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ABSTRACT

Methane (CH4) emission originated from the livestock is a major concern globally as it is a
potent greenhouse gas and also accounts for 3-10% loss of ingested feed energy for
productive purposes. Interventions for CH4 mitigation based on plant secondary metabolites
(PSM) have been considered as safe, economical and effective strategies. Saponins, a
multifunctional PSM, exhibited immense medicinal importance in traditional medicine
system as well as in experimental biological systems. Last few decades witnessed a steady
increase in interest towards application of saponins as rumen fermentation modulating
agent as well a promising methane inhibitor. Saponins containing plants and their purified
saponins have shown encouraging results in in vitro and in vivo experimental conditions.
However, further studies are warranted to evaluate their toxicity profile, metabolism and
mechanism of action at molecular level. This review focuses on the current status of role of
saponins in ruminant nutrition.

Keywords: Saponins; rumen; in vitro fermentation; aglycone; methanogenesis; protozoa;
plant fibre.
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1. INTRODUCTION

Anthropogenic emission of methane (CH4) from ruminants has a huge environmental impact.
CH4 has 21 times more global warming potential than CO2 but half life of CH4 is only 11
years in comparison to CO2 thus makes CH4 a right candidate for mitigation. Recent years
witnessed an increasing interest in mitigating CH4 emission and improving livestock
performances by manipulating the rumen ecosystem. In this regard, plant secondary
metabolites (PSM) have been considered as a viable option by animal nutritionist worldwide
[1-3]. PSM are represented by alkaloids, glycosides, steroids, triterpenoids, phenolics,
phenolic glycosides, quinolizidines, tannins, saponins, lignins, polysaccharides and essential
oils [4,5].

The name 'saponin' is derived from the Latin word ‘sapo’ meaning soap. Saponins usually
produces foam in water and therefore, also called foaming glycosides. These are amphiphilic
and surface active compounds with detergent, wetting, emulsifying and foaming properties
[6]. These are high molecular weight glycosidic compounds having a fat-soluble nucleus, the
aglycone (either triterpenoid or steroids) and sugar side chains linked through ether or ester
linkages to the aglycone [7]. Triterpenoid saponins naturally occur as saponin or free
aglycone forms, while steroid saponins exclusively occur in saponins form. The chemical
structure of saponins and its components is illustrated in Fig. 1. Depending upon the side
chains and sugar moieties attached to aglycone skeletal, saponins can be categorized as
monodesmoside, bidesmoside and tridesmoside [8].

Saponins are widely distributed in the plant kingdom and reported to occur in nearly 100
plant families. Saponins found applications in several food products and some medicinal
formulations. Some traditional Asian folk medicines and dietary supplements are rich in
saponins. Gubanov et al. [9] reported the existence of saponins in 754 species of central
Asian plants. The soap bark tree (Quillaja saponaria), alfalfa (Medicago sativa), soapwort
(Saponaria officinalis), mojave yucca (Yucca schidigera), gypsophila (Gypsophila
paniculata), and sarsaparilla (Smilax regelii) are especially rich in saponins [7,10,11]. Plants
such as siris, mahua, reetha and shikakai are also rich in saponins content. Triterpenoidal
saponins occurs in higher amount in beans, peas, soybean, lucerne, tea, spinach, sugar
beet, horse chestnut, and ginseng whereas, steroidal saponins are reported from yucca, oat,
capsicum pepper, aubergine, tomato, alliums, asparagus, yam, fenugreek and ginseng [7].
Saponin content in different plants species varies widely and is influenced by age,
physiology, environment as well as agronomic factors [12]. Saponins are synthesized by a
common metabolic pathway similar to cholesterol and other steroids where squalene acts as
common intermediary precursor [13]. The two major commercial sources of saponins are
Yucca schidigera, which grows in the arid Mexican desert, and Quillaja saponaria, a tree that
grows in arid areas of Chile. Micro-Aid® is commercially available animal feed additive
manufactured from Yucca schidigera plant.

Apart from plants, marine invertebrates are also reported to synthesize triterpene glycosides.
Takada et al. [14] isolated a triterpenoidal saponin nobiloside from the marine sponge Erylus
nobilis with potent neuraminidase inhibitory activity. Van Dyck et al. [15] isolated saponins
from sea cucumber Holothuria atra, Holothuria leucospilota, Pearsonothuria graeffei and
Actinopyga echinites.



Annual Research & Review in Biology, 4(1): 1-19, 2014

3

Table 1. Effect of different saponins extract and pure compounds on in vitro methanogenesis and rumen fermentation

Plant species Test concentrations Substrate/ feed Methane
reduction
(%)

Rumen fermentation
parameters

References

Knautia arvensis 10.2 and 20.4 g/kg Hay: concentrate
(50:50)

5.8 and 7.1 No significant effect on TVFA,
A/P and methanogens

[16]

Quillaja saponaria 15, 30, 45 g/kg DM Barley silage:
concentrate
(51:49)

5.33
4.43

IVDMD and A/P decreased;
TVFA unaffected

[17]

Sapindus
saponaria

100 g/kg DM Meadow grass +
Arachis pintoi hay +
barley straw
(56:22:11)

14.9 IVDMD and TVFA unaffected;
protozoa decreased by 54%

[18]

80 g/kg DM Brachiaria grass 14.5 IVDMD and A/P decreased;
TVFA unaffected

[19]

Trigonella foenum-
graecum

14.8 and 30.4 g/kg DM Hay: concentrate
(50:50)

2.21 and
2.21

No significant effect on TVFA,
A/P and methanogens

[16]

Camellia sinensis 10, 20, 30, 26.7.
53.3 g/kg DM

Grass hay: corn
(50:50)

8.76- 27.8 IVDMD and protozoa
decreased, TVFA and A/P
unaffected

[20]

26.7,  53.3,  106.7 g/kg
DM

Grass hay: corn
(50:50)

7.3 – 16.6 IVDMD and TVFA unaffected;
A/P and protozoa decreased by
19-45%

[21]

Yucca schidigera 0.5 g/L Lucerne hay:
concentrate (50:50)

12.8 No significant effect [22]

Quillaja saponaria 92.0, 276.4 g/kg DM Oat hay: concentrate
(50:50)

- TVFA and A/P unaffected,
protozoa decreased (34.4–
41.3%)

[23]

92.0, 184.0 g/kg DM TVFA and A/P unaffected,
protozoa decreased

[24]

Pithecellobium
saman

200 g/kg DM Meadow grass:
Arachis pintoi hay:
barley straw
(56:22:11)

no effect Digestibility and TVFA
unaffected; protozoa increased
by 54%

[18]

Enterolobium 2.84 g/l or 200 g/kg diet no effect IVDMD and TVFA unaffected;
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cyclocarpum protozoa increased  by 54%
Medicago sativa 0.001 and 0.02, and

0.1 g/kg DM of effective
sarsaponin

Grass silage and
hay: barley (77:23)

−5.16, 3.87
and 1.29

IVDMD, TVFA, A/P, total
bacteria unaffected

[25]

Sesbania sesban 1.65 g/l or 174 g/kg
substrate

Hay: concentrate
(32:68)

11.9 50.5% reduction in protozoa [16]

Acacia concinna 0.2 g/kg DM Wheat straw:
Concentrate (50:50)

3.8 and 18.6 TVFA and IVDMD unaffected,
A/P and protozoa numbers
decreased

[26]

Sapindus
mukorossi

0.2 g/kg DM Wheat flour: wheat
straw (75:25)

22- 96 IVDMD, A/P and protozoa
decreased (70-90%), TVFA
unaffected

[27]

Sapindus
saponaria

0.25, 0.5, 1, 2, 4 g/l Elephant grass:
wheat bran (70:30)

nd Methanogens, A/P ratio
decreased; TVFA increased;
digestibility and protozoa
decreased

[28]

Medicago sativa 1.2–3.2 g/l or 180–480
g/kg substrate

Corn starch 36.0–64.1 TVFA increased, A/P
decreased, protozoal numbers
decreased

[29]

Camellia sinensis 4 -12 g/kg DM Corn meal : grass
meal (20:60)

nd TVFA and propionate
increased, protozoa and
ammonia decreased

[30]

Tribulus terrestris 0.30, 60, 80 g/l cultural
media

Corn grain : Chinese
wild rye (50:50)

23.43 TVFA, acetate and ammonia
decreased, propionate  and A/P
increased, protozoa decreased

[31]

DM: dry matter; TVFA: Total volatile fatty acids; A/P: Acetate: propionate ratio; IVDMD: in vitro dry matter digestibility; nd: not described
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Table 2. Effects of saponins on rumen microbial population, methanogenesis and rumen fermentation parameters in different
ruminant animals

Saponin
source

Animal
host

Period
(Days)

Dose tested Substrate/ feed Methane
reduction
(%)

Effects on rumen microbes
and fermentation parameters

References

Agave
americana

Lamb 60 120, 240, 360
mg/kg DM

Hay: concentrate
(75:25)

nd Protozoa decreased by 39-
42%; growth rate increased

[32]

Camellia
sinensis

Sheep 21 5 g/kg DM Lucerne hay:
concentrate
(60:40)

8.71 No significant effect [33]

Lamb 60 4.1 g/kg DM Wild rye:
concentrate
(60:40)

27.2 TVFA increased; A/P
unaffected; protozoal and
methanogen decreased

[1]

Ilex kudingcha Goat 10 0, 400, 600, 800
mg/kg DM

Hay: concentrate nd No significant effect [34]

Medicago
sativa

Sheep 14 10.2, 20.4 g/kg
DM

Hay : concentrate
(50:50)

5.8- 7.1 TVFA, A/P, methanogens
unaffected

[35]

Quillaja
saponaria,
Yucca
schidigera,
C. sinensis

Steers 22 0.25 – 1.5% DM Corn: corn silage No effect nd [36]

Q. saponaria Sheep 18 13.5 g/kg of diet
or 16.1 g/day

Ryegrass hay:
concentrate
(60:40)

21.7 TVFA decreased, digestibility,
A/P, protozoa not affected

[37]

Cattle 28 10 g/kg of DM Barley silage:
concentrate
(51:49)

7 No significant effect [17]

Sapindus
saponaria

Sheep 21 5 g/kg body wt Forage:
concentrate
(49.2–56 : 21)

7.8 Digestibility, A/P and protozoa
decreased; TVFA and
methanogens increased

[38]

Y. schidigera Sheep 21 0.002 and
0.03 g/kg DM

Hay: barley-
concentrate
(50:50)

1.4 and
−2.2

No significant effect [25]
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Sheep 15 0.12 g/kg DM Orchard grass
silage :
concentrate
(70:30)

6.7 No significant effect [39]

Seep 18 13.8 g/kg DM Ryegrass hay:
concentrate
(60:40)

15.6 TVFA decreased, digestibility,
A/P, protozoa not affected

[37]

Sheep 15 0.13 g/kg DM Mixed hay:
concentrate
(75:25)

13.7 Digestibility unaffected, A/P
decreased, TVFA increased

[40]

Cow 28 10 g/kg of DM Barley silage:
concentrate
(51:49)

2.5 No significant effect [17]

DM: dry matter; TVFA: Total volatile fatty acids; A/P: Acetate: propionate ratio; nd: not described.



Annual Research & Review in Biology, 4(1): 1-19, 2014

7

2. TYPES AND STRUCTURE OF SAPONINS

(i) Triterpenoid Saponins

These saponins are most widely distributed in the plant kingdom. These are present in
Magnoliopsida families mainly Primulaceae, Sapotaceae and Caryophyllaceae. Triterpenoid
saponins consist of a 30 carbon skeleton comprising mostly four or rarely five units. These
saponins are structurally highly diverse. Pentacyclic triterpenoid saponins skeleton belongs
to oleanane, ursane, lupane, hopane, germanicane and dammarane types (Fig. 1 and 2).
Their chemical structure and properties have been extensively reviewed elsewhere
[11,41,42].

ii) Steroid Saponins

Steroid saponins are less widely distributed than the triterpenoid types and usually found in
members of families such as Liliaceae, Dioscoreaceae and Agavaceae. These have 27
carbons skeleton which consists of either 6-rings (spirostane) or a 5-rings (furostane; Fig. 1
and 2).

Fig. 1. Components and chemical structure of saponins
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Fig. 2. Chemical structure of some common saponins of plant origin. (a, b) Yucca
schidigera saponins (c) sarsasapogenin (d) Quillaic acid (e) QS-21 from Quillaja

saponaria (e) Hederagenin

3. ISOLATION AND STRUCTURE ELUCIDATION TECHNIQUES

Due to their large size, non-volatile nature and complex structure, saponins isolation and
identification is cumbersome, difficult and poses a serious challenge. In addition to
conventional chromatographic methods, newer time-saving, environment friendly, efficient
and solvent-economic methods have been developed and applied.

3.1 Thin Layer Chromatography (TLC)

TLC densitometric and colorimetric methods have been used for confirming the presence of
saponins in plant crude extracts [42-45] as well as for their quantitative estimation. It involves
use of colorants such as Ehrlich or vanillin reagent. However, interfering agents such as
sterols and bile acids with hydroxyl group at C3 may give a colour reaction with some
reagents leading to false positive results. In this context, anisaldehyde-sulphuric acid-ethyl
acetate reagent is considered to be superior as it gives color reaction only with steroidal
sapogenins [46].

3.2 Gas Chromatography (GC)

Saponins, being polar and not volatile, are converted into volatile compounds by
derivatization with acetyl, methyl or trimethylsilyl ethers prior to analysis [47,48]. The key
step involved in GC is the hydrolysis of intact sapogenins to their aglycones components.
The identification of derivatised aglycones can be performed by comparison of retention
times of peaks in the sample GC spectrum with the retention times of appropriate standards.
Best resolutions with relatively short retention times are obtained for trimethylsilyl
derivatives.

8
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3.3. High Performance Liquid Chromatography (HPLC)

HPLC is presently the most powerful and frequently used technique for qualitative and
quantitative analysis of both aglycones and intact saponins [11,42,43,45,49]. In HPLC,
separation of samples is performed on silica gel and C18 columns. Select carbohydrates,
borate anion-exchange and hydroxyapatite supports have also find applications.
Acetonitrile–water gradients are most commonly used for HPLC analysis of saponins.
Carbohydrate and NH2-modified columns were used for separation of glycoalkaloids and
steroidal saponins [50,51]. Since saponins lack chromophore, their detection by HPLC is
also cumbersome. Efficiency of HPLC can be improved by derivatization of saponins [52].
Apart from HPLC, new methods have evolved in recent years. Xu et al. [53] developed a
MAE method coupled with HPLC-ESI-MS/MS system for rapid determination of saponins in
Pulsatilla turczaninovii.  This method was rapid, specific and reliable successfully applied to
determine saponins in P. turczaninovii. This method reduces the extraction time and solvent
consumption and increases the extraction efficiency.

4. Biological Activities of Saponins

Saponins exhibit a wide spectrum of biological activities which includes haemolytic, anti-
inflammatory, anti-oedematous, antibacterial, antifungal, antiviral, insecticidal, anticancer,
antitumor, cytotoxic, anthelmintic, molluscicidal, piscidal and immunomodulatory action
(reviewed elsewhere by 7, [54-60]). In addition, saponins are reported to exhibit cholesterol-
lowering action in animals [61] and human trials [62,63]. Waheed et al. [64] isolated a novel
steroidal saponin glycoside from Fagonia indica that can induce cell-selective apoptosis or
necrosis in cancer cells. Quillaja saponin showed anti-allergic and immunomodulatory
effects in rat basophilic leukemia RBL-2H3 cells [65]. Ginseng and its ginsenoside
constituents showed pronounced antioxidant, vasorelaxative, anti-inflammatory, anticancer,
cholesterol lowering actions [66,67].

5. Saponins Metabolism in Ruminants

The decades old perception that saponins are not suitable for animal use has been changed
in recent years following demonstration of their beneficial effects in different ruminant
species under various dietary conditions. Saponins are poorly absorbed in intestine due to
their large molecular mass (> 500 Da), high hydrogen-bonding capacity and high molecular
flexibility. Due to this reason, most of their effects are manifested in the gut or rumen only.
Most of the saponins and their degradation products are transported further, along the
intestinal tract and finally excreted in the feces. However, there are reports that these may
be absorbed in the duodenum and transported to the liver via the portal vein [68, 69]. Salts
of the sapogenin glucuronide in the liver and bile have been reported from sheep suffering
photosensitization [68,70]. Saponins undergo hydrolysis, epimerization and hydrogenation in
the rumen mediated by microbial action [68,69]. Sarsapogenin of Y. schidigera and
Narthecium ossifragum are degraded further to episarsapogenin, epismilagenin,
sarsapogenone, smilagenin and smilagenone [68,71]. Quillaja saponin is metabolized to
quillaic acid by rumen microbes after 6 h of in vitro incubation [72]. Animals have developed
innate defense strategies to avoid excessive exposure to PSMs. These mechanisms include
pre-systemic degradation by rumen microbes, intestinal barriers, hepatic biotransformation
[73].

9
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6. In vitro Effects of Saponins on Rumen Fermentation

In vitro effects of saponins or saponins-rich extracts on rumen microbes are presented in
Table 1. Y. schidigera extracts were found to inhibit the growth of Butyrivibrio fibrisolvens
[74], Ruminococcus spp. and Fibrobacter succinogens [22] whereas stimulated the growth of
Prevotella ruminicola. Similarly, Y. schidigera saponins exhibited inhibitory effect on Gram-
positive amylolytic bacteria whereas Gram-negative species were unaffected or stimulated
[75]. Goel et al. [76] determined the anti-methanogenic potential of total saponins of
Achyranthus aspara, Tribulus terrestris, and Albizia lebbeck at 3, 6 and 9% (DM basis). A.
aspara imparted highest methane reduction, whereas A. lebbeck was particularly effective
against protozoa. In a recent report, Patra et al. [77] found that quillaja and yucca saponins
can modulate ruminal microbial communities in a dose-dependent manner. Both the
saponins are failed to alter the abundance of total bacteria, however, increased the archaeal
abundance. Quillaja saponin decreased the abundance of Ruminococcus flavefaciens but
not affected Fibrobacter succinogenes and Prevotella. In contrast, yucca saponin
significantly increased the abundance of R. flavefaciens, Prevotella and F. succinogenes.
However, both the saponins were not effective in mitigating methane emission. Patra et al.
[77] suggested that saponins can improve the digestibility of the feed matter at low dose
levels through stimulation of cellulolytic bacteria and other rumen bacteria. However at high
doses, saponins cause defaunation and significantly affect ruminal fermentative activities.

Rumen fungi were found to be very sensitive to saponins. However, only limited studies
have performed on rumen fungi. Goel et al. [16] observed 20-60% decrease in ruminal
fungal population by saponin-rich fractions from Carduus, Sesbania and Knautia leaves and
fenugreek seeds. Fenugreek was the most active against fungi. Neocallimastix frontalis and
Piromonas rhizinflata were found to be highly sensitive to yucca saponins even at a low
concentration of 2.25 μg ml−1 [75]. Similarly, Muetzel et al. [78] reported inhibitory effect of
saponins on ruminal fungi with saponin-containing Sesbania leaves when included in the
fermentation at >20% of the substrate. Triterpenoid saponin from Camellia sinensis exhibited
79% reduction in relative abundance of anaerobic fungal populations [79].

Saponins have been found to be most effective against protozoa among various rumen
microbes and have the potential as defaunating agent [74,80,81]. Sarsaponin from Y.
schidigera decreased protozoa numbers but not the bacterial number in 22 day semi-
continuous system [82]. The protozoal populations were decreased significantly by quillaja
saponin, but not by yucca saponins as reported by Patra et al. [77]. The in vitro effect of
saponins on pure cultures of rumen methanogens have not been investigated extensively.
Saponins have shown anti-methanogenic activity by reducing the numbers of protozoa
harbouring methanogens as reported by Sharp et al. [83]. In another study, 78%, 22% and
21% reduction in methanogens population by Sesbania sesban, fenugreek and Knautia
saponins, respectively was reported during in vitro fermentation containing cattle rumen
liquor ([16]. Wina et al. [28] observed anti-methanogenic effect of saponins at a dose as high
as at 4 mg/ml whereas protozoa are completely inhibited at 1 mg/ml. Some other studies
also revealed the dose dependent effect of saponins against rumen methanogens. At 0.4
mg/ml dose level tea saponins failed to inhibit the growth of Methanobrevibacter
ruminantium [79]. Kamra et al. [84] found saponins containing extracts of Sapindus
mukorossi and Yucca schidigera to inhibit in vitro methanogenesis by more than 25%
accompanied by a sharp decline in methanogen numbers and ciliate protozoa. Reduction of
nearly 50% in CH4 production with addition of saponins rich plant extracts has been reported
by several investigators [85-88].

10
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7. In vivo Studies with Saponins

Reduction in ruminal protozoa numbers is observed when saponins are fed to ruminants
([74,89,90], Table 2). However, a significant increase in cellulolytic and total bacteria in the
rumens of sheep was observed when fed with S. saponaria fruit [91]. Similarly, Thalib et al.
[92] who reported an increase in total cellulolytic bacteria in sheep fed with methanol extract
of S. rarak. Administration of saponins to sheep every third day was effective in suppressing
protozoa and reducing ruminal ammonia concentrations [92]. Sarsaponins from Y.
schidigera and triterpenoidal saponins from Q. saponaria have been most extensively
studied for their potential to reduce or inhibit CH4 production in vivo. Administration of 5 g/kg
of S. saponaria fruits to sheep for 21 days reduced CH4 release by 6.5% [38] while the
supplementation of Y. schidigera plant (6% saponins) for 28 days to dairy cows did not
influence CH4 production significantly [17]. It has been shown that saponins decreased the
expression of genes involved in CH4 synthesis in methanogens [18,79]. The anti-
methanogenic activities of saponins are found to be dependent on type of solvents used for
extraction of saponins and composition of diets. Saponins of S. sesban and fenugreek were
more effective in animals fed concentrate based diets compared to those fed roughage-
based diets [16]. Mechanistically, saponins form irreversible complexes with cholesterol, an
integral component of protozoal cell membrane, thus leading cell lysis and death. However,
saponins are hydrolyzed by ruminal bacteria leading to increased outflow of bacterial
proteins from rumen [74,93].

8. Effect on Rumen Fermentation Parameters

Saponins also have variable effects on VFA production, but most studies indicate an
increase in the proportion of propionate and a reduction in acetate, butyrate and branched
chain VFA [87,94]. Further, the effects of saponins on VFA are pH and diet dependent where
more pronounced the effects were seen at low pH [18, 29, 81]. Wang et al. [22] found
enhanced breakdown of casein in continuous culture fermenters (RUSITEC) by extracts of
Y. schidigera. In another study, NH3-N concentration in the presence of Y. schidigera, Q.
saponaria and Acacia auriculoformis saponins were 29.7%, 14.9% and 14.7% lower after 24
h incubation [93]. Yucca extract increased VFA levels when hay and straw were used as
substrates [95]. Saponins derived from Quillaja saponaria reduced VFA levels whereas
sarasaponin enhanced VFA levels. However Acacia concinna, Enterolobium cyclocarpum
and tea saponins did not shown any appreciable effects on VFA levels [18,26,29,37,79].
Studies also revealed that the dietary incorporation of saponin containing extracts enhances
propionate production in the rumen [28,29,81,96].

Inclusion of saponins in ruminant diets showed no adverse effects on feed intake
[1,37,38,90,97]. Interestingly, increase in feed intake is observed following inclusion of
saponins in diets of dairy cows [17] and sheep [98]. Few studies reported decrease in feed
digestibility induced by addition of saponins [17,21,27,38,90,]. Dose-dependents effects of
saponins on feed digestibility and methanogensis are reported. Santoso et al. [39] and Wang
et al. [38] found that saponin extracts or saponin-containing plants did not alter digestibility,
but decreased CH4 production. At low dose of saponins exhibit anti-methanogenic effects
without affecting digestibility, while at higher doses reported the reduction of both digestibility
and methanogenesis [17,20].

11
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9. Mechanism of Action of Saponins in Rumen Ecosystem

Saponins exhibited multifaceted effects on rumen fermentation and its microbial population
which are manifested through different mechanisms. Saponins reduce methane production
via inhibition of either protozoa or methanogens or both. These inhibited protozoa at
relatively low concentrations whereas higher concentrations were required to kill or suppress
methanogenic archaea as evident from several in vitro findings [28,35]. Their anti-protozoal
action is manifested through interaction with cholesterol in the cell membrane leading to its
disruption, breakdown, lysis and finally cell death. The intact saponin structure is suggested
to be essential for anti-protozoal activity [22,72]. Anti-methanogenic activity of saponins is
believed to occur by limiting hydrogen availability to methanogens and re-channeling of
metabolic hydrogen from methane to propionate production in the rumen [28]. However, an
entirely different mechanism is also suggested where saponins caused lesser fermentation
of feed matter in the rumen which consequently resulted in more  extensive fermentation in
hindgut thus making conditions more favorable for acetogenesis through diversion of
hydrogen from methanogenesis pathway [87,89,99]. The major mechanism suggested for
the antifungal activity of saponins is their interaction with membrane sterols [87]. Biological
action of saponins against eukaryotic cells is possibly due to their complexing with
cholesterol in the lipid bilayer, formation of domains enriched with cholesterol-saponin
complexes, and finally the lysis of cell membrane [100,101]. Saponins are also expected to
interact with the lipid A part of LPS leading to increased permeability of bacterial cell wall
[102]. Saponins form insoluble complexes with cholesterol and bile acids by sequestration in
the intestine and also reduce blood glucose. Saponins administration in ruminants is
reported to decrease plasma cholesterol and blood glucose levels [103,104].

10. Structure Activity Relationship and Chemisynthesis

PSM exhibit a remarkable structural diversity of chemical skeleton and scaffolds that could
be utilized for chemical synthesis. In addition, computational chemical biology has the
potential to offer new directions in finding suitable molecular entities in collections of natural
products for new drug discovery. Combinatorial and multiple parallel synthesis
methodologies have been developed for synthesizing new saponins derivatives [105]. Yu
and Tao [106] synthesized dioscin andxiebai saponin I whereas Li et al. [107] prepared
several stigmasterol saponins by semisynthesis. Similarly, Cheng et al. [108] synthesized β-
hederin and hederacolchiside A1 triterpenoid saponins. Song et al. [109] and Ding et al.
[110] generated saponin libraries of potent H5N1 virus entry inhibitors and performed further
derivatization at aglycone and sugar moiety levels. SARs study revealed the critical
importance of 3-O-b-chacotriosyl residue and the aglycone moiety for activity. Ding et al.
[110] used Chlorogenin 3-O-b-chacotrioside as lead compound to design and synthesize a
series of analogs with different sugar chains and aglycones. Presence of L-rhamnose units
is reported to facilitate the cellular uptake of saponins due to interaction with lectins. Perez-
Labrada et al. [111] implemented a linear glycosylation strategy to synthesize novel
spirostan saponins with structural modifications at saccharidic and steroidal moieties
including addition of β-D-glucopyranosides branched with a-L-rhamnopyranosyl residues at
positions 4 and 6.

Industrial scale production of saponins is feasible and quite achievable. Wu et al. [112]
developed a method for large scale production of akebia saponin D from Chinese herb
Dipsacus asper. Using HPD-722 and ADS-7 macroporous absorption resins, akebia saponin
D was successfully purified to the level of 95%.
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2. CONCLUSION

By decreasing protozoal populations, saponins enhance propionate production, microbial
biomass synthesis, microbial nitrogen flow and gluconuogenesis. This results in
improvement in ruminant performance. Saponins are also found to be an effective and
promising agent for CH4 mitigation from livestock. Despite their multifunctional roles, there is
a need for further evaluation to elucidate their exact mechanism of action, toxicity, effects at
gene levels and dose-activity relationships. Studies are needed to determine the absorption,
disposition, and pharmacokinetics profiles of different saponins to order to more accurately
ascertain which types of saponins will be exerting maximal pharmacological effects in vivo.
Further research is needed to expand our understanding of microbial modifications of
aglycone moiety of saponins in the rumen and their transportation to different organs in
animal host.
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