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Abstract: Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a
wide range of biological activity. As raw materials for research, we chose leaves and inflorescences
of hemp varieties such as Białobrzeskie, Henola, and Tygra, which are cultivated mainly for their
fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of
active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we
performed supercritical carbon dioxide (scCO2) extraction at 50 ◦C under 2000 (a) and 6000 PSI
(b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The
antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS,
CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression
of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE),
and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD)
and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in
the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by
the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that
demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the
most significantly by the Białobrzeskie inflorescences extract (b). Multidimensional comparative
analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most
substantial neuroprotective potential.

Keywords: Cannabis sativa; antioxidant; neuroprotection

1. Introduction

Cannabis plant material is essential for the development of many economic areas.
For instance, the value of the European CBD market in 2020 was estimated at USD
1.7–1.9 billion [1,2]. According to many projections, it is anticipated that CBD sales in
international markets will be rising within the next few years [2–5].

Among the most dynamically evolving results featuring Cannabis sp. include the
development of dietary supplements and medicines containing cannabinoids (mainly
cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC)). Cannabinoids are synthesized in
the cannabis plant through a complex series of biochemical reactions from cannabigerolic
acid (CBGA) and cannabigerovarinic acid (CBGVA) which originate from olivetolic and
divarinic acids [6,7]. CBGA can be converted into tetrahydrocannabinolic acid (THCA)
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and cannabidiolic acid (CBDA) [8]. Cannabinoids are stored in carboxylic acid forms, as
fresh plants generally do not exhibit significant concentrations of neutral cannabinoids [7,9].
These acidic cannabinoids undergo nonenzymatic decarboxylation and conversion to
non-acidic forms (THC, CBD) when exposed to light, heat, or combustion during drying,
heating, or smoking [7,10]. The cannabinoids present in dried cannabis plant material such
as CBD, THC, cannabigerol (CBG), cannabinol (CBN), and cannabichromene (CBC) have
significant potential for clinical use.

The confirmed pharmacological activity of cannabinoids includes reducing mus-
cle spasticity and spasms in patients with multiple sclerosis [11], reducing neuropathic
pain [12], migraines [13], reducing the number of seizures in epilepsy [14,15], relieving the
effects of irritable bowel syndrome [16], Crohn’s disease symptoms [17], depression [18],
and reducing anxiety and its related symptoms (such as insomnia) [19,20]. Recent scientific
reports indicate a possibility of alleviating the pain associated with endometriosis [21], and
vulvodynia [22], and enhancing the quality of life for patients and to enable them to engage
more effectively with their surroundings. [23].

One of the essential steps in the extraction of cannabinoids is their isolation from the
plant matrix. Cannabinoid derivatives are characterized by their lipophilic nature, which
limits their water solubility, thus there is a need to use organic solvents [24–27]. However,
the use of organic solvents comes with notable drawbacks, not only for human health but
also for the environment [28–32]. The dynamics of the hemp market necessitate the ex-
ploration and implementation of green, health-conscious alternatives that are eco-friendly
instead of organic solvents during cannabis processing steps. Among the many extrac-
tion techniques of cannabinoids are maceration, dynamic maceration, soxhlet extraction,
ultrasound-assisted extraction, microwave-assisted extraction, subcritical fluid extraction,
and supercritical fluid extraction [33–35]. The use of supercritical fluid extraction (SFE)
with the application of CO2 has been consistently extended to the extraction of a set of
cannabinoids (different levels) from different varieties of Cannabis sp. [36,37] without the
production of organic waste and without the need to control their residues in the extracts.
Different varieties of cannabis plants might show different profiles of secondary plant
metabolites and, as a result, their biological activity [38,39].

The inspiration for this study was the confirmation of the antioxidant potential of
leaves of the fibrous hemp varieties Tygra and Białobrzeskie, and Henola (grown mainly for
oil), which until now have been rarely used as biologically active systems [40,41]. All three
varieties are listed in the European Union Plant variety database and have been approved
by the Colorado Department of Agriculture, USA [40]. In our earlier work, we collected the
results of research that confirmed the antioxidant potential of the leaves of selected hemp
varieties (Tygra, Białobrzeskie, Henola) [42]. Bearing in mind the biological properties
of the obtained cannabinoid compositions, we began to look for more environmentally
friendly methods of obtaining them. By choosing the supercritical carbon dioxide (scCO2)
extraction technique, we met the criteria for using a green approach to the processing
of plant raw materials. To the best of our knowledge, the results of scCO2 extraction
of cannabinoid profiles present in hemp fiber varieties such as Białobrzeskie, Tygra, and
Henola are published for the first time in the field of application of this extraction technique,
evaluation of the composition of the extracts obtained in this approach, as well as evaluation
of the biological properties of the extracted cannabinoid compositions.

With regard to the above, the aim of our research was to obtain extracts from the leaves
and inflorescences of Białobrzeskie, Tygra, and Henola hemp varieties by scCO2 extraction
and to evaluate their neuroprotective properties.
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2. Materials and Methods
2.1. Plant Materials

The plant material for analysis—Białobrzeskie, Tygra, and Henola varieties—were
generously provided by the Experimental Station for the Cultivar Testing in Chrząstowo,
belonging to the Research Centre for Cultivar Testing in Słupia Wielka. In 2022, sugar
beet served as the preceding crop for hemp cultivation. Individual tillage operations were
carried out following agrotechnical recommendations for this species (winter plowing
29 October 2021; 17 March 2022 harrow + spear, 6 May 2022 cultivation unit; 9 May 2022
sowing). The day after the sowing of hemp (10 May 2022), Boxer 800 EC herbicide was
applied at a rate of 2.6 l/ha. Mineral fertilization was conducted based on the following
mineral fertilizers: Lubofos 12 (200 kg/ha), potassium salt (183 kg/ha), enriched superphos-
phate (115 kg/ha), urea (159 kg/ha), and salmag (119 kg/ha). The soil of the experimental
field was classified as IIIa, complex 2. Concerning grain size, the top horizons of the
examined soil were categorized as loamy sands, with a clay fraction comprising 4%, dust
14%, and sand fraction 83%. The eluvial level contained slightly less clay fraction and dust
fraction. The enrichment (B) and bedrock levels were more compact. The pH measured
in the aqueous extract expressed in pH units was 6.80, while in KCl it was about 0.5 units
lower and fell within the upper values of the slightly acidic range. The organic carbon
content was about 1%, which, in terms of humus, is 1.7%. The total nitrogen content was
assessed as 0.086% and the C:N ratio was about 12:1. Thermal and moisture conditions
during the growing season were favorable for cannabis growth and development. The
collection of plant material for the study occurred once the hemp plants had reached the
maturation phase, i.e., from the moment of seed formation to the first seed. Following
collection, two separate 500 g samples were set aside and subjected to drying until they
reached a dry state. This drying process spanned a total of twenty hours. During the initial
six hours, the oven temperature was carefully controlled, not exceeding 50 ◦C, while for
the subsequent 14 h, the oven was kept at a constant temperature of 105 ◦C.

2.2. Reagents

Cannabinoids standards: CBD, CBDA, ∆9-THC, THCA, CBG, CBGA, CBN, and
CBC were obtained from Sigma-Aldrich (Poznan, Poland). Trifluoroacetic acid and ace-
tonitrile (high-performance liquid chromatography [HPLC] grade) were supplied by
Merck (Darmstadt, Germany). High-quality pure water was prepared using a Direct-Q
3 UV purification system (Millipore, Molsheim, France; model Exil SA 67120). Iron (III)
chloride hexahydrate, 5,5-dithio-bis-(2-nitrobenzoic acid), 2,2-diphenyl-1-picrylhydrazyl,
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), neocuproine, 2,4,6-tri(2-pyridyl)-s-
triazine, trolox, tyrosinase, L-DOPA, acetylcholinesterase, butyrylcholinesterase, acetyl-
choline iodide, butyrylcholine iodide, Trizma® hydrochloride, and Trizma® base were pur-
chased from Sigma-Aldrich (Schnelldorf, Germany). Sodium chloride, sodium dihydrogen
phosphate, and sodium hydrogen phosphate, were purchased from Avantor Performance
Materials (Gliwice, Poland). Ammonium acetate (NH4Ac) and methanol were supplied by
Chempur (Piekary Śląskie, Poland). Cupric chloride dihydrate, acetic acid (99.5%), ethanol
(96%), and sodium acetate trihydrate were supplied by POCH (Gliwice, Poland).

2.3. Extraction

Dry raw leaves and inflorescences of Białobrzeskie, Tygra, and Henola varieties were
ground and 6.5 g of the plant material was loaded into an extraction vessel. The dynamic
scCO2 extraction process was carried out under 2000 and 6000 PSI at 50 ◦C with 250 mL of
CO2 as marginal pressure values significantly affecting the neuroprotective activity and
exhaustive amount of carbon dioxide assessed during preliminary studies (Table 1). Next,
the extracts were suspended in methanol, winterized, and filtered under vacuum.
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Table 1. The parameters of supercritical carbon dioxide extraction. (L—leaves, I—inflorescences).

Name Plant Material Solvent Temp. Pressure

Białobrzeskie L (a)

Leaves Supercritical CO2 50 ◦C

2000 PSI
Białobrzeskie L (b) 6000 PSI

Henola L (a) 2000 PSI
Henola L (b) 6000 PSI
Tygra L (a) 2000 PSI
Tygra L (b) 6000 PSI

Białobrzeskie I (a)

Inflorescences Supercritical CO2 50 ◦C

2000 PSI
Białobrzeskie I (b) 6000 PSI

Henola I (a) 2000 PSI
Henola I (b) 6000 PSI
Tygra I (a) 2000 PSI
Tygra I (b) 6000 PSI

2.4. Chromatographic Analysis

The cannabinoid profile analysis of the extract was studied with the use of ultra-high-
performance liquid chromatography with the diode array detector (HPLC-DAD) validated
method (Shimadzu Corp., Kyoto, Japan) [42]. The determination was performed with the
use of a chromatographic column CORTECS Shield RP18, 2.7 µm; 150 mm × 4.6 mm. As
a mobile phase, 0.1% trifluoroacetic acid (41%), and acetonitrile (41:59, v/v) were used.
The flow rate was set at 2.0 mL/min, and the column temperature was set at 35 ◦C. The
injection volume was 10.0 µL, the detection wavelength was 228 nm, and the analysis time
was 50 min. The retention time of cannabinoids is presented in Table 2. The results were
acquired and processed using LabSolutions LC software (version 1.86 SP2) from Shimadzu
Corp. (Kyoto, Japan).

Table 2. The retention time of cannabinoids.

Cannabinoid Retention Time (min)

CBD 5.84
CBDA 6.42
CBG 6.82
CBN 8.72

CBGA 9.22
∆9-THC 10.27

CBC 14.57
THCA 16.31

2.5. Antioxidant Activity

The antioxidant activity was performed with the use of four assays: DPPH, ABTS,
CUPRAC, and FRAP. Each assay was preceded by the screening of the extracts’ antioxidant
activity with descending concentrations of the extracts. Trolox antioxidant activity was
studied at a suitable concentration range to inhibit radicals (DPPH and ABTS) or to perform
redox reactions (CUPRAC and FRAP). A linear regression equation was established to relate
the trolox concentration with its corresponding scavenging percentage (DPPH and ABTS) or
absorbance (CUPRAC and FRAP), subsequently, the results presented as mg trolox/g plant
material were calculated through the equation, according to the antioxidant properties of
the extracts in all four assays [43,44]. The antioxidant potential was determined according
to the previously reported method [45,46]. Each measurement in the antioxidant studies
was repeated six times.

The DPPH assay is based on mixing the radical solution with a hydrogen atom-donating
substance, as it causes the vibrant violet color to vanish, leading to the formation of the
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reduced form [47]. The inhibition of DPPH radicals by the studied samples/trolox was
calculated using the formula:

DPPH scavenging activity(%)
Ao − Ai

Ao
× 100% (1)

where Ao is the absorbance of the control sample and Ai is the absorbance of the test sample.
The other measurement that determined the scavenging radicals potential was the

ABTS assay in which green cation radicals are produced by the loss of electrons by the
nitrogen atoms of ABTS, caused by potassium persulfate. The inhibition of ABTS•+ was
calculated using the following formula:

ABTS scavenging activity (%) =
A0 − A1

A0
× 100% (2)

where:
A0—the absorbance of the control;
A1—the absorbance of the sample.
As a first method of determining the reducing potential of an oxidant, CUPRAC was

performed. During this assay, phenolic groups of antioxidants are oxidized to quinones,
and the neocuproine and copper (II) ion complex (bluish) is reduced to the neocuproine
and copper (I) ion complex (yellow).

The last antioxidant technique that determined the reducing properties (of colorless
Fe3+ ion to Fe2+ with the formation of a dark blue complex with 2,4,6-tris(2-pyridyl)-1,3,5-
triazine (TPTZ)) by the extracts was the FRAP technique.

2.6. Inhibition of Enzymes Influencing the Neurodegenerative Diseases

The potential of the extracts to inhibit enzymes such as AChE, BChE, and tyrosinase
involved in neurodegeneration development was studied. Firstly, the screening of the
extracts’ activity by measuring the inhibitory activity of the descending concentrations was
performed. Esterases’ strong inhibitors are rivastigmine, donepezil, and galantamine [48],
whereas tyrosinase is strongly inhibited by hydroquinone, kojic acid, and azelaic acid [49].
Thus, galantamine was chosen as a standard inhibitor for AChE and BChE, whilst for
tyrosinase inhibitor, azelaic acid was selected. A linear regression equation between the
standard concentration and its percentage potential to inhibit the enzyme was built, and
the standard equivalent was calculated through the equation, according to the inhibitory
properties of the extracts in all three assays. The results were presented as a galantamine
equivalent (GALAE) (mg galantamine/g plant material) for the AChe and BChE assays
and as an azelaic acid equivalent (AzAE) (mg azelaic acid/g plant material) [50–55].

The ability to inhibit AChE and BChE was determined according to the previously
reported method [45]. This assay requires artificial substrates (thiocholine esters). Thio-
choline is liberated during the enzymatic reactions with 5,5′-dithio-bis-(2-nitrobenzoic) acid
(DTNB), and the 3-carboxy-4-nitrothiolate anion (TNB anion) is formed. The potential to
inhibit AChE and BChe was measured according to the increase in the thiocholine color in a
96-well plate. The percentage of AChE and BChE inhibition by the samples was calculated
according to the following equation:

AChE/BChE inhibition (%) =
1− (A1 − A1b)

(A0 − A0b)
× 100% (3)

where:
A1—the absorbance of the test sample;
A1b—the absorbance of the blank of the test sample;
A0—the absorbance of control;
A0b—the absorbance of the blank of control.
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The tyrosinase inhibition assay is based on the reduction in color intensity of the
solution due to the inhibition of enzyme activity [56]. The inhibitor blocks L-DOPA access
to the tyrosinase active site, which prevents the reaction from proceeding. The study was
performed according to the previously reported method [45]. The percentage inhibition of
the tyrosinase by the samples was calculated with the use of the following equation:

Tyrosinase inhibition (%) =
1− (A1 − A1b)

(A0 − A0b)
× 100% (4)

where:
A1—the absorbance of the test sample;
A1b—the absorbance of the blank of the test sample;
A0—the absorbance of control;
A0b—the absorbance of the blank of control.

2.7. Analysis of the Results

The statistical analysis was conducted using Statistica 13.3 software (StatSoft Poland,
Krakow, Poland). The data is presented in the form of mean values along with their corre-
sponding standard deviations. The experimental data were analyzed using the skewness
and kurtosis tests to determine the normality of each distribution, while Levene’s test
was used to assess the equality of variances [57,58]. To establish statistical significance, a
one-way analysis of variance (ANOVA) was employed, and subsequently, the Bonferroni
post hoc test was conducted to compare the experimental outcomes for each extract. Sta-
tistical significance was established for differences at a significance level of p < 0.05. We
conducted Principal Component Analysis (PCA) to elucidate and interpret the interrela-
tionships between the compound profiles and their influence on the biological activity
of the extracts. This analysis was carried out using PQStat v.1.8.4.140 software (Poznań,
Poland). The Pearson matrix was also calculated with PQStat software v.1.8.4.140. To
identify the extract exhibiting the most robust potential neuroprotective activity, which
will include both antioxidant activity (DPPH, ABTS, CUPRAC, FRAP methods) and the
capacity to inhibit AChE, BChE, and tyrosinase enzymes, a multidimensional comparative
analysis (MCA), which compares multi-feature objects, was performed [59,60]. Synthetic
indicators are the main criterion for organizing the examined results and their ranking
with the use of multidimensional comparative analysis. In the process of normalization,
the considered diagnostic features were assigned a specific meaning for the assessment of
objects. Standardization was used for the normalization of variables. Synthetic measures
were calculated, and the rankings of regions were prepared.

3. Results and Discussion
3.1. Extraction

Hemp varieties like Białobrzeskie, Henola, and Tygra are primarily cultivated for
their seeds and fibers, contributing significantly to various industries. However, a note-
worthy aspect often overlooked is the potential use of their leaves and flowers for disease
prevention, given their studied and hoped-for biological activity. These plant materials,
often treated as waste during the production of seeds and fibers, might possess disease-
preventative potential if they possess biological activity. For example, it would be beneficial
to present their antioxidant and neuroprotective activity as Cannabis sativa is known to
have such properties [61–64]. Given the increasing focus on natural remedies and plant-
based therapies, unlocking the medicinal potential of these overlooked parts could offer
a sustainable and holistic approach to disease prevention, bolstered by their potential
biological activity [65–67]. Moreover, diversifying the utilization of hemp varieties aligns
with the principles of efficient resource utilization and sustainability, promoting a more
comprehensive and responsible agricultural model [68]. By recognizing the value inherent
in the leaves and flowers of Białobrzeskie, Henola, and Tygra, and their potential biological
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activity, we can maximize the benefits derived from these hemp varieties, enhancing both
agricultural practices and human health on multiple fronts.

scCO2 is a commonly used extractant in the pharmaceutical and natural products in-
dustries [69–73]. It is a non-toxic, non-flammable, and environmentally friendly solvent [74,75],
and it can be easily removed by depressurization and evaporation [76–78]. The extracts
were obtained with scCO2 at 50 ◦C under 2000 (a) and 6000 PSI (b) (Table 3).

Table 3. The content of cannabinoids present in Białobrzeskie, Henola, and Tygra leaves (L) and
inflorescences (I) extracts obtained under 2000 PSI (a) and 6000 PSI (b): CBD (cannabidiol), CBDA
(cannabidioloc acid), CBG (cannabigerol), CBN (cannabinol), CBGA (cannabigerolic acid), ∆9-THC
((-)-delta 9-tetrahydrocannabinol), CBC (cannabichromene), THCA (tetrahydrocannabinolic acid)
presented as µg cannabinoid/g plant material.

Extract
CBD CBDA CBG CBN CBGA THC CBC THCA

µg/g Plant Material

Białobrzeskie L (a) 90.92 ± 1.65 77.25 ± 1.00 N/D 3.66 ± 0.12 N/D 24.39 ± 0.84 8.18 ± 0.19 3.13 ± 0.07
Białobrzeskie L (b) 207.6 ± 5.5 109.6 ± 1.4 3.75 ± 0.08 3.51 ± 0.15 1.02 ± 0.05 13.55 ± 0.17 3.81 ± 0.11 6.29 ± 0.17

Henola L (a) 201.7 ± 6.3 42.84 ± 0.12 3.72 ± 0.05 N/D N/D 7.83 ± 0.21 7.18 ± 0.09 N/D
Henola L (b) 206.2 ± 2.7 134.3 ± 0.2 5.02 ± 0.17 2.07 ± 0.02 1.28 ± 0.08 9.85 ± 0.42 9.28 ± 0.26 2.39 ± 0.08
Tygra L (a) 278.8 ± 7.3 90.59 ± 0.99 6.44 ± 0.19 3.57 ± 0.09 0.83 ± 0.04 31.75 ± 0.04 16.42 ± 0.58 6.67 ± 0.15
Tygra L (b) 264.1 ± 3.1 242.6 ± 5.1 6.02 ± 0.08 3.86 ± 0.05 1.73 ± 0.09 32.48 ± 0.18 16.92 ± 0.28 18.71 ± 0.77

Białobrzeskie I (a) 2378.4 ± 17.1 280.4 ± 5.6 60.99 ± 0.58 34.88 ± 1.60 3.47 ± 0.14 391.9 ± 5.6 129.9 ± 5.4 34.81 ± 0.34
Białobrzeskie I (b) 4510.2 ± 53.1 1912.2 ± 15.8 224.8 ± 2.0 107.7 ± 5.4 89.74 ± 4.23 998.4 ± 18.8 310.2 ± 12.9 303.0 ± 3.9

Henola I (a) 3436.7 ± 75.6 403.4 ± 13.6 224.8 ± 1.5 10.91 ± 0.14 N/D 119.4 ± 6.0 130.0 ± 2.0 7.47 ± 0.08
Henola I (b) 6027.4 ± 55.3 2078.7 ± 44.3 109.1 ± 1.5 40.23 ± 0.12 22.46 ± 0.59 280.0 ± 9.7 251.684 ± 6.858 57.75 ± 1.33
Tygra I (a) 4659.6 ± 144.9 507.6 ± 15.9 109.1 ± 2.5 21.19 ± 0.70 N/D 175.1 ± 2.3 214.8 ± 4.0 6.53 ± 0.07
Tygra I (b) 6248.5 ± 154.9 2558.0 ± 107.8 125.9 ± 3.0 43.18 ± 0.60 33.38 ± 1.05 282.5 ± 4.5 300.7 ± 1.3 38.25 ± 1.22

3.2. Chromatographic Analysis

As expected, the cannabinoid profiles differed between the studied hemp strains
(Białobrzeskie, Henola, Tygra) (Table 3). In addition, changes in cannabinoid profiles were
also noted between the leaves and inflorescences. Each plant material had the highest
content of two cannabinoids, CBD and CBDA. The leaves had lower contents of all the tested
cannabinoids such as CBD, CBDA, CBG, CBN, CBGA, THC, CBC, and THCA, particularly
when compared to inflorescences. Most frequently, the extraction carried out at 6000 PSI
(b) led to a higher cannabinoid content than the extraction under 2000 PSI (a). The highest
CBD (6248.5 ± 154.9 µg/g plant material) and CBDA (2558.0 ± 107.8 µg/g plant material)
contents were obtained in an extract of Tygra inflorescences obtained under 6000 psi. The
highest contents of CBG (224.8 ± 2.0 µg/g plant material), CBN (107.7 ± 5.4 µg/g plant
material), CBGA (89.74± 4.23 µg/g plant material), THC (998.4± 18.8 µg/g plant material),
CBC (310.2 ± 12.9 µg/g plant material), and THCA (303.0 ± 3.9 µg/g plant material) were
found in the Białobrzeskie inflorescences extract obtained under 6000 PSI.

3.3. Antioxidant Activity

The antioxidant properties of the extracts were studied based on two mechanisms:
the first mechanism scavenges free radicals: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-
azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and the second inhibit oxidation
reactions by being oxidized themselves: cupric reducing antioxidant capacity (CUPRAC),
and ferric reducing antioxidant power (FRAP).

During the DPPH assay (Figure 1), the 1,1-diphenyl-2-picrylhydrazyl radical was
scavenged by all the extracts at some level. The extracts obtained under 6000 PSI pressure
exhibited more pronounced antioxidant activity than those obtained at the lower pressure
of CO2. The most potent antioxidant activity against the DPPH radical was obtained by the
Tygra variety, with the result 0.92 ± 0.03 mg trolox/g plant material and 0.93 ± 0.03 mg
trolox/g plant material for the leaves and inflorescences, respectively. Both of the results
were statistically significantly better than every other extract.



Antioxidants 2023, 12, 1827 8 of 20Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 22 
 

 
Figure 1. The antioxidant potential of Białobrzeskie, Henola, and Tygra leaves and inflorescences 
extracts obtained under 2000 PSI (a) and 6000 PSI (b), presented as mg trolox/g plant material 
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Figure 1. The antioxidant potential of Białobrzeskie, Henola, and Tygra leaves and inflorescences
extracts obtained under 2000 PSI (a) and 6000 PSI (b), presented as mg trolox/g plant material studied
in the DPPH assay. Different letters (a–f) within the bars indicate statistical differences (p < 0.05).

Another technique that determined the radical scavenging potential of the extracts
was the ABTS method (Figure 2). The ABTS•+ radical was scavenged better by the extracts
obtained under 6000 PSI (b). The greatest results among cannabis leaf extracts were noticed
for Tygra (b) (11.83 ± 0.10 mg trolox/g plant material). The most substantial extract was
the Tygra inflorescences (b) with 19.37 ± 0.06 mg trolox/g plant material, which was
significantly greater than any other extract.

Antioxidants 2023, 12, x FOR PEER REVIEW 9 of 22 
 

 

Another technique that determined the radical scavenging potential of the extracts 
was the ABTS method (Figure 2). The ABTS•+ radical was scavenged better by the extracts 
obtained under 6000 PSI (b). The greatest results among cannabis leaf extracts were 
noticed for Tygra (b) (11.83 ± 0.10 mg trolox/g plant material). The most substantial extract 
was the Tygra inflorescences (b) with 19.37 ± 0.06 mg trolox/g plant material, which was 
significantly greater than any other extract.  

 
Figure 2. The antioxidant potential of Białobrzeskie, Henola, and Tygra leaves and inflorescences 
extracts obtained under 2000 PSI (a) and 6000 PSI (b), presented as mg trolox/g plant material 
studied in ABTS assay. Different letters (a–j) within the bars indicate statistical differences (p < 0.05). 

The ability to reduce cupric ion was also studied (CUPRAC assay) (Figure 3), and the 
most efficient extract among the leaves was the Tygra (b)—5.76 ± 0.01 mg trolox/g plant 
material, while the most noticeable potential to reduce Cu2+ ion was shown by Tygra in 
the florescences (b) extract—8.34 ± 0.01 mg trolox/g plant material, which was statistically 
greater than every other extract.  

Figure 2. The antioxidant potential of Białobrzeskie, Henola, and Tygra leaves and inflorescences
extracts obtained under 2000 PSI (a) and 6000 PSI (b), presented as mg trolox/g plant material studied
in ABTS assay. Different letters (a–j) within the bars indicate statistical differences (p < 0.05).



Antioxidants 2023, 12, 1827 9 of 20

The ability to reduce cupric ion was also studied (CUPRAC assay) (Figure 3), and the
most efficient extract among the leaves was the Tygra (b)—5.76 ± 0.01 mg trolox/g plant
material, while the most noticeable potential to reduce Cu2+ ion was shown by Tygra in
the florescences (b) extract—8.34 ± 0.01 mg trolox/g plant material, which was statistically
greater than every other extract.
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The last antioxidant model used in this study was FRAP, which determined the ability
to reduce ferric ions (Figure 4). The strongest antioxidant potential within the leaves was
determined for the Tygra (b)—1.43 ± 0.01 mg trolox/g plant material; whereas among
inflorescences, the simultaneously the greatest result of all showed Tygra inflorescences
(b) extract—1.84 ± 0.01 mg trolox/g plant material, which had a statistical significance.
Overall, the most significant antioxidant activity in the four assays was noted for the
Tygra variety.
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The oxidative stress mechanism entails the creation of reactive oxygen species (ROS)
through normal cellular metabolism, exposure to environmental toxins, or the presence of
conditions that cause oxidative stress. Oxidative stress arises when there is a disturbance
in the equilibrium between the generation of ROS and the body’s protective antioxidant
mechanisms [79].

There are also other studies in the literature presenting the antioxidant potential
of the cannabis plant. In a study by Mastellone et al., the fiber-type Cannabis sativa L.
plant material was extracted with methanol and acetone by ultrasound-assisted extraction;
subsequently, both of the extracts were tested for antioxidant properties with the use of the
ABTS and DPPH assays [80]. Methanol extract showed a stronger antioxidant potential
than acetone. In another study, Futura 75 hemp frozen inflorescences were extracted by
microwave-assisted extraction to obtain an aqueous extract, while the residual biomass was
extracted with the use of n-hexane in an ultrasound bath [62]. In the DPPH and superoxide
radical uptake assays, aqueous extract presented a higher potency, while in the FRAP
and ORAC assays, hexane extract was stronger. André et al. studied the influence of
maturation on polyphenol content and antioxidant activity of eight different fiber-type
Cannabis sativa L. cultivars [81]. The total phenolic content decreased with the flower’s
development for all cultivars studied. Similarly, DPPH radical scavenging activity was
reduced over the maturation period. The antioxidant activity of cannabis was also studied
in vivo. In a study by Asta et al., the Cannabis sativa Futura 75 variety was extracted with
ethanol and administered to the mice intragastrically (1.6 mg of cannabis extract/g/day)
via stomach tube [82]. The extract contradicted the AlCl3-induced increase in the level of
malondialdehyde in the liver and brain and prevented the decrease in catalase activity.
Previous studies indicate that antioxidant activity is related to the level of polyphenols in
plant material, but the level of cannabinoids contributes significantly to antioxidant activity
by Cannabis sativa. In the present study, the most potent antioxidant activity was related to
the greatest CBD level.

In our previous research, which inspired the research presented in this paper, we
confirmed the antioxidant potential of methanolic, ethanolic, and isopropanol extracts of
hemp fiber varieties. The greatest antioxidant power was also associated with the highest
concentrations of CBD [42]. However, it is worth mentioning that other cannabis com-
ponents besides cannabinoids might also play a significant role in antioxidant properties
and work synergistically with cannabinoids, which is called the “entourage” effect [2–4].
Different cannabis varieties show a wide range of secondary plant metabolite profiles and
thus differ in biological activity [83,84]. Cannabis plant material after extraction provides
compounds that are responsible for the smell, terpenes like β-myrcene, limonene, and
β-(E)-caryophyllene, as well as α-humulene [35,85]. These components exert their bio-
logical activity, including antioxidant potential [64,86]. Cannabis plant material should
be treated as a whole, thus it is also worth mentioning that phenolic compounds, e.g.,
phenolic acids and flavonoids in their glycoside and aglycone forms which are found in
cannabis plant material chlorogenic and caffeic acids, catechin, epicatechin, rutin, narin-
genin, quercetin, apigenin, cannaflavin B and lignanamides cannabisin A, B, and C also
play a significant role in cannabis antioxidant properties [64,87–91].

3.4. Anticholinesterase Activity

AChE and BChE are enzymes that break down the neurotransmitter acetylcholine
in the synaptic cleft. The inhibition of these enzymes can lead to an accumulation of
acetylcholine, which can enhance cholinergic neurotransmission and potentially provide
neuroprotective effects. Cholinergic neurotransmission plays a crucial role in cognitive
function [92], including memory and learning. In addition to the cognitive effects, AChE,
and BChE inhibition may also have neuroprotective effects as they leads to a reduction in
oxidative stress and inflammation, which are principal in the pathogenesis of neurodegen-
erative diseases [93]. Additionally, the inhibition of BChE prevents amyloid-beta-induced
neuronal death [94].
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All of the leaf and inflorescence extracts showed inhibition of AChE (Figure 5). In
general, the inflorescences had greater inhibitory potential than the leaves, with the greatest
result noted for the Tygra leaves (b)—8.20± 0.08 mg galantamine/g plant material. Among
the inflorescences, the most anti-acetylcholinesterase activity was noted for the Henola
inflorescences (b)—20.23 ± 0.43 mg galantamine/g plant material which was statistically
different than all of the studied extracts.
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Figure 5. Acetylcholinesterase (AChE) inhibitory activity of Białobrzeskie, Henola, and Tygra leaves
(L) and inflorescences (I) extracts obtained under 2000 PSI (a) and 6000 PSI (b) presented as mg
galantamine/g plant material. The standard error is represented by the error bars. Different letters
(a–h) within the bars indicate statistical differences (p < 0.05).

BChE inhibitory activity was also noted within Cannabis sativa extracts and the overall
results are similar to those of the AChE inhibition, as among the leaves the strongest
inhibitory potential was assessed for the Tygra leaves (b)—8.17 ± 0.09 mg galantamine/g
plant material (Figure 6). The most intense ability to inhibit AChE was determined for the
Henola inflorescences (b)—17.12 ± 0.27 mg galantamine/g plant material, which has a
statistically significantly stronger potential than any other studied extract.
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Figure 6. Butyrylcholinesterase (BChE) inhibitory activity of Białobrzeskie, Henola, and Tygra leaves
(L) and inflorescences (I) extracts obtained under 2000 PSI (a) and 6000 PSI (b) presented as mg
galantamine/g plant material. The standard error is represented by the error bars. Different letters
(a–g) within the bars indicate statistical differences (p < 0.05).
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In a study by Karimi et al., methyl alcohol Cannabis sativa extract derived from leaves
showed inhibition of AChE and BChE activity at 52.33% and 49.00%, respectively; whereas
resin fraction inhibited the AChE and BChE at 80.00% and 68.00% [95]. In their research,
Puopolo et al. investigated the anticholinesterase properties of eight cannabinoids: CBD,
∆8-THC, CBG, CBGA, CBT, CBDV, CBC, and CBN, all at a concentration of 200 µM [96].
They observed the significant inhibition of AChE and BChE activities, with varying percent-
ages of inhibition. Specifically, AChE was inhibited by 70.8, 83.7, 92.9, 76.7, 66.0, 79.3, 13.7,
and 30.5%, while BChE was inhibited by 86.8, 80.8, 93.2, 87.1, 77.0, 78.5, 27.9, and 22.0%,
respectively. Molecular docking investigations revealed that the cannabinoids engaged
with multiple amino acid residues on the enzyme proteins, providing substantial evidence
for their collective ability to inhibit AChE and BChE. In a study by Mooko et al., hexane
and dichloromethane flower and bud extracts showed a greater inhibitory potential against
AChE and BChE, whereas water, hexane, dichloromethane: methanol (1:1), and methanol
showed a better potential to inhibit β-secretase [97]. In an in vivo study, where rats were
administered cannabis resin, tramadol, or a combination of both, cannabis alone increased
AChE brain activity (by 16.3–36.5%), while it remained at the same level after tramadol ad-
ministration, whilst the combination of both decreased AChE activity (by 12.9–13.6%) [98].
The activity of BChE exhibited significant and dose-dependent inhibition in response to
cannabis resin (by 60.9–76.9%), but also by tramadol (by 17.6–36.5%) and the combination
of both (57.2–63.9%). In a study on Caenorhabditis elegans, the neuroprotective potential of
two C. sativa oils demonstrating fluctuations in CBD and THC concentrations was studied
and, as a result, both oils were efficient in decreasing AChE activity, and ROS levels [61].

3.5. The Inhibition of Tyrosinase

Tyrosinase inhibition, involving the blockage of the L-DOPA substrate access to the
center of the enzyme, is a key reaction in relation to the inhibition of dopamine breakdown,
which is deficient in Parkinson’s disease [99]. Cannabis sativa extracts inhibited tyrosinase
(Figure 7).
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Figure 7. Tyrosinase inhibitory activity of Białobrzeskie, Henola, and Tygra leaves (L) and inflores-
cences (I) extracts obtained under 2000 PSI (a) and 6000 PSI (b) presented as mg azelaic acid/g plant
material. The standard error is represented by the error bars. Different letters (a–i) within the bars
indicate statistical differences (p < 0.05).
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In most cases, the leaf extracts showed weaker potential to inhibit the enzyme than
the inflorescence extracts. The only exception was the Białobrzeskie leaves extract (b),
which showed exceptional inhibition properties—166.73 ± 1.87 mg azelaic acid/g plant
material and was not significantly different from the Henola inflorescences extract (b)
170.92 ± 5.57 mg azelaic acid/g plant material. The greatest tyrosinase inhibitor and most
statistically different from all other extracts was the Białobrzeskie inflorescences extract
(b)—212.22 ± 8.83 mg azelaic acid/g plant material.

In a Kim et al. study, hemp seeds ethanol crude extract was fractioned with hexane,
dichloromethane, ethyl acetate, and butanol [100]. Tyrosinase’s inhibitory activity depends
on the used solvents [80]. The methanol extract showed 33.17% ± 2.04% of inhibition while
acetone showed 38.46% ± 1.36%. In the Manosroi et al. study, hemp leaves and seeds
collected in Thailand were macerated with ethanol; subsequently, the extracts were studied
for the inhibitory potential of tyrosinase [101] and they showed inhibition of the enzyme.

It would be beneficial to extend the investigations to include experiments conducted
on cell lines. After receiving promising results, it would be suggested to expand the research
to in vivo animal studies to gain insights into the potential neurodegeneration-preventative
applications of the extracts.

3.6. Statistical Analysis

PCA was used to explain the variation in the data in the present study, namely, to
verify if and how the sum of the eight cannabinoids’ content impacts the biological activity
of the extract.

Factor 1 (principal component PC1) accounted for approximately 73.9% of the ob-
served variation in the samples, whereas factor 2 (principal component PC2) explained
approximately 16.13% of the variation (Figure 8). The ABTS, CUPRAC, FRAP, AChE, and
BChE values strongly correlate with PC1 negatively, whilst DPPH and tyrosinase correlate
with PC1 negatively to a smaller extent. However, the higher values of the coordinates of
the vector’s endpoint are observed more for the first component than for the second one.
There is a strong relation between the antioxidant (DPPH, ABTS, CUPRAC, FRAP) values
and the potential to inhibit the enzymes AChE, BChE, and tyrosinase. The sum of the
eight cannabinoids relates with all of the studied biological activity directions as the angle
between the vectors is less than 90◦. However, the strongest relation is noticed between the
sum of the cannabinoids and enzymatic inhibitory potential and the weakest with DPPH.
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respectively [102]. AChE and BChE showed the highest correlation with CBD (0.858, 0.845,
respectively) and CBDA content (0.860, 0.820, respectively). The tyrosinase inhibitory poten-
tial was the closest correlated to CBG and CBN content—r-Pearson correlation coefficient
0.809 and 0.787, respectively. When analyzing the data for the leaves and inflorescences
separately, the r-Pearson correlation coefficients vary, as the overall composition and con-
tent of compounds that were not determined, such as terpenes, terpenoids, and flavonoids,
are different. The r-Pearson correlation coefficient analysis confirmed that DPPH has the
weakest correlation with the cannabinoid content, with the greatest value of 0.533 provided
for CBDA.

The Tygra inflorescences extract (b) exhibited the highest antioxidant potential among
the tested extracts. The most effective inhibition was observed in the case of AChE and
BChE by the Henola inflorescences extract (b). The inhibition of tyrosinase was most
pronounced in the case of the Białobrzeskie inflorescences extract (b). As the result of multi-
dimensional comparative analysis, the Henola inflorescences (b) extract was determined as
one with substantial neuroprotective potential, which comprises antioxidant activity and
the ability to inhibit enzymes related to neurodegeneration.

Patients’ preferences have undergone significant changes, reflecting a growing de-
mand for natural and alternative remedies [103,104]. Hemp extracts have garnered sub-
stantial attention in recent years due to their diverse therapeutic potential, including
anti-inflammatory, pain-relieving, and antiepileptic properties [105]. These benefits are
attributed to the presence of various natural compounds, such as cannabinoids, flavonoids,
and terpenes. Current research primarily focuses on exploring antioxidant properties and
the ability to inhibit enzymes associated with neurodegenerative diseases, which may
have preventive applications. The increased demand for hemp-derived extracts has led to
expanded cultivation, benefiting the agricultural sector. Importantly, hemp is considered
an environmentally sustainable crop because it requires less water and fewer pesticides
compared to other crops [106]. Moreover, the environmentally friendly extraction methods
used for cannabis align with the growing emphasis on sustainability and eco-conscious
consumer choices [107]. Nevertheless, it is crucial to acknowledge that depending on
the specific product, integrating cannabis into one’s daily life may still incur significant
associated costs [108–110]. The Henola variety, with its low THC content, presents an in-
triguing opportunity for cultivation in many countries and states where strains with higher
THC levels face legal restrictions [111–114]. This characteristic provides legal compliance
and makes it attractive for disease prevention without causing psychoactive effects [115].
Utilizing the entire hemp plant can enhance returns and justify the sustainability and
cost-effectiveness of Henola cultivation. The hemp extract market is dynamic, featuring
various product categories such as CBD oils, tinctures, edibles, and topicals [116–118].
Henola inflorescence extract can be employed in various forms, including oils, and may be
suitable for oral administration following preformulation studies.

4. Conclusions

All the tested varieties of hemp (Białobrzeskie, Henola, and Tygra) showed the po-
tential for antioxidant and neuroprotective properties, expressed by the possibility of
scavenging radicals, reducing ferric and cupric ions, and inhibiting esterases and tyrosi-
nase, but the greatest neuroprotective effect was found in extracts from Henola hemp
inflorescences obtained as a result of extraction with carbon dioxide at 50 ◦C under and
under 6000 PSI. Due to the promising results, the Henola variety holds the highest potential
for effective use in neurodegeneration prevention, while also contributing to the reduction
in associated agricultural waste.

Bearing in mind all the advantages of supercritical carbon dioxide extraction in the
face of the confirmed neuroprotective effect of the leaves and inflorescences of the tested
hemp varieties, this method of obtaining preparations/semi-finished products should be
recommended as the most optimal and safe in the development of products containing
hemp varieties such as Białobrzeskie, Henola, and Tygra.
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ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
AChE Acetylcholinesterase
ANOVA one-way analysis of variance
ATCI acetylthiocholine iodide
AzAE azelaic acid equivalent
BChE butyrylcholinesterase
BTCI butyrylthiocholine iodide
CBC cannabichromene
CBD cannabidiol
CBDA cannabidiolic acid
CBG cannabigerol
CBGA cannabigerolic acid
CBN cannabichromene
CUPRAC cupric reducing antioxidant capacity
DAD diode array detector
DPPH 2,2-diphenyl-1-picrylhydrazyl
DTNB 5,5′-dithio-bis-(2-nitrobenzoic) acid
FRAP ferric reducing antioxidant power
GALAE galantamine equivalent
HPLC high-performance liquid chromatography
I inflorescences
L leaves
MCA multidimensional comparative analysis
PC principal component
PCA principal component analysis
ROS reactive oxygen species
SFE supercritical fluid extraction
THC ∆-9-tetrahydrocannabinol
THCA ∆-9-tetrahydrocannabinolic acid
TNB 3-carboxy-4-nitrothiolate
TPTZ 2,4,6-tris(2-pyridyl)-1,3,5-triazine
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60. Barska, A.; Jędrzejczak-Gas, J.; Wyrwa, J. Poland on the Path towards Sustainable Development—A Multidimensional Compara-
tive Analysis of the Socio-Economic Development of Polish Regions. Sustainability 2022, 14, 10319. [CrossRef]

61. Vanin, A.P.; Tamagno, W.A.; Alves, C.; Mesacasa, L.; Santin, L.F.; Sutorillo, N.T.; Bilibio, D.; Müller, C.; Galon, L.; Kaizer, R.R.
Neuroprotective Potential of Cannabis sativa—Based Oils in Caenorhabditis elegans. Sci. Rep. 2022, 12, 15376. [CrossRef]

62. Cásedas, G.; Moliner, C.; Maggi, F.; Mazzara, E.; López, V. Evaluation of Two Different Cannabis Sativa L. Extracts as Antioxidant
and Neuroprotective Agents. Front. Pharmacol. 2022, 13, 1009868. [CrossRef] [PubMed]

63. Hampson, A.J.; Grimaldi, M.; Axelrod, J.; Wink, D. Cannabidiol and (−)∆9-Tetrahydrocannabinol Are Neuroprotective Antioxi-
dants. Proc. Natl. Acad. Sci. USA 1998, 95, 8268–8273. [CrossRef]
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