converge to the beginning only of the learned route (Fig 10C, Right
panel). In comparison, the addition of the PI (hΔ pathway) and the associated vector memory

circuit successfully generated navigation behaviour converging on the learned route. More-

over, the combined heatmap of all simulations indicates a strong peak around the end of the

learned route (Fig 10D). The PI model, compared with the model without PI, shows better per-

formance in the average distance to the route, in the extent of the route followed (see Fig G in

S1 Text), and the minimal distance to the end of the route (Fig 10E). Note that the PI model’s

average distance to the route is kept low mostly by its ability to restrain the navigation in the

Fig 9. Navigating when a target disappears. (A-C) Simulation paradigm diagram. (A) The first phase corresponds to the previous simulation using

visual-driven processing. (B) However, when the agent reach 50l.u. from the target, it disappears. (C) This agent is then left navigating without any new

visual information modifying the FBt − PFN/hΔ guidance system in the CX. (D-G) Model without PI. (D) Example of a simulation path (black line).

The location of the first sight of the target is indicated by the cyan dot and the last sight by a red dot. The target location is shown as a green plain circle

and the origin location by a blue star. (E) Success rate (%) to reach the target location. (F) Success and failed attempts as a function of the βPFN learning

parameter value. Success rate are calculated for every 0.25 section. (G) Mean distance to the target (blue dots) and the last sight (red dots) locations after

the last sight event occurrence as a function of the βPFN learning parameter value. The lines show a 2nd degree polynomial fit for both location distances

(blue for the target, red for the last sight). (H-K) Model with PI. Respectively identical to (D-G). Clipart(s) in the figure have been modified from https://

openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g009
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vicinity of the route after losing it, whereas the model without PI diverges quickly when it loses

the route (Fig 10E). Finally, the performance of route following decreases quicker in the model

without PI along the route (Fig 10F). These results further demonstrate how the spatial repre-

sentation of the navigation goal is enabled by the addition of PI to the sensory guidance

circuit.

In addition, we tested the MB-guidance on more complex routes. We generated zig-zag

routes similar to the first outbound journey in the vector-memory paradigm. While progress-

ing along this route, the MB long-term memory was created continuously, during each step of

the model (0.25lu.st−1), by maintaining DANMB active with a learning rate readjusted to 0.1.

After the entire route has been learned, the agent was replaced around the starting location

Fig 10. Navigating using the MB long-term visual memory. (A) Mushroom body model. Visual input is based on the blue channel of an insect-

inspired eye model (see Fig B in S1 Text), with lateral inhibition to encode edges in the layer of visual projection neurons (vPN) that provide input to the

MB. (B) Left panel Diagram of the initiation of the MB “snapshot” memory following a straight route. Right panel Boxplot of the MB model performance

index for the 2 versions of the model (see details in Fig H in S1 Text). (C) Simulation without PI. Left panel Path of 15 route following attempts for 1

single route learned. The red arrow indicates the learned route. Right panel Heatmap of 8 pooled simulations, realigned on the learned route direction

(red arrow). (D) Simulation with PI, similar to (C) panels. (E) Boxplots of, from left to right, the average distance to the route (on the whole path and on

the path detected on the route, see Fig G in S1 Text), the percentage of route traveled and the minimal distance to the end route. All the data have been

filtered based on the MB performance index (B). (F) Success rate measured at different portions of the route for the model with (blue stars) or without

(red triangles) PI. Individual simulations (1 single route learning and 15 route following attempts) are indicated in thin lines while pooled data are

indicated in thick lines. Clipart(s) in the figure have been modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g010
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with a random orientation and the route following was tested. For each route learned, 15 tests

were conducted, each with a different starting location and orientation.

Fig 11A shows the example of a full route following simulation, 1 route learning and 15

route following attempts, and 6 examples of individual route following attempts for the same

route learned. Without additional components, the model shows capability in tortuous routes

following. With both model versions, the MB performance index lies mostly under the random

threshold, indicating it is a more difficult task to recognize views of combined route segments

in different orientations (Fig 11C). Note that our method to define this index and the estimation

of a nearest route location might add some discrepancies in the vicinity of the zigzag turns,

where orientations vary quickly from one segment to another. Despite, while both models show

an equivalent ability to approach the end of the route, the model with PI clearly shows an

Fig 11. Route following using the MB visual long-term memory. (A) Left panel Simulation example of a single route learning paradigm (red zigzag arrow) and route

following trials (black lines, n = 15). The MB learning, only during the walk (with constant speed) along this route, is continuous and modulated by a learning rate of

0.1. All route following attempts are initiated at a random location situated around the starting point of the route (±20l.u.). Right panel Individual trial of route

following. The route is shown as a black line and the route following attempt in blue. The red dots indicate the position at which the route has been considered lost (see

Fig G in S1 Text for calculation details). (B) Estimation of the MB model performance scores for 15 attempts to follow a single learned route Left panel Probability

density function of the MBON reward inactivity (on-route views) in relation to the orientation relative to the nearest route orientation. Right panel Boxplot of the MB

evaluation scores (see Fig H in S1 Text for calculation details). (C) Left panel Boxplots of the MB performance score for the two different versions of the model (no PI:

red, PI: blue) before (outside large boxplots) and after (inside small boxplots) the elimination of low MB performance score (see Fig H in S1 Text). Right panel Boxplot

of the average distance to the route with both versions of the model calculated on the whole path or only before the route was considered lost (see Fig G in S1 Text). (D)

From top to bottom, boxplots (red: without PI, blue: with PI) of the minimum distance from the route end, the percentage of route traveled and the average distance to

the route in relationship with the MB performance score. Each boxplot is based on the pooled data of simulations with MB performance index value within a 0.1 range

(grey and white bands). (E) Success rate of the model to reach different portion of the route. Data have been selected based on the MB performance score threshold.

Clipart(s) in the figure have been modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g011
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improvement in term of the route following and the average distance to the route (Fig 11D).

The performance of both model is however strongly limited by the performance of the MB itself

(Fig 11D). The addition of PI clearly increases the capability of the CX model to sustain route

following over more complex routes (Fig 11E). Particularly, the performance of the model to

follow the route in the vicinity of turns (20% and 60% of the route) diminishes linearly with the

PI whereas on average, without PI the success rate drops more rapidly after each turn.

Discussion

We propose an integrative model that follows the functional neuroanatomy of key identified

neurons of the insect CX [12, 60], from the head direction to the steering circuits. Our main

guideline to build the CX model was to follow closely the known projectomic/connectomic

data in insects [36, 60]. However, we focused on the common patterns of projection and their

functional aspects [12], rather than on the fine and species-dependent details. From this

approach we aim to extract generic insight into CX processes that could guide our understand-

ing of its function(s) as well as its notable conservation across insect evolution.

Specifically, we suggest that identified neurons (FBt) that convey signals from outside the

CX and project across the FB serve the purpose (previously hypothesised without explicit neu-

ral grounding in [20]), of storing vector memories. This is merged with previous models that

suggest integrative processes in intrinsic FB neurons (PFN and/or hΔ) can support path inte-

gration and homing to a nest [13] and persistence in approach to targets that provide a sen-

sory-based,innate or learned, reward [26]. The connectivity between these components

enables flexible switching between navigational modes. We show the model can support a

range of behaviours including: revisiting a food source location; maintained navigation

towards a visual target that disappears from view; and route following based on a familiarity

signal from the mushroom bodies. We argue that this circuit function of creating allocentric

spatial goals (not just heading goals) for immediate navigational control is relevant to a wide

range of insect species and behaviours.

To our knowledge, no direct behavioural evidence exists as yet to support such a spatial

representation in insects. However, we believe the development of experimental paradigms

within a cluttered environment, forcing constant obstacle avoidance, and/or controlled disap-

pearance of the sensory cues, mimicking our implementation (Fig 9), could provide insight to

the actual existence of spatial representation of navigation goals. That is, we predict that an

insect, after contouring an obstacle [74, 75], should set a course that reflects its last estimate of

the goal position, or a point on route to the goal, not just the goal direction; in a similar man-

ner to how ants have been observed, after deflection, to set a direct course to the nest [76] or to

a known feeder [66].

Spatial vs. heading goals

The key insight from this integrative model is the emergence of an allocentric navigation vec-

tor—indicating a specific spatial location as the current goal to move towards—from the com-

bination of both the directional (FBtPFN) and positional (FBthΔ) memory circuits. To date, the

CX circuit has been most widely interpreted as a system that allows the insect to maintain a

desired heading, supporting behaviours such as persistence in a direction when cues disappear

[77], menotaxis, i.e. the ability to maintain a constant bearing in regard to a particular cue

[27], or simply to walk straight [28]. More generally, in the navigation context, the CX has

been highlighted as as neural circuit that compares the heading of the insect with its desired

heading or goal direction [13, 26, 34, 78]. This has been supported by recent neuroimaging

and behavioural data, demonstrating the mechanism that allows insects to steer based on the
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difference of headings (actual and desired) [31, 52, 79]. We have previously proposed that if

the goal direction is determined by a ‘home vector’, obtained through path integration, then

such a steering system can guide the insect to a particular location in space, specifically, the

place where that vector is zero in length [13]. As such, the assumed primary function is to

return to a point of origin such as a nest [15], but by introducing an opposing ‘vector memory’

the ‘zero point’ can be positioned at an alternative location relative to the nest, such as a

recently experienced food source [20, 80]. Importantly, this system also produces an emergent

search pattern around the target location without any additional mechanism or explicit switch

to search behaviour required.

Here we suggest that PI and vector memory are not just specialised functions for central

place foraging, but rather play a more general role, intrinsic to how the CX supports all spatial

behaviour. The high degree of conservation in CX structure across insect species and the exis-

tence of PI in species such as Drosophila [22, 23] support this extension. For example, a simple

modification of the circuit—abolition of the return inhibitory pathway—sustains navigation

and exploitation of several food sources in a ‘nomadic’ fashion (Fig 12), reminiscent of Dro-
sophila exploratory behaviour [81]. Essentially, we have shown that PI can provide an anchor,

i.e. a stable reference/origin point in space, for any sensory-guidance pathway, extending its

Fig 12. Simulations using a “settler” or “nomadic” CX to harvest multiple food sources. (A) Settler brain The CX model used in this simulation is

similar to Fig 5B.c. Both sensory stimulations from the green visual pathway and food discovery are used as reward to the FBt − DAN circuit. The agent

is placed at the nest and left to find food located at different location randomly assigned in a quadrant of 90˚ and at a distance of 100–400 l.u.. When a

food source is found, it is fully consumed and disappears. Simultaneously, a memory is formed on the FBthΔ and the motivation is switched to trigger

homing behaviour. When the agent reaches the nest, the motivation is switched again to promote further exploration. The simulation is stopped when

the agent spends more than 5000 t.u. without finding a new food source or the nest and is considered lost. (B) Nomad brain The CX model used in this

simulation is modified to replace any DAN stimulation by a re-zeroing of the hΔ activity, i.e. of the PI. The rest of the simulation is similar to (A).

Clipart(s) in the figure have been modified from https://openclipart.org/.

https://doi.org/10.1371/journal.pcbi.1011480.g012
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function from self-positioning to goal-positioning (we note that [82] similarly suggested that

the fly may compare its vectorially encoded position to a vectorial goal, in 2D or 3D space,

although not presenting a specific mechanism). In the example behaviours we have simulated,

this ‘goal’ does not correspond to the exact location of the ultimate goal (such as the green cyl-

inder target or the end of the learned route). Rather, the location temporarily imprinted in the

memory is a way-point on route to this ultimate goal. This constrains movement to stay close

to this route, by integration of deviation from the desired way-point, facilitating the (re-)obser-

vation of either the goal or any cue associated to it. Therefore, the behaviour innately con-

verges, thanks to the innate PI central displacement, to a location that get closer and closer to

the targeted location, maintaining a robust balance between exploration and sensory-guidance.

Animals in the wild are confronted with cluttered environments and must deal with sparse

sensory inputs and/or detours [75, 83]. Being able to keep a trace of a location (where you

were headed when the goal was last seen) rather than just a direction (which compass direction

you were headed when the goal was last seen) must therefore represent a significant advantage.

For example, as we have shown, it can significantly improve a route following by an agent

using visual familiarity learned in the MB [70] which otherwise can get quickly lost when small

displacements or rotations make all views appear unfamiliar [71], and cannot recover the

route using the heading memory alone. Other recent proposals to link the MB visual long-

term memory to CX steering have used the bilateral MB to learn views corresponding to left

and right turns in a visual homing task [78]. This extension would be compatible with our

implementation and could further improve the ability of the model to follow tightly a route.

The association of visual memories and PI, either to follow a route or to achieve homing,

has been previously modelled as a problem of reconciling independent pathways [34], each

one carrying a goal direction to follow. This approach is influenced by the description of insect

navigation as a toolkit containing parallel functions [32] that should be optimally combined at

output [7, 35]. By contrast we propose here a more integrated architecture, where different

pathways contribute with complementary properties. Therefore, the outcome of the CX pro-

cessing, illustrated here by the visual-driven and the route following behaviour, benefits simul-

taneously from the directional inputs of the compass, from the positional inputs of the PI and

from the visual memory of the MB to achieve a more robust navigation than previous imple-

mentations [26, 70]. In addition to improving visual memory navigation, the same principles

could also benefit other pathways connected to numerous FBts [60]. Note, however, that this

integrated circuit does not explicitly associate a PI (location) to specific visual memories, as

would be required to form a cognitive map [7]. Here, the spatial memory is created locally and

only serves to navigate using the immediate sensory inputs. However, the storage of locations

in the CX based on different sensory inputs could help explain cognitive-like ability observed

in insect navigation behaviour. Additionally, the transformation of sensory/memory inputs to

the CX from egocentric directional to allocentric positional representations could be crucial to

unify modalities often presenting different spatio-temporal dynamics, allowing insects to more

robustly navigate in their environment.

Comparison to alternative models

A number of other CX models have been proposed that utilise essentially the same neuron

classes and connectivity as our model, but with somewhat different functional interpretations.

Here we summarise the key similarities and differences, and relevant experimental evidence

supporting each.

PFN—functional compass copy. PFNs, in our implementation, serve to create a func-

tional copy of the compass bump carried by Δ7, with their projection pattern producing a
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bilateral 45˚ shift of the bump to the left or right. In principle, the inhibitory Δ7 synapses are

modulating, across the FB, an activation rate of the PFNs which is determined by the agent’s

translational motion. In the current simulations, the speed is always set to a constant value,

and we neglect possible holonomic motion, hence the baseline activation is always equal in left

and right PFNs, and the activation pattern is simply the inverse of the Δ7 pattern, correspond-

ing to a sinusoid-like function with a phase centered on the EPG bump of activity. In a previ-

ous model [13] the left and right PFNs are activated from neurons in the noduli tuned to optic

flow at ±45˚ forming an orthogonal basis that allows egocentric translational inputs to be

transformed to an allocentric estimate of motion that is accumulated to encode PI memory.

More recent models, supported by neurophysiological measurements in flies, suggest that dif-

ferent subtypes, PFNv and PFNd, between them form a full orthogonal basis for the transla-

tional motion of the insect in allocentric coordinates, which is integrated by hΔB cells into an

allocentric vector of motion [16, 17], see also [60]. These studies do not find evidence for accu-

mulation of the translational input in PFNv and PFNd; although the existence, in bumblebees,

of a pathway in the cap region of the noduli targeting specific PFNc neurons [36] that are not

present in flies, leaves the possibility open that PFN could support PI in some insect species. In

[84], PFNa are shown to be sensitive to wind from ±45˚, and in the model presented in [18]

this is assumed to support an analogous allocentric estimate of the wind direction in hΔA cells,

which can contribute to upwind steering (as described further below). In brief, the interpreta-

tion of PFN neurons as not just copying and shifting the compass signal, but as transforming

egocentric self-motion into an allocentric vector remains consistent with our model’s assump-

tion that this vector provides a (temporary) goal (“maintain recent heading”). However we

note that introducing holonomic motion in our model would require a compensatory mecha-

nism (similar to that included in the model in [13]) to deal with the right-left imbalance in

PFN activation this would produce, which would otherwise bias the memory processes (PI and

vector memory) and the steering control.

hΔ—180˚ phase-shift and integration. hΔ are essential to our model. They allow a 180˚

rotation of the compass and, by integrating the PFN inputs over time, form the PI homing vec-

tor, which then becomes a potential goal for the steering circuit. Previously, in [13], where it

was assumed that PFN accumulated the PI vector, the analog of hΔ in bees (the pontine neu-

rons) were only used to normalise the bilateral signal from PFN reaching the analog of PFL
(CPU1). As indicated above, recent models in Drosophila suggest that by unifying the PFNv

and PFNd in the same reference frame, hΔb allow the transformation of the heading orienta-

tion, acquired from external cues (compass), into an allocentric travelled orientation, based on

the forward-backward and the 45˚ shifted optic-flow velocity estimation on both hemisphere

[16, 17, 60]. This property remains consistent with our model, as this is indeed the velocity vec-

tor that should be accumulated for PI. Interestingly, [60] suggest that recurrent connections

between hΔ pairs might support PI, but as yet there is no direct evidence for this. We note that

using hΔ instead of PFN for PI allows the model to represent simultaneously the “recent head-

ing” and “home” directions, whereas using PFN as the substrate (as in [13]) only allows

“home” and “anti-home” directions. In the model proposed in [18], where hΔc are assumed to

represent allocentric wind direction, an additional functional role of these cells is to integrate

contextual control signals for the presence of odour, in which FBt neurons gate the hΔc output

to PFL to drive up-wind steering.

FBt—Dynamic goal direction. The key novel component of our implementation to gen-

erate a goal direction signal, and the most speculative, is the tandem FBt − DAN. While based

on the neuroanatomy of the FBt in Drosophila [60], the exact connectivity of these cells

remains speculative. The addition of the FBt − DANs updates our previous model, in which

such tangential FB inputs only conveyed a reward signal from innate or learned visual
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pathways [26]. This signal modulated integration in the FB to create persistence in rewarded

heading directions and it provided an anatomically grounding for the theoretical implementa-

tion of vector memory in [20]. Note here that in addition to axonal connections, used in our

model to stably maintain the vector memory, FBts present projection to the dendritic region of

hΔ subtypes [60] that are not considered in our model, due to the single linear unit neuron

model. It remains to show what function(s) they could serve but we can speculate that den-

dritic projection would interfere with the inner computation of the neuron, and particularly

the PI in the case of hΔ, as we hypothesise here. Therefore, introducing them in the model

could be useful to set/reset the PI at a specific state (based on sensory/memory information,

zeroing at the feeder in drosophila for example [25]) or eventually gating it (when the orienta-

tion/odometry become uncertain for example). In the current model we extend the function

of the vector memory circuit to form a goal direction signal. Similarly, the neuromodulation of

synaptic weights to store the goal heading in the FB has been also proposed to sustain a contex-

tual control of saccade-fixation Drosophila behaviours in a negative reinforcement paradigm

[85]. In all cases, the resulting goal direction is represented by a sinusoidal pattern in the FB,

which allows its effective comparison with the equivalently shaped compass signal in the PB

[12, 52]. Indeed, a goal representation in line with these theoretical predictions has been exper-

imentally verified in Drosophila [31]. In those experiments the animal’s goal direction could be

optogenetically controlled by the activation of FC2 neurons, columnar neurons with mixed

input and output fibers in individual columns of the FB [31]. This concept of a goal direction

population code differs from our implementation of a goal direction encoded in FBt output

synaptic weights. However, it is still unknown if the sinusoidal FC2 activity pattern is gener-

ated within these cells or inherited from upstream neurons. As the intra-columnar projections

of FC2 cells suggest local information flow within columns of the FB, it is conceivable that the

goal representation does not originate in FC2 cells, but that these cells could carry the associ-

ated information from where it is stored to where it is used; i.e., in our implementation, from

FBt output synapses to the location where PFN and hΔ neurons interface with PFL cells.

To date, the only other models to include FBt neurons address olfactory navigation behav-

iour in Drosophila [18, 86]. The existence of both olfactory and visual pathway in parallel influ-

encing the CX navigation is supported by multiple FBts input to the FB in insect [60],

potentially representing different sensory-based vectors, supporting the multimodal control of

navigation [87]. The main projection pattern of FBt they propose is similar to ours and their

upstream input—non-directional odour perception/recognition, potentially from the LH

(innate) and the MB (learned)—can be interpreted as a reward input, i.e. matching the dopa-

minergic FBts (DAN) in our model. They propose that FBt gates the columnar neuron (specifi-

cally hΔc) outputs to generate different goal directions based on the olfactory context, resulting

in upwind orientation when exposed to attractive odours. While similar in principle, this

model differs in two ways from our new model. Firstly, it does not use PI, and second, there is

no dynamical modulation of the goal direction. The latter means that the this model is limited

to the two predefined alternatives of upwind and downwind flight direction. Although this

binary choice is sufficient for wind guided olfactory navigation when locating the source of an

odor plume [88, 89], recent observations of continuous adjustment of goal direction signals in

monarch butterflies after negative conditioning [79] support the capacity of the CX to perform

dynamic readjustment of the goal direction based on sensory experiences—consistent with

our implementation. Interestingly, in the event of a loss of the odour plume, insects show a ste-

reotypical casting behaviour, sweeping from right to left in quick alternations to recover the

odor plume [90]. We suggest this could correspond to the searching behaviour generated in

our model, which is induced by the PI at the location indicated by the combination of the

most recent vector memories (homing and sensory vectors). In the context of odour plume
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following this should correspond to the last place estimated on the route to the plume source,

thus increasing the chance that the odour molecule can be detected again.

In summary, tangential inputs to the FB (FBt neurons) represent an efficient means to map

non-direction inputs onto the directional system formed by columnar neurons [18, 26]. Our

model follows this principle and additionally introduces positional inputs that strengthen the

sensory-guided navigation by complementing it with the path integration at the same level.

The synaptic modulation to represent dynamical changes in the goal direction memory is

speculative, although consistent with the adaptability [79] and the persistence [77] of insect

navigation behaviour. Additionally, such synaptic modulation is supported by the evidence for

dopaminergic circuits in the FB [60], and the well-known function of dopamine in plasticity

and learning, for example in the MB memory [91] or in the ER neurons plasticity [47]. There-

fore we think our model provides a reasonable prediction of FBt function and could inform

future experiments on the interplay between FBts and the FB pool of columnar neurons (PFN,

hΔ [18] or FC [31]. However we note that the mechanism that sets the synaptic weights in the

model is very abstracted, and lacks any obvious foundation in biophysical mechanisms of plas-

ticity; this should be a focus for future work.

PFL—CX steering output. The unilateral signals carried by the different component of

the model (Δ7, PFN and hΔ) are then summed and compared, bilaterally, at the level of the

PFL which compute the steering output of the CX model, as in previous models [13, 20]. Their

role is supported by evidence of a strong downstream connectivity of PFL3 to descending neu-

rons (DNa02) responsible for turning behaviour [51, 60], and has been recently verified by

functional neuroimaging and modeling [31, 52]. However, the connectivity pattern we used,

presenting a strict separation between hemispheres and offset by exactly one column, does not

follow the precise details of the projection of either PFL1 and PFL3 reported in Drosophila [60],

which have (respectively) a one (PFL1) or two (PFL3) column offset pattern that continues

across the midline. All these patterns can reproduce the key function of creating a left-right

difference in the PFL that reflects the difference between the compass and goal directions (Fig

F in S1 Text), but incorporating the real connectivity in the future might allow a more subtle

control of the steering. While it is generally accepted that relative PFL3 activity affects turning

direction in the animal, different models have used this signal directly to set angular velocity

(our model, [13, 18, 34, 52]), or to influence the relative probability of turning in each direction

[85], or as input to an intrinsic oscillator based on the LAL circuit [92, 93]. The role of PFL1

could be simply to refine the PFL3 signal, but has also been speculated to instead contribute to

head motion, or to controlling directional change through side-slip instead of body rotation

[60]. Our model used a constant forward speed and so we did not include PFL2 neurons,

which have a four column offset and thus combine information from both sides of the FB; in

other models they are assumed to modulate forward speed or fixation duration in Drosophila.

PFL2 activity has also been suggested to increase the angular velocity when facing the anti-goal

[52], as the difference in PFL3 activity has a minimum at this point. However, we note that fac-

ing the anti-goal (unlike facing the goal) is an unstable state in the CX steering system. Hence

the motor noise of (σ� = 10˚) used in our agent simulation (or alternatively, intrinsic oscillatory

behaviour [94]) can turn the agent away from the exact anti-goal direction sufficiently that dif-

ferential PFL3 activity will then continue to turn it back towards the goal direction.

Potential for temporal integration to improve the goal estimate

One limitation in the current implementation is the absence of any dynamics in the vector

memory (goal) formation at the level of the FBt output synapses. The navigation is therefore

based on a vector of arbitrary length (depending on βPFN) and completely rewritten with every
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reward event. A more realistic neuromodulation dynamic could induce a vector formation

process that averages over events, and therefore space, to refine the positional goal gradually as

more information is acquired. We showed in a previous implementation of the MB to CX

pathway that the integration of the MB output signal over time could be used in this way to

strengthen the navigation toward a learned feeder [26]. Additionally, observations in Drosoph-
ila are consistent with the assumption that they continuously adjust the zero-point of their PI

to the statistical center of a optogenetically rewarded area [25]. Adding such a mechanism to

the model in this paper could support a form of triangulation, relying on the positioning ability

of the PI, that continuously improves the estimation of the navigation goal location every time

an attractive/rewarding sensory combination is experienced.

Contextual control of navigation in insects

The recent deciphering of the FB circuit and its implementation in functional models [18, 31,

52] has strengthened the hypothesis that its key role is the comparison of the goal and current

heading directions. The existence of a wide variety of converging sensory streams through a

pool of specific FBts [60], should thus support multisensory integration, matching behavioural

evidence of multisensory navigation in insects [40, 87]. Moreover, the mechanism we have

highlighted, inducing a heading vector memory under the control of a contextual reward, is

perfectly suited to allow the selection of action based on several vectors, either learned or

based on immediate sensory inputs, in line with contextual gating in wind-guided behaviour

in Drosophila [18]. Therefore, in addition to the integration of different goal orientations

together [19], the FB could be involved in a dynamical selection of the different modality(ies)

depending on the immediate information/context available. More specifically, our model’s

ability to not only inherit a goal orientation from external sensory streams but rather to rebuild

it plastically based on the inner compass orientation and on contextual valence signals, sup-

ports several sensory combination mechanisms, such as association, gating and/or summation

[95]. The layering of the pool of FBts existing in insects [60] is particularly adapted to this

selective activation/inhibition as well as the dynamical construction of the different sensory-

based navigation vectors. Consequently, the FB appears as a structure combining a set of vec-

tors, sensory- and/or memory-based, expressed in a common reference frame to achieve a

context-dependant navigation task.

Analogy to vertebrate navigation

As discussed above, our model suggests that directional information from egocentric sensory

cues and memory is transferred into an allocentric spatial framework. Importantly, this frame-

work does not require the formation of a cognitive map to support successful navigation.

Whereas the existence of a cognitive map in vertebrates has been supported by the discovery

of a variety of spatially tuned cells [1, 2], an equivalent construct in insects remains questioned

[5, 6]. So far, cellular evidence comparable to that in the vertebrate hippocampus and entorhi-

nal cortex is absent in insects. However, a map-like representation that could be supported by

the insect brain’s more moderate coding capacity might rely on an entirely different set of cell

types. In principle, a map-like representation would imply that memories of sensory experi-

ences in particular locations are associated to the geometric coordinates underpinned by PI

[33, 96, 97]. This ability would allow an animal to recover PI vectors based on sensory and

memory inputs, as well as to predict the sensory inputs based on the PI state [7]. Clearly, the

model circuit we explored in this study is not sufficient to support a cognitive map representa-

tion. While it generates a long-term memory of a location based on the PI vector [20], it can

neither recall these vectors based on memorized sensory information nor recall sensory
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memories (MB stored “views”) based on the PI state. Nevertheless, the proposed FBt vector

memories in our model are based on both PI (FBt − hΔ) and innate and/or memorized sensory

cues (FBt − PFN). They therefore could constitute a key circuit element to achieve bidirectional

cross-talk between PI vector memories and memorized sensory cues. A circuit supporting a

cognitive map should also involve neurons projecting from the CX back to upstream sensory

and memory regions, for example FS neurons, columnar outputs from the FB identified in

Drosophila [60], which project to several brain areas including the MB [98]. This prediction

provides a unique starting point towards interrogating the feasibility of a cognitive map in the

insect brain.

Supporting information

S1 Text. Supporting methods and figures. Fig A. Virtual worlds used in simulations. Con-

centric circles on the ground do not appear during the simulations and are displayed here to

show distance, 100l.u. separate consecutive circle radius. Vector memory replication of Le

Moël et al [20] have been conducted in the empty environment. The sensory attraction to the

innate green cylinder have been conducted in the single landmark. The MB route following

simulation, both with a straight or zigzag route, have been conducted in both the enriched

environment and the cluttered environment, without green landmarks in it. Finally, multiple

source exploration simulations have been conducted in the cluttered environment, with ran-

domly positioned green landmarks as food sources. Fig B. Eye model visual processing. We

built an eye model with the aims to (A) reduce the resolution inherited from the raw simula-

tion images and (B) represent the heterogeneity observed generally in insects eyes [99–101],

i.e. the frontal and horizon part presenting often a higher resolution than the rest of the eye.

(C) Each ommatidia is then assigned the set of pixel corresponding to its projection on the

pyOpenGL rendering planes (4 orthogonally organized planes forming the panoramic view

with a 160˚ vertical span. The activity rate of an ommatidia is calculated by the averaged light-

level of all its assigned pixels. (D) The two color channels visible by insects (Green & Blue) are

separated and can be used for different pathways. The Green channel is defined to create the

frontal (above the horizon) visual field detection of green landmark (innate). Alternatively, the

blue channel is used to input into the MB through the vPNs (learned). Fig C. CX model con-

nectivity matrix. (A) Generic connectivity pattern used between individual neuron group.

The ID of each neuron of a single type is based on the exitence of the functional columns

observed in several CX sub-structure. (B) Overall connectivity matrix representing the whole

CX model. Fig D. Compass circuit. The compass circuit consists of a ring attractor distributed

between the EB and the PB that has been highlighted in recent neurophysiological studies in

insects [9, 102, 103]. (A) Compass circuit diagram. The circuit is represented in a circular fash-

ion to shed light on the columnar organization across EB and PB. The inter-neuron connectiv-

ity pattern is only shown for one functional column and repeated identically for every other.

Note the intrinsic connectivity pattern across the PB of Δ7 (B) Compass orientation input to

the EPG (EB). The orientation of the agent is compared with the preferred directions (with a

45˚ acceptance angle) of 8 orientation sensitive cells (Compass Neurons, CN), which could

therefore correspond to mimic a sky polarization pathway. The cell that is sensitive to the cur-

rent orientation is set with an activity rate of 1 while the others activity is set at 0. Each of this

CN synapse to both EPGs of each wedge, one for each hemisphere, in the EB. (C) Compass

rotational input to the PEN (PB). Left/Right turns alternatively excite PEN on one hemisphere

of the PB allowing the rotation of the compass according to the movement of the insect. (D)

Compass reformatting from the sensory input to the Δ7 layer and distribution to the PFN
layer. Through the different layer of the compass circuit and particularly due to the Δ7
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projection pattern, the single activity ‘bump’ inherited from the CN is transformed into a sinu-

soidal shape signal inherited by the PFNs. Fig E. Model with sinusoid compass inputs (A)

Head direction signal process from the Compass Units, following a winner take all activity

rule, to the PFNs. (B) Head direction signal process from the Compass Units, following a sinu-

soidal activity rule, to the PFNs. The activity of each units is calculated as the sinusoid of the

difference between the orientation of the agent and of each compass unit preferred direction.

kEPG
D7

is adjusted to 0.4 to deal with the increase in overall activity across EPGs. (C) Vector mem-

ory paradigm (Fig 4A) using the sinusoidal compass input. Fig F. Model with a realistic Δ7 −
to − PFL3 connectivity pattern [31, 52]. (A) Default connectivity used in our model. No shift

is applied from Δ7 to PFL as we used previously in [26]. (B) Connectivity pattern following a 2

columns shift from Δ7 to PFL3 as observed in Drosophila [31, 52, 60]. Note that connectivity

pattern are presented without the additional 4 columns shift inherited from the Δ7 projection

pattern across the PB for simplicity. Fig G. Route following detection routine. (A) Check-

points are homogeneously distributed along the learned route. (B) For each route following

trial, we calculated a minimal distance to the checkpoints, each line indicate a route following

attempt (n = 15). Trials where the route is lost show typical escape line, which indicate a linear

increase of the minimal distance to the checkpoints along the route whereas route following

behaviour should be characterize by a constant (and lower) minimal distance to checkpoints.

To identify this linear increase of the minimal distance to checkpoint we calculated its

rate along checkpoints. We then defined a threshold based on the distance inter-checkpoints

(Trf = 0.75Dck with Trf the threshold and Dck the distance between two consecutive check-

points). Whenever the minimal distance variation between two consecutive checkpoint failed

to stay under this threshold (Min(dCki) − Min(dCkj)>Trf; with dCk the distance to a check-

point j = i+ 1), it indicates the agent never get closer than 0.75 times the distance inter-check-

point than it was at the time it reach the minimal distance to the previous checkpoint, showing

a lack of progress along the route. The checkpoint is then tagged as not visited and two conse-

cutive checkpoints not visited are considered an end to the route following behaviour. The last

checkpoint visited is therefore the further on-route location. Note that we did not consider

any return to route following after it was consider out once. (C) Example of the route following

end point detection by the routine described previously on 15 trials of a simulation. Red dots

indicate both the further checkpoint reached on the learned route (green line) and the closest

location to this checkpoint on the retrieval attempt (black line). (D) Boxplot of the percentage

of route traveled based on the estimation of the last on-route checkpoint visited. (E) Success

rate (%) at different portion of the route. Note that the learned route turns always happen at

20% and 60% of the “zigzag” routes. Fig H. Calculation of the MB model performance

index. (A) To estimate the intrinsic performance of the MB model in route following simula-

tions, we define a performance index based on the alignment of the agent at time where the

MBON is active (views recognized as on the route) and the actual orientation of the nearest

route location. (B) Alignment of these orientation indicate a good recognition and the cosinus

of the orientation difference lie close to 1, whereas perpendicular orientations lie around 0 and

opposed alignement around -1. The averaging of all these comparison (

P
cosðyMBON � yrouteÞ

nMBON
) there-

fore range from -1 for an overall anti-alignment between the actual route and the recognized

route, to 1 for a perfect alignment/recognition. (C) For each simulation we therefore estimate

a score indicating the actual intrinsic performance of the MB model. (D) To estimate a limit/

threshold indicating that the MB model was better than random we benefit from simulations

where the MB was actually constantly active, indicating an unspecific recognition of on-route

views. We then arbitrarily define a value just over the range of MB performance indexes esti-

mated for these simulations to define our threshold. All simulations with a score lower are
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considered impaired by the MB model itself and excluded from analysis. Table A. List of neu-

ron-to-neuron gain parameters used in simulations (Kinput
output) Note that parameters are not set

to reflect a biological reality but rather to ensure a stable function of the model. However, no

automatic optimization process have been applied to define this particular set of parameters.

(PDF)
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