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Abstract: This paper introduces a novel dexterous 3-DOF parallel wrist-gripper assembly with a
large singularity-free range of motion. It consists of a zero-torsion 2-DOF parallel wrist and a 1-DOF
parallel gripper. The wrist produces a 2-DOF sphere-on-sphere pure rolling motion. This large
singularity-free 2-DOF sphere-on-sphere pure rolling motion of the wrist allows for smooth and
precise manipulation of objects in various orientations, making it suitable for applications such as
assembly, pick-and-place, and inspection tasks. Using a geometrical approach, analytical solutions
for the inverse and forward kinematics problems of the wrist and gripper are derived. From the
inverse kinematic equations, the Jacobian matrices are derived and it is shown that the whole
workspace is free of type I and type II singularities. It is shown that with a proper choice of design
variables, a large singularity-free range of motion can be obtained. The absence of singularities
in the whole workspace of the wrist-gripper assembly is an important feature that enhances its
reliability. Finally, the correctness of the derived equations for the wrist inverse and forward
kinematics are verified using MSC Adams. These results confirm the feasibility and effectiveness of
the proposed parallel wrist-gripper assembly. Overall, the novel parallel wrist-gripper assembly
presented in this paper demonstrates great potential for improving the efficiency and flexibility of
robotic manipulators in a variety of industrial and research applications.

Keywords: zero-torsion 2-DOF parallel wrist; sphere-on-sphere rolling motion; 3-DOF
wrist-gripper assembly; Jacobian matrices; inverse kinematics; forward kinematics; workspace
analysis; numerical validation

1. Introduction

The field of parallel manipulators (PMs) has seen significant growth in recent years due
to their numerous advantages over traditional serial robots, such as higher stiffness, speed,
precision, and load to weight ratio. However, PMs also have some disadvantages, including a
smaller workspace, more singular configurations, and more complex kinematics [1,2]. Recent
research initiatives are proposing means of alleviating these drawbacks, such as, for instance,
the use of kinematic redundancy [3].

One area of focus within PM research has been the development of wrist designs.
Advances in this area include the proposal of a spherical parallel manipulator (SPM)
with three rotational degrees of freedom, which led to the design of the Agile Eye and
later the Agile Wrist [4,5]. Recently, a comprehensive review of 3-DOF rotational parallel
mechanisms was conducted [6]. A number of 2-DOF spherical parallel manipulators (SPMs)
have been patented and developed, each with their own unique design and capabilities. In
reference [7], a 2-DOF SPM was patented using a five-bar structure. Ueda introduced an
SPM based on a six-bar linkage with a ±75◦ yaw and −120◦–100◦ pitch range [8]. Duan
et al. designed a 2-DOF SPM with a U-2RRR architecture and analyzed its kinematic
and dynamic behaviour [9]. Cammarata created a U-2PUS 2-DOF SPM that can achieve
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a singularity-free 90◦ tilt angle [10]. Carricato and Parenti-Castelli introduced a fully
decoupled 2-DOF parallel wrist that can independently actuate each Euler angle [11]. Bajaj
et al. conducted a recent review of other 2-DOF SPMs [12].

At the core of all of these 2-DOF SPMs lies a fundamental concept—the fixed centre
of rotation (FCOR) around which they all rotate, and the continuous alignment of the
instantaneous screw axis (ISA) with this central point—irrespective of their configurations.

In a recent breakthrough, a pioneering approach has emerged to unlock the potential
of 2-DOF rotational parallel manipulators (RPMs) within a significantly expanded and
singularity-free workspace. Leading works by Sofka et al. [13], Dong et al. [14], Wu et al. [15],
Shah et al. [16], and Chang et al. [17] have championed this concept.

In this groundbreaking paradigm, the conventional fixed centre of rotation becomes
a dynamic element, residing on a sphere throughout various configurations. Importantly,
the ISA now passes through this non-fixed centre of rotation. It was Dunlop and Jones who
initially harnessed this innovative idea to craft the Canterbury tracker for solar tracking [18].

Expanding on this notion, Rosheim and Sauter designed the Omni-Wrist III, a remark-
able 4-4R RPM that boasts a hemisphere-like workspace devoid of singularities [19].

Wu et al. [20] introduced the term ’equal spherical pure rotations’ (ESPR) to describe this
form of rotation. They adopted a graphical approach proposed by Yu et al. [21] to deduce
the freedom and complementary constraint patterns (FCCPs) inherent in robots with ESPR
characteristics. Their classification system identified three distinct types of these mechanisms.

Subsequently, Yu et al. ventured further into the field, analyzing a set of n-4R RPMs.
Their investigations shed light on the relationship between n and the degrees of freedom
available in these mechanisms [22].

Adding a 1-DOF grasping ability to wrists is another emerging topic in PMs [23].
Although 3-DOF and 2-DOF wrists have received considerable attention, the topic of 3-DOF
and 4-DOF wrist-grippers has remained largely unexplored. Most of the work performed
in this area is regarding using the wrist-gripper mechanism for minimally invasive surgery
(MIS). Some researchers introduced tendon-driven mechanisms [24,25], and some researchers
used linkage-based designs [26,27]. Yamashita et al. [28] introduced a 3-DOF endoscopic
handheld forceps manipulator for use in endoscopic surgery. They utilized a multi-slider
linkage to transform linear motion of linkages to rotation of frames, enabling 2-DOFs of
rotational motion. Also, a 1-DOF wire-driven gripper is added to the wrist to complete the
wrist-gripper assembly. Hong and Jo proposed a 4-DOF parallel wrist-gripper mechanism.
In this mechanism, the end-effector of the wrist is connected to the base via 3PSR legs and
1RUUP central leg. The 3PSR architecture, creates two rotational DOFs and one translational
DOF. By adding one RUUP leg to the mechanism, the translational DOF is converted to a
grasping motion by the inversion of the slider–crank linkage. Also, the axial rotation of the
central leg produces a pure axial rotation for the gripper [29]. Bazman et al. [30] proposed a
4-DOF wrist-gripper mechanism with a 3RSR-1UUP architecture. In this mechanism the
end-effector can undergo a pitch–yaw rotation and a thrust motion using a 3RSR parallel
mechanism. The central 1UUP leg is used to convert the thrust motion into a grasping
motion by the inversion of the slider–crank linkage. Also, a rotary actuator in series is
added to the base to provide the roll axis motion. Sanchez et al. [31] introduced a surgical
instrument featuring a universal wrist that uses a 3PS—S configuration. The instrument
shaft is connected to a ball joint on the central link, which in turn is seated in the base
of the end-effector. The other three PS linkages are manipulated to produce both pitch
and yaw motions in a redundant manner. This redundancy arises because the linkage
connected to the movable jaw serves a dual purpose: it is used both to open and close the
gripper and to actuate the end-effector’s rotational motion. Ghaedrahmati and Gosselin [32]
proposed a novel parallel 2RRRR—RRRR, 1 UU leg architecture. This architecture enables
the mechanism to rotate on a full hemisphere without encountering singularity, making it
highly suitable as either a 2-DOF or 3-DOF wrist gripper with minor modifications. The
proposed mechanism’s unique design allows for greater flexibility and precision in various
industrial applications, such as robotic assembly and manufacturing.
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This paper presents a novel and dexterous wrist-gripper assembly with a large
singularity-free workspace, consisting of a 2-DOF equal spherical pure rotation (ESPR) wrist
and a 1-DOF gripper. The ESPR wrist is a zero-torsion RPM [33] and offers 2-DOFs, pure
azimuth and tilt angle, which enables the mechanism to attain a wide range of orientations
and reachability in confined spaces. The addition of the 1-DOF gripper further enhances
the mechanism’s capabilities, providing the grasping ability required to manipulate various
objects. The proposed mechanism is lightweight and fast, making it suitable for a variety
of applications in fields such as robotics, manufacturing, and biomedical engineering. With
its high dexterity and large workspace, the mechanism is able to perform complex tasks
such as object manipulation, assembly, and inspection with ease. The presented mechanism
offers an efficient and effective solution to the challenges posed by confined spaces and
complex tasks. Moreover, another advantage of the proposed architecture is that no actua-
tor is required at the end-effector to operate the gripper, which reduces the mass and inertia
of the end-effector and eliminates the need for electronics at the end-effector. This feature
facilitates washing and disinfection operations for applications where those are needed.

The organization of this paper is as follows. In Section 2, the robot architecture
is described. In Section 3, the kinematic model of the wrist and gripper is developed.
Specifically, Section 3.1 presents the inverse kinematic model of the wrist, while Section 3.2
develops the forward kinematic model of the wrist and provides analytical solutions for
the forward kinematic problem. Sections 3.3 and 3.4 then provide the inverse kinematic
and forward kinematic of the gripper, respectively. The Jacobian matrices of the wrist
are derived using two methods in Sections 3.5 and 3.6. Section 4 offers a comprehensive
analysis of wrist singularities, focusing on the derivation of specific geometric conditions
that lead to singularity occurrences. In Section 5, the rotational and translational workspace
of the end-effector is explored in detail, providing a comprehensive representation of
workspace characteristics. Sections 6.1 and 6.2 present the results of a simulation study
conducted using MSC Adams to validate the derived equations for inverse and forward
kinematics. The verification of these models is thoroughly discussed. Section 7 offers
a thorough comparative analysis against the current state of the art. Finally, Section 8
concludes the paper with some remarks.

2. Robot Architecture

The proposed mechanism is a spatial wrist-gripper parallel robot. As can be seen from
Figure 1, the end-effector of the wrist is connected to the base via 2RSR—RSR legs and one
RUUR leg. Here, R, R, S, and U stand for an active revolute joint, a passive revolute joint,
a passive spherical joint, and a passive universal joint, respectively. Also, the rotational
output of the RUUR leg is used as the motion input of the lead screw to open and close
the gripper. Globally, the assembly is a 3-DOF mechanism, consisting of a 2-DOF equal
spherical pure rotations (ESPRs) wrist and a 1-DOF gripper. The rotational motion of the
wrist is completely decoupled from the opening motion of the gripper. Three motors can be
mounted on the base in order to actuate the mechanism. The two motors that actuate the
base R joints of the wrist can be mounted either to actuate the first and second legs or the
first and third legs, and the third motor actuates the shaft that is connected to the base via
a revolute joint. The revolute joints and the universal joint that are connected to the base
must be co-planar.

As can be seen from Figure 2a, in each leg vector, ui is the vector from the centre of
the first universal joint to the centre of the first revolute joint, wi is the vector from the
centre of the first revolute joint to the centre of the first spherical joint, gi is the vector from
the centre of the first spherical joint to the centre of the second revolute joint, and fi is the
vector from the centre of the second universal joint to the centre of the second revolute joint.
The plane of symmetry Π is a plane that passes through the midpoint A of the UU leg and
the three spherical joints and is perpendicular to vector d, where d is the vector from O to
O′. Actuator joint coordinates are denoted ηi for the 2-DOF wrist and θ for the gripper. In
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each leg, vectors fi and −gi are symmetric to vectors ui and wi, respectively, with respect
to the plane of symmetry Π.

Figure 1. Proposed architecture of the wrist-gripper assembly.

(a) (b)

Figure 2. (a) Kinematic model of the wrist-gripper assembly. (b) Tilt angle δ and azimuth angle σ of
the UU leg and the end-effector.
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As can be seen from Figures 2a and 3, the rotation of the UU leg leads to the motion of
the lead screw. This motion acts as the input of two parallelograms to which fingers are
connected and causes the opening and closing of the gripper.

Figure 3. Mechanical architecture of the gripper.

3. Kinematic Modelling
3.1. Inverse Kinematics Modelling (Wrist)

First, the reflection matrix R associated with the plane of symmetry Π is defined using
the unit vector n defined in the direction of vector d. One has

R = 1− 2nnT =
[

r1 r2 r3
]

(1)

In order to derive the end-effector rotation matrix Qe, a moving coordinate system
O
′
x′ y′ z′ is attached to the end-effector. The following relations between moving coordinate

unit vectors and fixed coordinate unit vectors can be written:

i
′
= Ri = r1, j

′
= Rj = r2, k

′
= i

′ × j
′
= −r3 (2)

where r1, r2, and r3 are the columns of the reflection matrix R. Using the unit vectors of
Equation (2), the following expression can be derived for Qe:

Qe =
[

i
′

j
′

k
′
]
=
[

r1 r2 −r3
]
. (3)
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By comparing Equations (1) and (3), the following relation can be found between the
end-effector rotation matrix Qe and the reflection matrix R:

R = QeC (4a)

Qe = RC (4b)

in which C =


1 0 0

0 1 0

0 0 −1

.

In the inverse kinematics problem, it is assumed that the end-effector tilt and azimuth
angles are known, and the purpose is to find the actuator angles ηi(i = 1, 2). In [32], it was
shown that the tilt angle of the end-effector in a wrist with the ESPR rotational property is
twice the tilt angle of the UU leg and the azimuth angles are equal (Figure 2b). Hence, by
knowing the end-effector tilt angle (2δ) and azimuth angle (σ), the unit vector n along the
UU leg will have a tilt angle (δ) and azimuth angle (σ). So, n is defined as

n =

 nx
ny
nz

 =

 sin δ cos σ
sin δ sin σ

cos δ

. (5)

By knowing the unit vector n, the reflection matrix R can be derived using Equation (1).
Then, the end-effector rotation matrix Qe can be found using Equation (4b). From Figure 2a
the following relation can be written:

ui + wi + gi = d + fi, i = 1, 2. (6)

Also, from Figure 2a the following equations can be written:

fi = Qefi0 (7a)

gi = R(−wi) = −Rwi (7b)

where fi0 corresponds to vector fi expressed in the end-effector frame. By substituting
Equation (7) into Equation (6), one can obtain:

ui + wi − Rwi = d + Qefi0, i = 1, 2. (8)

Also, using the fact that fi0 = ui, and using Equation (4), one obtains

(1− R)wi = d + RCui − ui, i = 1, 2 (9)

and the simplification of Equation (9) leads to

(1− R)wi = d + (R− 1)ui, i = 1, 2 (10a)

(1− R)(wi + ui) = d = dn (10b)

where the fact that Cui = ui was used. Then, using Equation (1), and using wi + ui = si,
leads to

nnTsi =
d
2

n, i = 1, 2. (11)

From Equation (11), the following equation can be inferred:

nTsi =
d
2

, i = 1, 2. (12)
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Equation (12) can be rewritten as follows:

nTwi =
d
2
− nTui, i = 1, 2. (13)

By expansion of Equation (13), the solution for the inverse kinematics can be derived as follows:

nxl cos η1 + nzl sin η1 =
d
2
− nxb (14a)

nyl cos η2 + nzl sin η2 =
d
2
− nyb (14b)

where b is the distance from the intermediate U joint to the revolute joint at the base of
each of the RSR legs and l is the length of the links connecting the base R joints to the
intermediate S joints in each leg. Using the definition of the tangent of the half of the angle
ηi (i = 1, 2), namely, Ti = tan(ηi/2), Equation (14) can be written as

a1T2
1 + b1T1 + c1 = 0 (15a)

a2T2
2 + b2T2 + c2 = 0 (15b)

in which

a1 = 2nxb− 2nxl − d (16a)

b1 = 4nzl (16b)

c1 = 2nxb + 2nxl − d (16c)

a2 = 2nyb− 2nyl − d (16d)

b2 = 4nzl (16e)

c2 = 2nyb + 2nyl − d (16f)

Assuming b = αd, l = βd, and by substituting nx, ny, and nz from Equation (5), the
coefficients can be expanded as follows:

a1 = (2α sin δ cos σ− 2β sin δ cos σ− 1)d (17a)

b1 = 4βd cos δ (17b)

c1 = (2α sin δ cos σ + 2β sin δ cos σ− 1)d (17c)

a2 = (2α sin δ sin σ− 2β sin δ sin σ− 1)d (17d)

b2 = 4βd cos δ (17e)

c2 = (2α sin δ sin σ + 2β sin δ sin σ− 1)d (17f)

and Ti (i = 1, 2) can be found as

Ti =
−bi ±

√
b2

i − 4aici

2ai
, i = 1, 2 (18)

which concludes the solution of the inverse kinematic problem. It can be observed that two
solutions exist for each of the legs. Equation (18) holds if b2

i − 4aici ≥ 0. This fact will be
discussed further in Section 5.

3.2. Forward Kinematic Modelling (Wrist)

Solving the forward kinematic problem for this robot is a relatively straightforward
task. In this context, we begin with the assumption that the joint angles ηi (where i = 1, 2)
are known, and the objective is to determine the tilt and twist angles of the UU leg,
represented by the vector d. To achieve this, we expand Equation (12) by utilizing the
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vectors n =

 sin δ cos σ
sin δ sin σ

cos δ

, s1 =

 s11
0

s13

, and s2 =

 0
s22
s23

. This expansion results in

the following:

sin δ cos σs11 + cos δs13 =
d
2

(19a)

sin δ sin σs22 + cos δs23 =
d
2

. (19b)

Using the definition of the tangent of half of the angles δ and σ, Equation (19) can be written as
e1t2

1t2
2 + e2t2

1t2 + e3t2
1 + e4t1t2

2 + e5t2
2 + e6t1t2 + e7t1 + e8t2 + e9 = 0 (20a)

f1t2
1t2

2 + f2t2
1t2 + f3t2

1 + f4t1t2
2 + f5t2

2 + f6t1t2 + f7t1 + f8t2 + f9 = 0 (20b)

in which
t1 = tan

σ

2
, t2 = tan

δ

2
e1 = e5 = −d− 2s13

e3 = e9 = −d + 2s13

e4 = e6 = e7 = 0

e2 = −e8 = −4s11

f1 = f5 = −d− 2s23

f3 = f9 = −d + 2s23

f2 = f4 = f7 = f8 = 0

f6 = 8s22.

Assuming t2 as a hidden variable, Equation (20) can be written as

p2t2
1 + p1t1 + p0 = 0 (21a)

q2t2
1 + q1t1 + q0 = 0 (21b)

in which
p2 = e1t2

2 + e2t2 + e3, p1 = 0, p0 = e1t2
2 − e2t2 + e3

q2 = q0 = f1t2
2 + f3, q1 = f6t2

The Sylvester matrix [34] that is associated with the two univariate polynomials in
Equations (21a) and (21b) can be written as

Sp,q =


p2 p1 p0 0
0 p2 p1 p0
q2 q1 q0 0
0 q2 q1 q0

 . (22)

The determinant of matrix Sp,q must be zero for the equations to have a common root, namely,

det(Sp,q) = 0 . (23)

Equation (23) leads to a polynomial of degree six as follows:

k6t6
2 + k4t4

2 + k2t2
2 = 0 (24)

in which
k6 = e2

1 f 2
6 + 4e2

2 f 2
1
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k4 = 2e1e3 f 2
6 + 8e2

2 f1 f3 − e2
2 f 2

6

k2 = 4e2
2 f 2

3 + e2
3 f 2

6

One solution of Equation (24) is
t2 = 0 (25)

this value corresponds to δ = 0 and gives the coefficients of Equation (21) as follows:

p2 = p0 = e3 = −d + 2s13

Importantly, this situation (δ = 0) corresponds to the initial position, where s13 = d
2 .

Consequently, p2 = p0 = e3 = 0, making Equation (21a) zero. However, it is worth noting
that when t2 = 0 (or equivalently, δ = 0), the angle σ, and correspondingly t1, become
undefined. This is because σ is defined as the angle between the projection of d on the
xy plane and the x-axis. In the t2 = 0 (δ = 0) scenario, the projection collapses to a point,
rendering the angle σ meaningless.

Four non-trivial solutions of Equation (21) can be calculated using the following
change in the variable t2

2 = T2, which yields:

k6T2
2 + k4T2 + k2 = 0 . (26)

The solution of Equation (26) can be written as:

(T2)1 =
−k4 +

√
k4

2 − 4k2k6

2k6
(27a)

(T2)2 =
−k4 −

√
k4

2 − 4k2k6

2k6
. (27b)

As can be seen from Equation (26), (T2)j exists if and only if k4
2− 4k2k6 ≥ 0. The expansion

of this term is as follows:

k4
2 − 4k2k6 = −1048576 d8(β cos η2 + α)2(β cos η1 + α)2

((
β4 cos2 η2 − β4

)
cos2 η1

− 2
(

2αβ cos η2 + β2 + α2 − 1
4

)
βα cos η1 − β4 cos2 η2 − 2

(
β2 + α2 − 1

4

)
βα cos η2

− 1
2

β2 sin(η1) sin(η2) +

(
−2α2 +

1
2

)
β2 − α4 +

1
2

α2
) (28)

k4
2 − 4k2k6 ≥ 0 is satisfied if and only if

ζ =
(

β4 cos2 η2 − β4
)

cos2 η1 − 2
(

2αβ cos η2 + β2 + α2 − 1
4

)
βα cos η1 − β4 cos2 η2

− 2
(

β2 + α2 − 1
4

)
βα cos η2 −

1
2

β2 sin(η1) sin(η2) +

(
−2α2 +

1
2

)
β2 − α4 +

1
2

α2 ≤ 0
(29)

By iteratively adjusting the coefficients α and β, one can determine values that satisfy
Equation (29) within the range of 0 ≤ η1, η2 ≤ 90◦. This will be discussed further in
Section 5.

Then, four solutions for t2 can be calculated as:

(t2)i = ±
√
(T2)j, i = 1, . . . , 4, j = 1, 2 (30)
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As is evident from Equation (30), to obtain real solutions for (t2)i, it is imperative that (T2)j
be a non-negative value. This critical condition will be further explored in Section 5. Hence,
one can obtain the tilt angle δ as follows:

δi = 2 arctan (t2)i, i = 1, . . . , 4 . (31)

When the solution for δ is known, it can be substituted into Equation (19) and the solutions
for cos σ and sin σ can be derived as

cos σi =
d
2 − cos δis13

sin δis11
, i = 1, . . . , 4 (32a)

sin σi =
d
2 − cos δis23

sin δis22
, i = 1, . . . , 4 . (32b)

Then, angle σi can be found as follows:

σi = atan2(sin σi, cos σi), i = 1, . . . , 4 . (33)

which yields a maximum of four solutions for angle σ.

3.3. Inverse Kinematic Modelling (Gripper)

In the inverse kinematics problem of the gripper, ∆x is known, and the purpose is
to find ∆y, where, as shown in Figure 3, ∆x is the opening of the gripper and ∆y is the
displacement of the input lead screw. Once ∆y is determined, the input angle θ can be
calculated using the pitch of the lead screw.

From Figure 3, the following relations can be written:

∆x = 2(l6 − l2 cos θ2 − t) (34a)

(l2 − l8) cos θ2 + l5 cos θ5 = l6 − l7 (34b)

(l2 − l8) sin θ2 + l5 sin θ5 = l9 + ∆y (34c)

where the angles and lengths are as defined in Figure 3. From Equation (34a), the following
relation can be found for cos θ2:

cos θ2 =
l6 − t− ∆x

2
l2

(35)

so,

sin θ2 = ±

1−
(

l6 − t− ∆x
2

l2

)2
 1

2

(36)

also from Equations (34b) and (34c), and using Equations (35) and (36), cos θ5 and sin θ5
can be found as follows:

cos θ5 =
l6 − l7

l5
− (l2 − l8)

l5

(
l6 − t− ∆x

2

)
l2

(37a)

sin θ5 =
l9 + ∆y

l5
± (l2 − l8)

l5

1−
(

l6 − t− ∆x
2

l2

)2
 1

2

. (37b)

On the other hand, one can write

sin2 θ5 + cos2 θ5 − 1 = 0. (38)
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Substituting (37a) and (37b) into (38), one can obtain two quadratic equations in ∆y (because
there are two answers for sin θ5). The solution of these two quadratic equations leads to
four solutions for ∆y as a function of ∆x. Using the fact that the central RUUR leg is a
double Cardan joint, the input angle θ can be related to the displacement ∆y and the lead
screw thread pitch p as follows:

∆y =
pθ

360
(39)

where θ is the input angle in degrees, as shown in Figure 2a.

3.4. Forward Kinematic Modelling (Gripper)

In the forward kinematics problem, it is assumed that θ is known, and the purpose is to
find ∆x. First, from Equation (39), ∆y can be derived, then from Equations (34b) and (34c),
the following relation can be found for cos θ5 and sin θ5:

cos θ5 =
l6 − l7

l5
− (l2 − l8) cos θ2

l5
(40a)

sin θ5 =
l9 + ∆y

l5
− (l2 − l8) sin θ2

l5
. (40b)

Substituting Equation (40) into Equation (38) and using the definition of the tangent of half
of the angle θ2 (t2 = tan

(
θ2
2

)
) leads to a quadratic equation in t2. Solving this equation

leads to two solutions for t2, which then leads to two solutions for θ2 as a function of ∆y:

θ2 = 2 arctan(t2) (41)

when θ2 is known, using Equation (34a), ∆x can be found as a function of ∆y, and subse-
quently as a function of the input angle θ.

3.5. Wrist Jacobian Matrices (Method I)

The time derivative of Equation (12) leads to

sT
i ṅ + nT ṡi = 0. (42)

Also, by definition, si = ui + wi, hence the time derivative of si leads to

ṡi = ẇi = η̇ihi (43)

in which

h1 =

 −l sin η1
0

l cos η1

 (44a)

h2 =

 0
−l sin η2
l cos η2

. (44b)

Also, the time derivative of vector n leads to

ṅ =

 δ̇ cos δ cos σ− σ̇ sin δ sin σ
δ̇ cos δ sin σ + σ̇ sin δ cos σ

−δ̇ sin δ

 = NΨ̇ (45)
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in which Ψ̇ =

[
δ̇
σ̇

]
and N is

N =

 cos δ cos σ − sin δ sin σ
cos δ sin σ sin δ cos σ
− sin δ 0

 =
[

n1 n2
]
. (46)

By substituting Equations (43) and (45) into Equation (42), one can obtain

sT
i NΨ̇ = −η̇inThi, i = 1, 2. (47)

Using Equation (46), Equation (47) can be rewritten as follows: sT
1 n1 sT

1 n2

sT
2 n1 sT

2 n2

Ψ̇ =

 −nTh1 0

0 −nTh2

η̇ (48)

in which η̇ =

[
η̇1
η̇2

]
. From Equation (48), the Jacobian matrices can be derived as follows:

J =

 sT
1 n1 sT

1 n2

sT
2 n1 sT

2 n2

K =

 −nTh1 0

0 −nTh2

 (49)

3.6. Wrist Jacobian Matrices (Method II)

The Jacobian matrices can be derived using another method. The time derivative of
Equation (4b) leads to

Q̇e = ṘC (50)

and the end-effector angular velocity can be found as follows:

Ωe = Q̇eQT
e = ṘCQT

e . (51)

By substituting Equation (4a), into Equation (51) and using the fact that the reflection matrix
is a symmetric matrix, i.e., RT = R, one can obtain

Ωe = Q̇eQT
e = ṘCCTR (52)

and also CCT = 1, in which 1 is the 3× 3 identity matrix. Hence,

Ωe = Q̇eQT
e = ṘR. (53)

Also, from Equation (1), one can multiply both sides of the equation by n to obtain

nnTn =
1− R

2
n =

n
2
− Rn

2
(54)

and from the fact that nTn = 1, Equation (54) yields

n = −Rn. (55)

The time derivative of Equation (55) leads to

ṅ = −Ṙn− Rṅ (56)

and using Equation (1), Equation (56) leads to

2(1− nnT)ṅ = −Ṙn. (57)
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Using the definition of vector n and Equation (45), it can be found that nTṅ = 0. Hence,
Equation (57) leads to

ṅ = −1
2

Ṙn (58)

and by substituting Equation (55) into Equation (58), one can obtain:

ṅ = −1
2

Ṙ(−Rn) (59)

which, using Equation (53), can be written as

ṅ =
1
2

Ωen =
1
2

ωe × n (60)

in which ωe is the angular velocity of the end-effector. Substituting Equations (43) and (60)
into Equation (42) leads to

1
2

sT
i (ωe × n) =

1
2
(n× si)

Tωe = −η̇inThi , i = 1, 2 (61)

and the Jacobian matrices can be derived from Equation (61) as follows:

J′ =

 (n× s1)
T

(n× s2)
T

K =

 −nTh1 0

0 −nTh2

 (62)

in which J′ is a 2× 3 matrix. The end-effector angular velocity matrix Ωe can be derived
using Equation (53) as follows:

Ωe =

 0 −2σ̇ sin2 δ −2σ̇ sin σ sin δ cos δ + 2δ̇ cos σ

2σ̇ sin2 δ 0 2σ̇ cos σ sin δ cos δ + 2δ̇ sin σ
2σ̇ sin σ sin δ cos δ− 2δ̇ cos σ −2σ̇ cos σ sin δ cos δ− 2δ̇ sin σ 0

. (63)

The end-effector angular velocity ωe can be derived using Equation (63) as follows:

ωe = vect(Ωe) =

 −2σ̇ cos σ sin δ cos δ− 2δ̇ sin σ
−2σ̇ sin σ sin δ cos δ + 2δ̇ cos σ

2σ̇ sin2 δ

 (64)

and then, the end-effector angular velocity ωe can be written as follows:

ωe = MΨ̇ (65)

in which

M =

 −2 sin δ −2 cos σ sin δ cos δ
2 cos σ −2 sin σ sin δ cos δ

0 2 sin2 δ

. (66)

Matrix M can be rewritten using vector components n1 and n2 from matrix N, which is
defined in Equation (46) as follows:

M = 2
[ 1

sin δ n2 − sin δn1
]
. (67)

Substituting Equation (67) into Equation (65) and then into Equation (61) leads to

(n× si)
T[ 1

sin δ n2 − sin δn1
]
Ψ̇ = −η̇inThi, i = 1, 2. (68)
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The expansion of Equation (68) yields 1
sin δ sT

1 (n2 × n) − sin δsT
1 (n1 × n)

1
sin δ sT

2 (n2 × n) − sin δsT
2 (n1 × n)

Ψ̇ =

 −nTh1 0

0 −nTh2

η̇. (69)

Also, from the definition of vectors n1, n2, and n one can obtain

n1 × n =

 sin σ
− cos σ

0

 = − 1
sin δ

n2 (70a)

n2 × n =

 sin δ cos δ cos σ
sin δ cos δ sin σ

− sin2 δ

 = sin δn1. (70b)

Substituting Equation (70) into Equation (69) leads to sT
1 n1 sT

1 n2

sT
2 n1 sT

2 n2

Ψ̇ =

 −nTh1 0

0 −nTh2

η̇ (71)

which is the same equation as Equation (48).

4. Singularity Analysis (Wrist)

The workspace of parallel robots is limited by the presence of singularities, which can
be classified into two types: type I and type II. While scaling can increase the translational
workspace, it has no effect on the rotational workspace.

A type I singularity corresponds to a singularity of matrix K in Equation (49), that is,
when det(K) = 0. In this mechanism, this type of singularity occurs when vectors n and hi
(i = 1, 2) become perpendicular.

A type II singularity is associated with a singularity in matrix J as defined in Equation (49).
Such a singularity arises when det(J) = 0. The calculation of the determinant of matrix J is
outlined as follows:

det(J) = sT
1 n1sT

2 n2 − sT
1 n2sT

2 n1 = sT
1 Bs2 (72)

in which B = n1nT
2 − n2nT

1 . From the definition of n1 and n2 in Equation (46), matrix B
can be derived as follows:

B =

 0 sin δ cos δ −sin2 δ sin σ

− sin δ cos δ 0 sin2 δ cos σ

sin2 δ sin σ −sin2 δ cos σ 0

 . (73)

It can be observed from Equation (73) that matrix B is skew-symmetric; therefore, Equation (72)
can be rewritten as follows:

det(J) = s1
T(b× s2) = bT(s2 × s1) (74)

where b = vect(B) =

 −sin2 δ cos σ

−sin2 δ sin σ
− sin δ cos δ

 = − sin δ

 sin δ cos σ
sin δ sin σ

cos δ

 = − sin δn. Hence,

Equation (74) can be rewritten as

det(J) = − sin δnT(s2 × s1). (75)

According to Equation (75), it is evident that the determinant becomes zero when
vectors n, s1, and s2 align in a co-planar configuration or when δ = 0◦. In such scenarios,
a type II singularity is encountered. The examination of the mathematical conditions for
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these singular points will be a central focus of the workspace analysis, with the objective of
ascertaining the presence of singularities within the workspace.

5. Workspace Analysis (Wrist)

The wrist rotational workspace can be found using the inverse kinematics solution
derived in Equation (18). In fact, it can be said that the rotational workspace is the
domain of Equation (18). A set of (δ, σ) is in the domain of Equation (18) if it satisfies
the following conditions:

∆i = b2
i − 4aici ≥ 0, i = 1, 2. (76)

Substituting the coefficients of Equation (17) into Equation (76) leads to

∆1 = 4d2(4 sin2 δ cos2 σ(β2 − α2) + 4α sin δ cos σ + 4β2 cos2 δ− 1) ≥ 0 (77a)

∆2 = 4d2(4 sin2 δ sin2 σ(β2 − α2) + 4α sin δ sin σ + 4β2 cos2 δ− 1) ≥ 0 (77b)

Equation (77) suggests that the UU leg’s rotational workspace is only dependent
on the scaling parameters α and β, and is independent from the UU leg’s length d. In
other words, the workspace is scale-independent, which makes sense for a rotational
mechanism. Moreover, if β > α, the first terms of Equations (77a) and (77b) will be positive.
Additionally, if α is chosen to be small (i.e., the legs’ base attachment points are close to
the centre U–U link), the impact of the third term (4α sin δ cos σ or 4α sin δ sin σ) will be
negligible. Conversely, selecting a large value for β will result in the last term (4β2 cos2 δ− 1)
being positive for a wider range of δ. This suggests that if β tends towards infinity, then
δ will approach π

2 . Therefore, the maximum workspace of the UU leg can be expressed
as −π

2 < δ < π
2 and −π < σ < π, which is equivalent to a full-sphere workspace for the

end-effector. However, in reality, the value of β cannot be arbitrarily large, as the overall
footprint of the mechanism should remain small.

Our objective is to find a suitable combination of α and β that allows for a tilt angle
greater than 90◦ while keeping the total footprint small. Through trial and error, we have
determined that setting α and β to 0.22 and 0.75, respectively, yields a tilt angle of 94◦.
Additionally, by setting d to 162 mm, we can satisfy the required footprint constraint.

As can be seen in Figure 4, angle δ can reach approximately 47◦, which means that the
end-effector can tilt approximately 94◦. Furthermore, an evaluation of the conditions for
type I and type II singularities indicates that the entire workspace is free from singularities.

Figure 4. The rotational workspace of the middle UU leg for α = 0.22, β = 0.75, and d = 162 mm.
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For the selected coefficients α and β, the defined coefficient ζ in Equation (29) is plotted
versus angles η1 and η2.

As depicted in Figure 5, it is evident that ζ remains consistently non-positive through-
out the entire workspace. This observation strongly affirms that the chosen coefficients,
namely, α = 0.22 and β = 0.75, successfully adhere to the essential condition defined in
Section 3.2, which dictates that k4

2 − 4k2k6 ≥ 0.

Figure 5. The value of ζ versus actuator angles η1 and η2 for α = 0.22, β = 0.75, and d = 162 mm,
The colour alters based on the parameter’s value.

As explained in Section 3.2, the other concern is the positiveness of (T2)1 and (T2)2.

The solutions (T2)j =
−k4±
√

k4
2−4k2k6

2k6
depend not only on the values of k2 and k6, but also

on the value of k4. It is k4
2 − 4k2k6, that determines the nature of the solutions. When

k4
2 − 4k2k6 ≥ 0, the solutions are real and can be positive or negative depending on the

values of k4 and k6. In our specific case, it is worth noting that k4 is a very large negative
value, which is why it makes the solutions positive. This extreme negative value of k4
contributes significantly to the positiveness of the solutions, even with positive values of k2
and k6. This is precisely why we have included specific solutions for the selected parameter
values of α = 0.22, β = 0.75, and d = 162 mm.

As can be seen from Figure 6, for these parameter values, both solutions, (T2)1 and
(T2)2, are indeed positive, and k4 is a very large negative number that contributes signif-
icantly to the positiveness of the solutions. We have included these results to illustrate
that under certain conditions, real and positive solutions are attainable, even with positive
values of k2 and k6.
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(a) (T2)1 versus η1 and η2 (b) (T2)2 versus η1 and η2

(c) k4 versus η1 and η2

Figure 6. Visualisation of (T2)1 and (T2)2 for the chosen coefficients α = 0.22, β = 0.75, and
d = 162 mm, highlighting the effect of k4, The colour alters based on the parameter’s value.

6. Simulation
6.1. Inverse Kinematics Verification

In this section, the inverse kinematics solution is verified using the MSC Adams
software (https://hexagon.com/company/divisions/manufacturing-intelligence/msc-
software). The inverse kinematic analytical model provides a mathematical description
of the wrist’s joint angles required to achieve a specific orientation. The accuracy of this
model is crucial for a precise control of the robot’s motion. Therefore, comparing the results
of the analytical model with those obtained from a simulation is essential to validate the
model’s correctness. To verify the inverse kinematics model, a special trajectory is defined
for the end-effector of the wrist and the results of the analytical model are compared to
those obtained with the MSC Adams software. The trajectory that is defined for the UU leg
is as follows: 

σ = π
5 t

0 < t < 60 s
δ = π

240 t

(78)

where t is the time.
Figure 7 shows the actuated joint coordinates computed using the inverse kinematic

analytical model and the results obtained from the MSC Adams simulation. The comparison
between the analytical model and the simulation results shows a very close agreement.
To quantify the discrepancy between the two sets of results, the root mean square error

https://hexagon.com/company/divisions/manufacturing-intelligence/msc-software
https://hexagon.com/company/divisions/manufacturing-intelligence/msc-software
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(RMSE) was calculated. The obtained RMSE values for the first and second actuated joints
are 1.8× 10−3 and 3.6× 10−3, respectively, which confirms the accuracy of the model. The
small RMSE values indicate that the analytical model can accurately predict the joint angles,
and the simulation results provide a reliable validation of the model’s correctness.

(a) (b)

Figure 7. (a) First actuated joint angle η1 and (b) second actuated joint angle η2 using inverse
kinematic analytical model (circles) and results obtained from MSC Adams (solid line).

6.2. Forward Kinematics Verification

In order to verify the forward kinematics model, actuator inputs η1 and η2 are defined
as follows: 

η1 = −1.03t sin( 2π
10 t) + 42.02

0 < t < 50 s
η2 = 1.03t cos( 2π

10 t) + 42.02

(79)

where t is the time, and angles η1 and η2 are in degrees. The calculated results for the tilt
angle δ and azimuth angle σ are computed using the analytical model and MSC Adams.

Figure 8 shows the comparison between the orientation angles obtained from the
forward kinematics model and the simulation results. The two sets of results are in
good agreement, indicating the correctness of the forward kinematics model. The root
mean square error (RMSE) between the two sets of results was calculated to quantify
the discrepancy. The obtained RMSE values for the tilt angle δ and azimuth angle σ
are 3.4× 10−3 and 8.5× 10−2, respectively, which confirms the accuracy of the forward
kinematics model.

(a) (b)

Figure 8. The (a) tilt angle δ, and (b) azimuth angle σ, using forward kinematic analytical model
(circles) and results obtained from MSC Adams (solid line).
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7. Comparison with the State of the Art

The study in [32], depicted in Figure 9a, is an over-constrained 2-DOF wrist mech-
anism. In this paper, a 3-DOF wrist-gripper assembly is proposed with a novel kine-
matic architecture, as illustrated in Figure 9b. The kinematic architecture used in [32]
is 2RRRR − RRRR − 1UU, and this one is 2RSR − RSR − 1RUUR, a design distinctly
different from the former. The RUUR leg is used as the motion input of the lead screw to
open and close the gripper.

UR

(a) (b)

Figure 9. (a) Proposed architecture in the study in [32] (2RRRR—RRRR—1UU). (b) Proposed
architecture of the current wrist-gripper assembly (2RSR—RSR—1RUUR).

Because of the different kinematic architectures, the mathematical equations govern-
ing the inverse and forward kinematics differ significantly. Consequently, the derived
mathematical conditions for type I and type II singularities also exhibit marked differences.

The prior study, as presented in [32], exclusively features a wrist mechanism. By
contrast, our design incorporates a versatile gripper suitable for pick-and-place applications.
Furthermore, the new design offers a distinct advantage: by integrating the gripper in
parallel with the wrist, it obviates the need for a dedicated actuator at the end-effector
to control the gripper. This not only reduces the end-effector’s mass and inertia but also
negates the necessity for additional electronics at the end-effector.

In [32], the end-effector could cover a full hemisphere. In the new mechanism, the
end-effector can theoretically encompass a full sphere. With the dimensions selected in the
current design, it can achieve up to a 94◦ tilt angle, enabling coverage beyond a hemisphere
and expanding the workspace.

Table 1 presents several state-of-the-art wrist-gripper assemblies. The current design
offers a larger, singularity-free workspace as a primary advantage, complemented by the
inclusion of a parallel gripper, further enhancing its functionality.

Table 1. State-of-the-art wrist (wrist-gripper assembly) specifications.

Reference DOFs Range of Motion (◦) Parallel Gripper

Sone et al. [35] 2 Tilt = 90, Azimuth = ±360 N

Ogata et al. [36] 2 Pitch = ±80, Yaw = ±65 N
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Table 1. Cont.

Reference DOFs Range of Motion (◦)
Parallel
Gripper

Ueda et al. [8] 2 Pitch = ±75, Yaw = ±120 N

Cammarata [10] 2 Tilt = 90, Azimuth = ±90 N

Ghaedrahmati and Gosselin [32] 2 Tilt = 90, Azimuth = ±360 N

OMNI Wrist III [19] 2 Tilt = 90, Azimuth = ±360 N

Kim et al. [37] 3 Tilt = 90, Azimuth = ±360, Pitch = ±360 N

Takeda et al. [38] 3 Tilt = 66− 74, Azimuth = 0− 360, Roll = −40–0 N

Bazman et al. [39] 4 Pitch = ±90, Yaw = ±90, Roll = ±360 Y

8. Conclusions

The proposed spatial wrist-gripper parallel robot is a mechanism designed for pre-
cision manipulation of objects in industrial applications. The mechanism has a compact
design, consisting of a zero-torsion 2-DOF equal spherical pure rotations (ESPRs) wrist and
a 1-DOF gripper. The wrist is connected to the base of the mechanism via 2RSR—RSR legs
and one RUUR leg.

The gripper is operated by the rotational output of the RUUR leg, which is used as the
motion input of the lead screw to open and close the gripper. The mechanism has a total of
three degrees of freedom, which makes it suitable for applications that require precise and
accurate manipulation of objects in a limited workspace.

The inverse and forward kinematics of the wrist and gripper were derived using a ge-
ometrical approach, resulting in compact parametric closed-form solutions. The kinematic
model was used to perform a singularity analysis, which revealed that with proper design
parameters, a large and singularity-free range of motion can be achieved.

One of the primary limitations of the orientation workspace of parallel robots is the
existence of singularities. However, the geometric conditions for the type I and II singulari-
ties of the proposed mechanism were derived and it is shown that with a proper choice of
design parameters, a large singularity-free workspace can be achieved. Furthermore, this
can be accomplished while keeping the total footprint of the mechanism small. This is an
important finding as it shows that the mechanism can operate smoothly without encountering
singularities, which could potentially damage the mechanism or its environment.

To verify the accuracy of the inverse kinematics solution, the authors used the MSC
Adams software to simulate a special trajectory for the end-effector of the wrist. The results
of the analytical model were compared to the results from the simulation, and the root
mean square error (RMSE) was used to measure the errors between the two results. The
small RMSE values of 1.8× 10−3 and 3.6× 10−3 for the first and second actuated joints,
respectively, indicate that the model is highly accurate and validates the correctness of the
proposed mechanism.

In order to verify the forward kinematics model’s accuracy, a simulation study using the
MSC Adams software was performed. The comparison between the analytical model and MSC
Adams simulation results demonstrated a good agreement between the two sets of results. The
root mean square error values for the tilt angle δ and azimuth angle σ were 3.4× 10−3 and
8.5× 10−2, respectively, which confirm the accuracy of the forward kinematics model. These
findings provide confidence in the ability of the proposed robot to precisely manipulate objects
in industrial applications.

Overall, the proposed spatial wrist-gripper parallel robot is a promising mechanism
for precision manipulation of objects in industrial applications. With the ability to tilt up to
94◦ and undergo an azimuth angle of 360◦, this robot is capable of covering a wide range of
orientations, effectively enabling it to operate across more than half of a sphere. Its compact
design, singularity-free range of motion, and high accuracy make it a useful tool for various
tasks that require high precision and accuracy in object manipulation.
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PMs Parallel manipulators
SPMs Spherical parallel manipulators
FCOR Fixed centre of rotation
ISA Instantaneous screw axis
RPM Rotational parallel manipulators
ESPRs Equal spherical pure rotations
FCCPs Freedom and complementary constraint patterns
MIS Minimally invasive surgery
RMSE Root mean square error
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