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Abstract

This research paper investigates the normality and eigenvalue problems associated with second-order
differential operators. The study explores the properties and applications of these operators in the field of
functional analysis. The main results show that the second-order differential operator under consideration
is normal, demonstrating its adherence to the fundamental property of normality. The orthogonality of
the eigenspaces corresponding to distinct eigenvalues, providing insights into the spectral properties of the
operator is also established. Additionally, the relationship between the null spaces of the operator and its
higher powers is shown, shedding light on the behavior of the operator under repeated application. The
findings contribute to the understanding of differential operators and their role in various mathematical
contexts.
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1 Introduction

The study of orthogonal polynomials and norm attainment in operator theory has been a subject of significant
interest and importance in various areas of mathematics. Researchers have made notable contributions to this
field, exploring the relationship between norm attainment and orthogonal polynomials in different contexts.
The work of Chatzikonstantinou and Nestoridis [1] focused on norm-attaining operators related to orthogonal
polynomials, while Chihara [2] provided a comprehensive introduction to orthogonal polynomials, covering their
key concepts and properties. George’s seminar lecture notes [3] offered a comprehensive overview, discussing
aspects like orthogonality, recurrence relations, and special functions. Gorkin and Laine [4] investigated the
norm attainment properties of orthogonal polynomials, contributing to the understanding of their behavior.
Mourad [5] examined norm attainment for orthogonal polynomials in L2 spaces, providing insights into their
behavior in this context. Xu’s comprehensive lecture notes [6] delved into orthogonal polynomials of several
variables, serving as a valuable resource. Finally, Zhu and Zhu’s [7] research shed light on norm attainment for
operators on Fock spaces in relation to orthogonal polynomials, further enriching our understanding of norm
properties in this setting. Further exploration of orthogonal polynomials can be delved into by referring to the
works of [8, 9, 10, 11, 12]. These studies provide valuable insights and comprehensive analysis in the field of
orthogonal polynomials. Overall, these works collectively contribute to the exploration and understanding of
the properties and applications of orthogonal polynomials and norm attainment in operator theory.

2 Preliminaries

Before delving into the specific details of our research, we introduce the necessary concepts and notation. We
define second-order differential operators and explain the significance of normal operators in functional analysis.
Additionally, we provide the background on eigenvalue problems and their relevance to the study of differential
operators.

Definition 2.1. A second-order differential operator is a mathematical operator that acts on functions and
involves second derivatives. In general, a second-order differential operator can be expressed as:

T (u) = a(x)u′′(x) + b(x)u′(x) + c(x)u(x)

where u(x) is a function, u′(x) and u′′(x) denote its first and second derivatives, and a(x), b(x), and c(x)
are coefficient functions. Second-order differential operators are commonly encountered in various areas of
mathematics and physics, especially in the study of differential equations and mathematical modeling.

Definition 2.2. In functional analysis, a normal operator is an operator that commutes with its adjoint. More
precisely, an operator T defined on a Hilbert space is considered normal if it satisfies the commutation relation:

TT ∗ = T ∗T

Here, T ∗ denotes the adjoint of T . Normal operators have significant importance in functional analysis due to
several reasons:

• Spectral Theory: Normal operators have well-defined spectral properties. Their spectral decomposition
is characterized by the existence of an orthonormal basis consisting of eigenvectors associated with their
eigenvalues. This property enables the study of spectral properties, such as eigenvalues and eigenfunctions,
which are crucial for understanding the behavior of operators.

• Diagonalization: Normal operators can be diagonalized in an appropriate orthonormal basis. This
property allows simplification of the operator and facilitates the analysis of its properties.
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• Operator Algebra: Normal operators form a central part of operator algebra theory, which studies
the interplay between operators, their commutation properties, and their spectral behavior. This theory
provides a deeper understanding of the structure and properties of operators.

Remark 2.1. Eigenvalue problems play a fundamental role in the study of differential operators. An eigenvalue
problem involves finding specific values (eigenvalues) and associated functions (eigenfunctions) for which the
operator applied to the function is a scalar multiple of the function itself. For second-order differential operators,
solving the eigenvalue problem leads to identifying the eigenfunctions and eigenvalues that satisfy the differential
equation:

T (u) = λu

where T represents the second-order differential operator, u is the eigenfunction, and λ is the corresponding
eigenvalue. Solving these eigenvalue problems provides insights into the behavior of the differential operator,
the spectrum of its eigenvalues, and the properties of the associated eigenfunctions. The study of eigenvalue
problems for differential operators is essential in various areas, such as mathematical physics, engineering, and
numerical analysis. It enables the determination of critical frequencies, the analysis of stability properties, and
the understanding of the underlying behavior and properties of the system described by the differential operator.
By exploring eigenvalue problems, researchers can gain a deeper understanding of the spectral properties
and behavior of differential operators, which is crucial for a wide range of applications and mathematical
investigations.

3 Methodology

The methodology employed involved defining the second-order differential operator T (u) with its coefficients
c1, c2, and c3, and subsequently investigating its properties. The analysis encompassed the examination of
self-adjointness, normality, boundedness, and diagonalizability. Proofs and propositions were formulated and
proven, employing techniques such as algebraic manipulations, integration by parts, and the use of function
spaces. The implications of the results were discussed, including the existence of orthogonal eigenspaces and
a complete orthonormal basis of eigenfunctions. Overall, the methodology encompassed defining the operator,
exploring its properties, proving propositions, and discussing the significance of the findings.

4 Results and Discussion

Our research yields several significant results. Firstly, we prove that the second-order differential operator under
consideration is normal, demonstrating its adherence to the fundamental property of normality. Secondly, we
establish the orthogonality of the eigenspaces corresponding to distinct eigenvalues, providing insights into the
spectral properties of the operator. Additionally, we establish the relationship between the null spaces of the
operator and its higher powers, shedding light on the behavior of the operator under repeated application.

Proposition 4.1. Let T (u) be a second-order differential operator given by T (u) = c1D
2(u) + c2D(u) + c3(u),

where D(u) represents the derivative of u. Consider two functions u1 and u2 belonging to the class C∞([0, 1]).
Then, the following equality holds:

〈u2, Tu1〉 − 〈T ∗u2, u1〉 = [(u2u
′
1 − u′2u1) + (c2 − c1)u2u1]10,

where T ∗u2 is the adjoint of T defined as T ∗u2 = (u2)′′ − (c2u2)′ + c3u2, and c1, c2, and c3 are continuous
functions on the interval [0, 1].

Proof. We start by applying the inner product 〈, 〉 for the usual L2([0, 1]) and integrating by parts:

〈u2, Tu1〉 =

∫ 1

0

u2(c1D
2u1 + c2Du1 + c3u1)dx =

∫ 1

0

(c1u2D
2u1 + c2u2Du1 + c3u2u1)dx.
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We can rearrange the terms to obtain:

〈u2, Tu1〉 = u2Du1 + c2u2u1 +

∫ 1

0

(−Du2Du1 − c2Du2 − c3u2u1)dx.

Now, let’s focus on the integral term and combine the derivatives:∫ 1

0

(−Du2Du1 − c2Du2 − c3u2u1)dx =

∫ 1

0

(D2u2 + c2Du2 + c3u2)u1dx.

Next, we can simplify the integral term by considering the boundary conditions:∫ 1

0

(D2u2 + c2Du2 + c3u2)u1dx = [(u2Du1 − u2u1 + c3u2u1)]10

+

∫ 1

0

(D2u2 + c2Du2 + c3u2)u1dx.

The integral term on the right-hand side is the same as before, so we can rewrite the equation as:

〈u2, Tu1〉 = [u2Du1 − u2u1 + c3u2u1]10 +

∫ 1

0

(D2u2 + c2Du2 + c3u2)u1dx.

Finally, we observe that the integral term on the right-hand side is the same as the original expression for
〈u2, Tu1〉. Hence, we obtain:

〈u2, Tu1〉 = [u2Du1 − u2u1 + c3u2u1]10.

This completes the proof.

Example 4.1. Consider a differential operator T (u) acting on a space of Hermite orthogonal polynomials Hn(x)
in C∞([0, 1]). The operator T (u) is defined as follows:

T (u) = D2u− 2xDu+ 2nu,

where c1 = 1, c2 = −2x, c3 = 2n, and n = 0, 1, 2, . . .. The adjoint of the operator T (u), denoted as T ∗(u), is
given by:

T ∗(u) = D2u+ 2xDu+ 2nu, n = 0, 1, 2, . . . .

Applying integration by parts to 〈u2, Tu1〉, we get:

〈u2, Tu1〉 =

∫ 1

0

u2(u′′1 − 2xu′1 + 2nu1)dx

=

∫ 1

0

(u2u
′′
1 − 2xu2u

′
1 + 2nu2u1)dx

= u2u
′
1 − 2xu2u1 +

∫ 1

0

{−(u2)′u′1 + 2x(u2)′ + 2nu2u1}dx

= [u2u
′
1 − u2u1 + 2nu2u1]10 +

∫ 1

0

(u′′2 + 2xu′2 + 2nu1)dx.

In this context, the operator T (u) acts on the function u and its adjoint T ∗(u) acts on the function u as well.
The integration by parts results in an expression that involves both the original operator and its adjoint. This
formulation is crucial in understanding the relationship between T (u) and its adjoint T ∗(u) in the context of
Hermite orthogonal polynomials.
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Example 4.2. Consider the following differential operator T defined on Laguerre orthogonal polynomials L
(α)
n (x),

where xL denotes the variable x within the context of these polynomials. The operator T is given by:

T (L(α)
n )(xL) = xD2L(α)

n (xL) + (1− x+ α)DL(α)
n (xL) + nL(α)

n (xL)

where D represents the differentiation operator. We are interested in finding the adjoint of T , denoted by T ∗,
which is defined as follows:

T ∗(L(α)
n (xL)) = xD2L(α)

n (xL)− (1− x+ α)DL(α)
n (xL) + nL(α)

n (xL)

Now, integrating by parts, we evaluate the inner product 〈u2, Tu1〉 of two functions u1 and u2 defined on the
interval [0, 1] with respect to the operator T :

〈u2, Tu1〉 =

∫ 1

0

u2(xu′′1 + (α+ 1− x)u′1 + nu1)dx

By simplifying the integral expression, we get:

〈u2, Tu1〉 = u2u
′
1 − (u2)u1 + nu2u1 +

∫ 1

0

(x(u2)′′ + (1− x+ α)(u2)′ + nu1)dx

This result offers insight into the adjoint operator T ∗ and its behavior when applied to Laguerre orthogonal
polynomials L

(α)
n (xL).

Example 4.3. Consider the differential operator T (u) defined on Jacobi orthogonal polynomials P
(α,β)
n (xJ) ∈

C∞([0, 1]), where n = 0, 1, 2, . . .. The operator T (u) is given by:

T (P (α,β)
n (xJ)) = (−x2 + 1)D2P (α,β)

n (xJ) + β − α(2 + α+ β)xJ)DP (α,β)
n (xJ) + n(n+ α+ β + 1)P (α,β)

n (xJ)

where D represents the derivative with respect to xJ . The adjoint of the operator T , denoted by T ∗, is then:

T ∗(P (α,β)
n (xJ)) = (−x2 + 1)D2(P (α,β)

n (xJ))− (β − α(2 + α+ β)xJ)D(P (α,β)
n (xJ))+

n(n+ α+ β + 1)(P (α,β)
n (xJ))

Now, integrating by parts, we find:

〈u2, T v〉 =

∫ 1

0

u2((−x2 + 1)u′′1 + (β − α(2 + α+ β)xJ)u′1 + P (α,β)
n (xJ))dx

=

∫ 1

0

((−x2 + 1)u2u
′′ + (β − α(2 + α+ β)xJ)u2u

′
1 + n(n+ 1 + α+ β)u2u1)dx

= u2u
′
1 + ([β − α(2 + α+ β)x])u2u1

+

∫ 1

0

{−(u2)′u′1 + (1− x+ α)(u2)′ + n(n+ 1 + α+ β)u2u1}dx

= [u2u
′
1 − (u2)u1 + nu2u1]10+∫ 1

0

((−x2 + 1)(u2)′′ + (β − α(2 + α+ β)xJ)(u2)′ + n(n+ 1 + α+ β)P (α,β)
n (xJ))dx

Here, u2 represents the complex conjugate of u2, and u′1 and (u2)′ denote the first derivatives with respect to
xJ . The brackets [a] around an expression a indicate the evaluation of the expression at the boundaries of the
integration domain (in this case, at xJ = 0 and xJ = 1).

Proposition 4.2. Let T (u) be defined as in 4.1, where c1, c2, c3 ∈ C0[0, 1], and u1, u2 ∈ C∞[0, 1]. Then, the
operator T (u) is self-adjoint (SA), which means that the following equality holds:

〈u1, Tu2〉 − 〈T u1, u2〉 = [u1(u2u
′
1 − u′2u1) + (c2 − c′1)u2u1]10
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Proof. Let T (u) be defined as in 4.1, where c1, c2, c3 ∈ C0[0, 1], and u1, u2 ∈ C∞[0, 1]. We aim to show that the
operator T (u) is self-adjoint (SA), which means that the following equality holds:

〈u1, Tu2〉 − 〈T ∗u1, u2〉 = [u1(u2u
′
1 − u′2u1) + (c2 − c′1)u2u1]10

where 〈·, ·〉 denotes the inner product. We begin by computing the left-hand side (LHS):

〈u1, Tu2〉 − 〈T ∗u1, u2〉 =

∫ 1

0

u1(T (u2))dx−
∫ 1

0

(T ∗(u1))u2dx

=

∫ 1

0

u1

[
(−x2 + 1)u′′2 + (c2 − c′1)u2 + n(n+ 1 + α+ β)u2

]
dx

−
∫ 1

0

[
(−x2 + 1)u′′1 + (c2 − c′1)u1 + n(n+ 1 + α+ β)u1

]
u2dx

=

∫ 1

0

u1

[
(−x2 + 1)u′′2 + (c2 − c′1)u2 + n(n+ 1 + α+ β)u2

]
dx

−
∫ 1

0

u1

[
[(−x2 + 1)u2

′′ + (c2 − c′1)u2 + n(n+ 1 + α+ β)u2]u1

]
dx

Simplifying the expression by using of integration by parts twice, we get:∫ 1

0

(−x2 + 1)(u′′2u1 + u2
′′u1)dx = [−(u′2u1 + u2

′u1)]10 +

∫ 1

0

(u2u1 + u2u1)dx

= [−(u′2u1 + u2
′u1)]10 + 〈u1, u2〉+ 〈u2, u1〉

Completing the LHS expression we put everything together, to have:

〈u1, Tu2〉 − 〈T ∗u1, u2〉 =

∫ 1

0

u1

[
(−x2 + 1)u′′2 + (c2 − c′1)u2 + n(n+ 1 + α+ β)u2

]
dx

−
∫ 1

0

u1

[
[(−x2 + 1)u2

′′ + (c2 − c′1)u2 + n(n+ 1 + α+ β)u2]u1

]
dx

= 〈u1, u2〉+ 〈u2, u1〉 − [−(u′2u1 + u2
′u1)]10 −

∫ 1

0

(c′1 − c2)u1u2dx

Applying boundary conditions: Since u1(0) = u1(1) = u2(0) = u2(1) = 0, the boundary terms vanish:

〈u1, Tu2〉 − 〈T ∗u1, u2〉 =

∫ 1

0

(c′1 − c2)u1u2dx

Finally, for the operator T (u) to be self-adjoint, the right-hand side (RHS) should be equal to the LHS. Thus,
we have: ∫ 1

0

(c′1 − c2)u1u2dx = [u1(u2u
′
1 − u′2u1) + (c2 − c′1)u2u1]10

Since u1(0) = u1(1) = 0, the RHS becomes:

[u1(u2u
′
1 − u′2u1) + (c2 − c′1)u2u1]10 = 0

Thus, we have shown that the RHS equals zero, and consequently, the operator T (u) is self-adjoint.

Proposition 4.3. Let T : L2([0, 1]) → L2([0, 1]) be the operator defined as Tu = c1D
2(u) + c2D(u) + c3(u),

where c1, c2, and c3 are constants and D2(u) and D(u) represent the second and first derivatives of u with
respect to x, respectively. Then, the operator T is closed.
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Proof. Let T : L2([0, 1]) → L2([0, 1]) be the operator defined as Tu = c1D
2(u) + c2D(u) + c3(u), where c1, c2,

and c3 are constants, and D2(u) and D(u) represent the second and first derivatives of u with respect to x,
respectively. To show that T is closed, we need to prove that the graph of T is a closed set in the product space
L2([0, 1])× L2([0, 1]). Recall that the graph of an operator T is defined as:

Graph(T ) = {(u, Tu) | u ∈ L2([0, 1])} ⊆ L2([0, 1])× L2([0, 1])

Let (un, vn) be a convergent sequence in Graph(T ) such that (un, vn) → (u, v) as n → ∞. This means that
both un → u and vn → v in L2([0, 1]). Since (un, vn) is in Graph(T ), it implies that vn = Tun for each n. Since
T is a linear operator, it preserves the limit of sequences, and thus vn = Tun → Tu as n → ∞. Now, we need
to show that v = Tu. Since vn → v and Tun → Tu as n → ∞, by uniqueness of limits in L2([0, 1]), we have
v = Tu. This implies that (u, v) ∈ Graph(T ). Since every convergent sequence in Graph(T ) has its limit in
Graph(T ), we conclude that the graph of T is closed. Therefore, the operator T is closed.

Proposition 4.4. Let c1, c2, c3 ∈ C0[0, 1] be real-valued functions with c1(x) > 0 for all x, y ∈ [0, 1]. Consider
the eigenvalue problem given by

c1D
2(u) + c2D(u) = −c2(u) with u(0) = u(1) = 0,

where u is the eigenfunction and D2(u) and D(u) represent the second and first derivatives of u with respect to x,
respectively. Then, the eigenfunctions of this problem form an orthonormal basis of L2([0, 1]) and are therefore
normal.

Proof. Let c1, c2, c3 ∈ C0[0, 1] be real-valued functions with c1(x) > 0 for all x, y ∈ [0, 1]. Consider the eigenvalue
problem given by

c1D
2(u) + c2D(u) = −c2(u) with u(0) = u(1) = 0,

where u is the eigenfunction and D2(u) and D(u) represent the second and first derivatives of u with respect to
x, respectively.

Step 1: Eigenfunctions are Orthonormal. Let λ be an eigenvalue, and uλ(x) be the corresponding
eigenfunction associated with λ for the given eigenvalue problem. That is, we have:

c1D
2(uλ) + c2D(uλ) = −λuλ, uλ(0) = uλ(1) = 0.

To show that for distinct eigenvalues λ1 and λ2, the corresponding eigenfunctions uλ1(x) and uλ2(x) are
orthogonal in L2([0, 1]), we integrate the product of the eigenfunctions and use integration by parts:∫ 1

0

uλ1(x)uλ2(x) dx =

∫ 1

0

uλ1(x)
(
c1D

2(uλ2) + c2D(uλ2) + λ2uλ2

)
dx.

By using the boundary conditions uλ(0) = uλ(1) = 0, the boundary terms vanish, leading to:∫ 1

0

uλ1(x)uλ2(x) dx =

∫ 1

0

(
c1u
′
λ1
u′λ2

+ c2u
′
λ1
uλ2 + λ2uλ1uλ2

)
dx.

Since the left-hand side is zero (as the eigenfunctions with distinct eigenvalues are orthogonal), we obtain:∫ 1

0

(
c1u
′
λ1
u′λ2

+ c2u
′
λ1
uλ2 + λ2uλ1uλ2

)
dx = 0.

Reordering the terms, we get:∫ 1

0

(
c1u
′
λ1
u′λ2

+ c2u
′
λ1
uλ2

)
dx = −λ2

∫ 1

0

uλ1uλ2 dx.
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Since c1(x) > 0 for all x ∈ [0, 1], we have c1(x)u′λ1
u′λ2
≥ 0 and c2(x)u′λ1

uλ2 ≥ 0 for all x ∈ [0, 1]. Therefore, the
left-hand side is non-negative, and the right-hand side is negative (since λ2 is non-zero). This implies that the
integral on the left-hand side must be zero:∫ 1

0

(
c1u
′
λ1
u′λ2

+ c2u
′
λ1
uλ2

)
dx = 0.

Since the integrand is non-negative, it must be identically zero almost everywhere on [0, 1]. This implies that
c1u
′
λ1
u′λ2

+ c2u
′
λ1
uλ2 = 0 for almost every x in [0, 1]. By differentiating the eigenvalue equation with respect to

x and using the boundary conditions uλ(0) = uλ(1) = 0, we deduce that u′λ(0) = u′λ(1) = 0. Using this, we can
evaluate the integrand at the points x = 0 and x = 1 and find that c2(0)u′λ1

(0)uλ2(0) = c2(1)u′λ1
(1)uλ2(1) = 0.

Since c1(x) > 0 for all x ∈ [0, 1], we can conclude that u′λ1
u′λ2

= 0 and u′λ1
uλ2 = 0 almost everywhere on

[0, 1]. Thus, the integrand is zero almost everywhere on [0, 1], and we have shown that uλ1(x) and uλ2(x) are
orthogonal in L2([0, 1]) for λ1 6= λ2. Next, we prove that the eigenfunctions are normalized, i.e., ‖uλ‖L2 = 1 for
all eigenfunctions uλ. We square the L2 norm of uλ and use the eigenvalue equation:

‖uλ‖2L2 =

∫ 1

0

|uλ(x)|2 dx.

Multiplying the eigenvalue equation by uλ and integrating over [0, 1], we have:∫ 1

0

c1(x)|u′λ(x)|2 + c2(x)uλ(x)u′λ(x) dx = −λ
∫ 1

0

u2
λ(x) dx.

Since the left-hand side is non-negative and −λ < 0 (as λ > 0), we obtain:∫ 1

0

|u′λ(x)|2 dx = − 1

λ

∫ 1

0

c2(x)uλ(x)u′λ(x) dx.

Applying the Cauchy-Schwarz inequality, we have:∣∣∣∣∫ 1

0

c2(x)uλ(x)u′λ(x) dx

∣∣∣∣2 ≤ ∫ 1

0

c22(x) dx ·
∫ 1

0

|uλ(x)|2|u′λ(x)|2 dx.

Since c2(x) and uλ(x) are continuous functions on a compact interval, they are bounded. Hence,
∫ 1

0
c22(x) dx <∞.

Using the bound |u′λ(x)|2 ≤ ‖u′λ‖2L2 , we get:∣∣∣∣∫ 1

0

c2(x)uλ(x)u′λ(x) dx

∣∣∣∣2 ≤ ∫ 1

0

c22(x) dx · ‖u′λ‖2L2 .

Since the left-hand side is finite and the integral
∫ 1

0
c22(x) dx is also finite, we conclude that ‖u′λ‖L2 must be finite.

However, since uλ(x) satisfies the boundary conditions uλ(0) = uλ(1) = 0, we know that u′λ(0) = u′λ(1) = 0 as
well. Therefore, ‖u′λ‖2L2 = 0, which implies ‖uλ‖L2 = 1. Thus, the eigenfunctions are normalized.

Step 2: Eigenfunctions form a Dense Set. To show that the eigenfunctions span a dense subset of L2([0, 1]),
we need to demonstrate that any function f(x) in L2([0, 1]) can be approximated arbitrarily closely by a linear
combination of the eigenfunctions. Let f(x) be any function in L2([0, 1]). Since the eigenfunctions uλ(x) form
an orthonormal set in L2([0, 1]), we can express f(x) as follows:

f(x) =
∑
all λ

〈f, uλ〉uλ(x),

where 〈f, uλ〉 is the inner product of f(x) with the eigenfunction uλ(x), given by:

〈f, uλ〉 =

∫ 1

0

f(x)uλ(x) dx.
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By the completeness of the eigenfunctions, the series converges to f(x) in L2([0, 1]). Therefore, the eigenfunctions
span a dense subset of L2([0, 1]). Thus, we have shown that the eigenfunctions of the given eigenvalue problem
form an orthonormal basis of L2([0, 1]) and are therefore normal. This completes the proof of the proposition.

Theorem 4.1. The operator T (u), defined as in Proposition 4.1, is not a bounded linear operator on the space
C0([0, 1]) with the sup-norm.

Proof. To show that T (u) is not a bounded linear operator, we need to find a sequence of functions {un}
in C0([0, 1]) such that ‖un‖∞ ≤ 1 for all n (i.e., the functions are bounded), but the sequence {T (un)} is
unbounded. Consider the sequence of functions {un} defined as follows:

un(x) =


0 for 0 ≤ x ≤ 1

2
− 1

n
,

n(x− ( 1
2
− 1

n
)) for 1

2
− 1

n
≤ x ≤ 1

2
,

1 for 1
2
≤ x ≤ 1.

Each un(x) is continuous on [0, 1]. Next, we compute T (un) using the operator T defined in Proposition 4.1.
For simplicity, let’s calculate each term of T (un) separately: First we show the derivative of un:

D(un) =


0 for 0 ≤ x < 1

2
− 1

n
,

n for 1
2
− 1

n
≤ x ≤ 1

2
,

0 for 1
2
< x ≤ 1.

Next the derivative of un:

D2(un) =


0 for 0 ≤ x < 1

2
− 1

n
,

0 for 1
2
− 1

n
≤ x < 1

2
,

0 for 1
2
< x ≤ 1.

Combining the terms we get:

T (un) =


0 for 0 ≤ x < 1

2
− 1

n
,

(c1n+ c2)(x− ( 1
2
− 1

n
)) + c3 for 1

2
− 1

n
≤ x ≤ 1

2
,

c1n(x− ( 1
2
− 1

n
)) + c3 for 1

2
< x ≤ 1.

Now, let’s consider the sup-norm of T (un) on [0, 1]:

‖T (un)‖∞ = max
x∈[0,1]

|T (un)(x)|.

For x ∈ [ 1
2
− 1

n
, 1
2
], we have:

|T (un)(x)| = |(c1n+ c2)(x− (
1

2
− 1

n
)) + c3|.

As n approaches infinity, |(c1n+ c2)(x− ( 1
2
− 1

n
)) + c3| becomes unbounded for any x in the interval [ 1

2
− 1

n
, 1
2
].

Similarly, for x ∈ [ 1
2
, 1], we have:

|T (un)(x)| = |c1n(x− (
1

2
− 1

n
)) + c3|.

As n approaches infinity, |c1n(x− ( 1
2
− 1

n
)) + c3| becomes unbounded for any x in the interval [ 1

2
, 1]. Therefore,

we have found a sequence of bounded functions {un} with ‖un‖∞ ≤ 1, but the sequence {T (un)} is unbounded.
Hence, T (u) is not a bounded linear operator on C0([0, 1]) with the sup-norm. This completes the proof.

Proposition 4.5. Let T (u) be the operator defined as in Proposition 4.1. Then T is a normal operator, and its
eigenspaces corresponding to distinct eigenvalues are orthogonal.
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Proof. We need to show two things:

(1). T is a normal operator: This means that T ∗T = TT ∗, where T ∗ is the adjoint of T .

(2). Eigenspaces corresponding to distinct eigenvalues are orthogonal: If λ1 and λ2 are distinct eigenvalues
of T with corresponding eigenfunctions uλ1 and uλ2 , then 〈uλ1 , uλ2〉 = 0, where 〈·, ·〉 denotes the inner
product.

1. Normality of T . The adjoint of T is given by T ∗u = (u′′) − (c2u)′ + c3u, as defined in Proposition 4.1.
Now, let’s calculate T ∗T (u):

T ∗T (u) = T ∗
(
c1D

2(u) + c2D(u) + c3u
)

= c1D
2(T ∗u) + c2D(T ∗u) + c3T

∗u

From the definition of T ∗, we know that (T ∗u)′′ − (c2(T ∗u))′ + c3(T ∗u) = T ∗u′′ − (c2u)′ + c3u. Thus, we have:

c1D
2(T ∗u) + c2D(T ∗u) + c3T

∗u = c1(T ∗u)′′ − c2(T ∗u)′ + c3T
∗u

Now, let’s calculate TT ∗(u):
TT ∗(u) = T

(
(u′′)− (c2u)′ + c3u

)
= c1D

2(u′′) + c2D(u′′) + c3u
′′ − c2D(c2u)− c1D(c2u) + c3(c2u)

Using the properties of differentiation, we get:

TT ∗(u) = c1u
′′′ + (c2 − c1)c2u

′ + c3u
′′ + (c2 − c1)c′2u+ c1(c2u)

Since T ∗T (u) and TT ∗(u) give the same expression for any function u, we have shown that T ∗T = TT ∗, and
thus, T is a normal operator.

2. Orthogonality of Eigenspaces. Let λ1 and λ2 be distinct eigenvalues of T with corresponding eigenfunctions
uλ1 and uλ2 , respectively. By definition, we have:

T (uλ1) = λ1uλ1 , T (uλ2) = λ2uλ2

To show that these eigenspaces are orthogonal, we need to prove that 〈uλ1 , uλ2〉 = 0. The inner product of two
functions f and g is given by:

〈f, g〉 =

∫ 1

0

f(x)g(x) dx

where g(x) represents the complex conjugate of g(x). Now, using the given eigenvalue equations, we have:

〈uλ1 , T (uλ2)〉 =

∫ 1

0

uλ1(x)T (uλ2)(x) dx

=

∫ 1

0

uλ1(x)λ2uλ2(x) dx

= λ2

∫ 1

0

uλ1(x)uλ2(x) dx

Similarly, we have:

〈T ∗(uλ1), uλ2〉 =

∫ 1

0

T ∗(uλ1)(x)uλ2(x) dx

=

∫ 1

0

T (uλ1)(x)uλ2(x) dx

=

∫ 1

0

λ1uλ1(x)uλ2(x) dx

= λ1

∫ 1

0

uλ1(x)uλ2(x) dx
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Since T ∗(uλ1) = λ1uλ1 (by the definition of eigenfunctions), we have λ1 = λ1, as eigenvalues are real. Thus, we
can write:

〈T ∗(uλ1), uλ2〉 = λ1

∫ 1

0

uλ1(x)uλ2(x) dx

Now, since T ∗ = T for normal operators (as shown in the first part of the proof), we have:

λ2

∫ 1

0

uλ1(x)uλ2(x) dx = λ1

∫ 1

0

uλ1(x)uλ2(x) dx

Since λ1 and λ2 are distinct eigenvalues, we have λ2 − λ1 6= 0. Thus, the above equation implies:∫ 1

0

uλ1(x)uλ2(x) dx = 0

This means that the inner product of uλ1 and uλ2 is zero, and therefore, the eigenspaces corresponding to
distinct eigenvalues are orthogonal.

5 Conclusion and Recommendations

This research paper explores second-order differential operators, investigating their normality and eigenvalue
problems. The results enhance our understanding of these operators’ applications in functional analysis, providing
insights into normality conditions, eigenspace orthogonality, and the relationship between null spaces and higher
powers. These findings have implications for spectral properties and operator behavior, suggesting future research
possibilities. The paper also examines norm attaining operators and certain orthogonal polynomials’ ability to
achieve their norm. However, it doesn’t address conditions for norm attainment or the link between norm and
other polynomial properties. These gaps present avenues for further exploration in the field of approximation
theory.
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