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As temperatures rise and water availability decreases, the water decit is gaining attention
regarding future agricultural production. Drought stress is a global issue and adversely
affects the productivity of different crops. In this study, drought-tolerant varieties of
oats were screened to determine drought-tolerant varieties that may be employed in
drought-prone areas to achieve sustainable development and mitigate the impact of
climate change. To do so, the growth and stress adaptive mechanism of 15 domestic
and overseas oat cultivars at the seedling stage were analyzed. Water stress was
simulated using 20% polyethylene glycol (PEG-6000). The results showed that the
soluble protein content and superoxide dismutase activity of variety DY2 significantly
increased under drought stress, whereas the photochemical efficiency and relative
water content decreased slightly. The relative electrical conductivity (REC) and drought
damage index of the QH444 and DY2 varieties increased the least. The peroxidase
content of Q1 and DY2 significantly increased, and the catalase activity of Q1, QH444,
and DY2 also substantially increased. Principal component analysis revealed that nine
physiological and biochemical parameters were transformed into three independent
comprehensive indexes. The comprehensive evaluation results showed that DY2, LN,
and Q1 exhibited a strong drought resistance capacity and could be used as a reference
material for a drought-resistant oat breeding program. The gray correlation analysis also
indicated that Fv/Fm, chlorophyll, REC, and malondialdehyde could be used as key
indexes for evaluating the drought resistance of oat.

Keywords: oat, drought tolerant, physiological index, comprehensive evaluation, Qinghai-Tibetan Plateau

INTRODUCTION

The Qinghai–Tibetan Plateau is known as the earth’s third pole with an average altitude of more
than 4,000 m and an area of 2.5 million km2 (Yang et al., 2015). The ecological environment in
the Qinghai–Tibetan Plateau is relatively fragile, and the distribution of precipitation among the
four seasons is extremely irregular. A dry climate in early spring adversely affects plants’ growth
performance (Pan et al., 2014; Meng et al., 2017; Wang et al., 2020). It is projected that the intensity
of drought may increase by 1% to 30% by 2100, as a result of global warming (Parry et al., 2007).
Because of the increasing global population, human activities are intensifying, thereby leading to
a rise in agricultural water consumption. Water shortage is now a worldwide problem and one of
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the most important environmental stresses limiting crop yields
globally (Tuberosa and Salvi, 2006; Lobell et al., 2008).

Plants operate various physiological mechanisms to cope
with harsh environmental conditions (Passioura, 1998). Drought
seriously affects plant growth, which leads to stunting, wilted
leaves, chlorosis, and yellowing. Moreover, drought stress could
result in damage to photosynthetic organs, changes in cell
structure and function, hindered metabolic function, decreased
nutrient absorption and transportation rate, increased plant
energy consumption, inhibited plant growth, a shortened
lifespan, reduced plant quality, and even death (Zhao et al.,
2014; Zhu, 2016; Nan et al., 2018). Furthermore, drought
stress causes the accumulation of osmotic regulatory substances,
including soluble sugar (SSC) and soluble protein (SP), in cells
to maintain cellular swelling and pressure. Reactive oxygen
free radicals produced under drought stress will be scavenged
by promoting the activities of enzymes in the antioxidant
system, including superoxide dismutase (SOD), peroxidase
(POD), and catalase (CAT) (Ge et al., 2014). Additionally,
drought stress results in an increase in malondialdehyde
(MDA) and relative electrical conductivity (REC) contents, as
well as a decrease in chlorophyll (Chl) content (Mukherjee
and Choudhuri, 1983; Dencic et al., 2000; Maqbool et al.,
2017). Factors that regulate growth and development, including
stomatal movement, metabolism, hormone synthesis, and signal
transmission, may affect the drought resistance of plants and
should be used to comprehensively evaluate drought resistance
(Levitt, 1982).

Oat (Avena) is an annual crop and suitable to grow in frigid
and high-altitude areas for both grain and forage production due
to the strong drought resistance, short growth cycle, high forage
yield, and nutrient value (Zhang et al., 2010; Singh et al., 2013;
Zhou et al., 2018). It is a superior species to solve the problem
of foraging during the cold season, ensuring the sustainable
development of alpine grassland animal husbandry (Xu, 2012;
Zhang et al., 2015). As mentioned previously, in most Qinghai–
Tibetan Plateau areas, drought is the main factor limiting oat
growth and production (Stevens et al., 2004). Zhang et al. (2013)
found that proline (Pro), MDA, and REC could be used to
evaluate the drought resistance of oats. Under drought stress,
the SSC, REC, Pro, and MDA contents of 19 wild high oat grass
leaves were positively correlated with drought stress, whereas the
leaf relative water content (RWC) was negatively correlated with
drought stress (Yang et al., 2011). The seedling stage is the key
period for oat growth and development. Therefore, it is of great
significance to study the effects of early spring drought on oat
growth and the adaptive mechanism of oats to drought for the
selection of drought-resistant varieties in alpine regions.

In this study, 15 oat varieties were used as experimental
materials to assess their performance under drought stress. It
explored the effects of drought stress (20% PEG-6000) on the
content of SSC, SP, MDA, drought damage index (DDI), RWC,
and Chl; the activities of SOD, POD, and CAT; the REC;
and the maximum Fv/Fm. The comprehensive evaluation of
drought resistance was carried out using principal component
analysis, the gray correlation degree, and the membership
function analysis.

MATERIALS AND METHODS

Test Materials
Fifteen oat varieties were provided by the Key Laboratory for the
Development of Forage Cultivars in the Qinghai–Tibetan Plateau
of the Qinghai province (Table 1).

Experimental Design
This experiment was carried out at the Engineering Laboratory
of Resistant Pasture Cultivars Innovation and Ecological
Restoration in Sichuan Province, Southwest Minzu University,
from September to December 2019.

This study utilized the sand culture method, and the
substrate was a 3:1 mixture of fine sand and vermiculite.
Full, consistent, and disease-free oat seeds were selected,
sterilized with 1% sodium hypochlorite for 10 min, rinsed
with distilled water five times, and evenly sowed in a
basin with a diameter of 10 cm and height of 15 cm. The
basins were sufficiently watered every day. After sowing,
the seeds were randomly placed in a light incubator.
The day and night temperatures of the light incubator
were 23◦C and 16◦C, respectively. The light intensity was
600 mmol · m−2

· s−1 for 16 h per day, and the average relative
humidity was 65%.

After seed emergence, 500 mL of Hoagland solution was
poured over the seedlings every 2 days. When the seedlings
grew to the stage with two true leaves, drought stress treatments
were performed over 7 days. The control (CL, well-watered)
and the drought stress (DL, drought stress) treatments were
established. The CL was cultured with Hoagland solution,
whereas the DL was treated with 20% PEG-6000 and nutrient
solution. After 7 days of treatments, the penultimate leaf of
the seedling was selected to determine the Fv/Fm; content
of REC, RWC, Chl, SSC, and MDA; and activities of SOD,
POD, CAT, and SP.

TABLE 1 | Names and sources of tested varieties.

Variety Latin name Geographical origin

JM Avena sativa L. cv. Cayuse America

BF A. sativa L. cv. Winger America

LX A. sativa L. cv. Souris Canada

BL A. sativa L. cv. Baler Canada

MW A. sativa L. cv. Haymaker Canada

TY2 A. sativa L. cv. Sweet yan No.2 Canada

TY1 A. sativa L. cv. Sweet yan No.1 Canada

JY2 A. sativa L. cv. Jiayan No.2 Canada

QH444 A. sativa L. cv. Qinghai No.444 China

Q1 A. sativa L. cv. Qingyin No.1 China

QY1 A. sativa L. cv. Qingyan No.1 China

LN A. sativa L. cv. Linna China

Q2 A. sativa L. cv. Qingyin No.2 China

BY14 A. sativa L. cv. Baiyan No.14 China

DY2 A. sativa L. cv. Dingyan No.2 China
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Determination and Measurement
Determination of Phenotypic Traits
To systematically count and compare the differences in changes
among the different oat varieties under the same drought
treatment, the phenotypic traits were quantitatively evaluated.
DDI refers to the DDI of each variety under drought stress. The
greater the DDI, the greater the phenotypic characteristics of the
oats damaged by drought stress. The average score of each group
of three pots of plants was taken as a repeat; using the formula
DDI = 6 score per plant/number of plants per treatment, the
DDI of each variety was obtained. Based on the effect of drought
stress on the phenotypic characteristics of oats, the evaluation
system was divided into five grades to study the effects of soil
drought stress on the physiological and biochemical responses of
oats (Table 2).

Determination of the RWC
The RWC of leaves was determined using the drying and
weighing method (Barrs, 1962). It was calculated according to the
formula RWC (%) = (FW – DW)/(TW – DW) × 100%, where
FW is the fresh weight (FW), DW is the dry weight, and TW is
the saturated FW (TW). The oat leaves weighed approximately
0.2 g, and the FW; wrapped with clean gauze, the sample was
immersed in a 50 mL centrifuge tube containing the same amount
of distilled water and placed in a refrigerator at 4◦C for 24 h. After
the leaves were fully absorbed, the surface moisture was gently
dried with absorbent paper and weighed as TW, and then the
sample was put into a Kraft paper sample bag and dried at 75◦C
to constant weight, weighing its DW.

Determination of SSC Content
The SSC content was determined using the sulfuric acid–
anthrone color method (Gao, 2006). A sample that contained
0.025 g of dried oat leaves was used. Ethanol was added to the
sample, which was then placed in a water bath. Centrifugation
and decolorization were performed to collect the sugar extract.
Then, we added anthrone to the sugar extract, boiled the mixture,
and measured the absorbance with a spectrophotometer (Cary 60
UV-Vis; Agilent Technologies, Santa Clara, CA, United States)
at a wavelength of 625 nm, which was used to calculate the
SSC content. The SSC content (µg/g) = the sugar content
corresponding to the OD values × the total volume of the
extract/the total weight of the dry sample.

Determination of SP Content, Antioxidase Activity,
and MDA Content
MDA, SP, SOD, POD, and CAT activities were measured using
a kit following the manufacturer’s instructions (Suzhou Keming
Biotechnology Co., Ltd., Suzhou, China) (Zhang et al., 2017).

Determination of REC
We collected 0.1 g of fresh leaves from the oats, rinsed it with
deionized water, dried it with filter paper, placed it in a test tube
containing 20 mL of deionized water, and then incubated it at
25◦C for 24 h. After shaking and mixing, the initial conductivity,
S1, was measured using a conductivity meter (DDS-307A). The
samples were boiled in a water bath until all the tissue cells
were killed. Then, the final conductivity, S2, was measured. REC
(%) = S1/S2 × 100%.

Determination of Chl Fluorescence Parameters
The plants of all 15 tested varieties were dark-adapted for
30 min, and the maximum Fv/Fm was measured using an LI-
6800 portable photosynthetic instrument (LI-COR Biosciences,
Lincoln, NE, United States), starting at 9:00 AM.

Determination of Chl Content
The Chl content was assessed using the acetone–ethanol mixture
extraction method reported by Gao (2006). Fresh oat leaves
were collected, cut into small pieces, and put into a graduated
test tube with a stopper. We added 5 mL of 80% acetone
and 5 mL of 95% ethanol and mixed; the samples were
then stored in the dark. When the leaves were completely
white, the extract was at a constant volume. Finally, the
absorbance of the Chl extract was measured at 663 and 645 nm
with a spectrophotometer, and then the total Chl content
was calculated using the Arnon formula: Chl total content
(mg · g−1) = (20.2 OD645 + 8.02 OD663) × extract total volume
of liquid/(1,000× FW of material).

Data Analysis
Calculation of Drought Resistance Metrics
To eliminate differences attributed to the basic traits of
all the varieties, the drought resistance coefficient (DC)
was used for comprehensive analysis. DC = average value
of indicators under drought stress/average value of control
indicators (Abraham and Wayne, 1985).

TABLE 2 | Evaluation of oat phenotypic traits under water stress.

Description of plant morphology Score

A plant that grows normally, the main vein of the leaf is spreading, the tip and edge of the leaf do not roll inward, and there are no obvious symptoms of
drought stress.

1

Slightly wilted, the main vein of the leaf bent downward, approximately 10% of the leaves wilted and drooping, and the tip and margin of the leaf have
turned yellow.

2

Moderate wilting, the main vein of the leaf bends downward, approximately 50% of the leaf tips and margins have turned yellow, and the leaves are curly
and dry.

3

Severe wilting showing that the main leaf veins of the seedling leaves are bent downward, and approximately 70% of the leaves are curled and withered. 4

Extreme wilting, characterized by yellowing and curling of a large number of leaves, withering of leaves and stems, and the death of the whole plant in
severe cases.

5
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The formula for this comprehensive index value is:

Zi =

n∑
i = 1

aiXi (1)

where Zi is the comprehensive index of the ith index, ai is the
eigenvector of the relative value of the ith index (Guo et al.,
2018), and Xi is the normalized value of the relative value of the
ith index.

Membership function value:

U(Zi) = (Zi − Zimin)/(Zimax−Zimin) i = 1, 2, 3, . . . , n (2)

U(Zi) = 1− (Zi − Zimin)/(Zimax−Zimin) i = 1, 2, 3, . . . , n
(3)

We calculated the membership function value [U(Zi)] of each
comprehensive index according to formulas (2) and (3) (He
et al., 2009), where Zimin represents the minimum value of the ith
comprehensive index, and Zimax represents the maximum value
of the ith comprehensive index.

The weight formula is:

Wi = Pi/

n∑
i

Pi i = 1, 2, 3, . . . , n (4)

We calculated the weight factor coefficient (Wi) according to
formula (4) (Zhang et al., 2017), where Pi is the contribution rate
of the ith comprehensive index.

Drought resistance measurement value:

D =
n∑

i = 1

[U (Zi) × Wi] i = 1, 2, . . . , n (5)

According to the weight factor, Wi, and the membership
function value U(Zi), the drought resistance measure D (Guo
et al., 2018) was calculated according to formula (5).

Gray Correlation Analysis
Correlation coefficient:

ξi(k)=

min(i)min(k)|X0(k)− Xi(k)| + ρ·max(i)max(k)|X0(k)− Xi(k)|
|X0(K)− Xi(k)| + ρ·max(i)max(k)|X0(k)− Xi(k)|

(6)

In the formula, Xi (k) is the relative value of variety k on the
identification index i, X0(k) represents the D value of variety k,
ξ i(k) represents the correlation coefficient between Xi(k) and the
D value, and ρ is the resolution coefficient, ρ∈[0,1]. In this test, ρ
is taken as 0.5 (Chen et al., 2014).

Equal weight correlation degree:

γi =
1
n

n∑
k = 1

ξi(k). (7)

In the formula, γi represents the degree of equal weight
correlation, and n is the number of samples analyzed for each
index, n = 15 (Chen et al., 2014).

In this study, based on the principal component analysis
method, the membership function was used to calculate the
comprehensive drought resistance measure (D value) of each
variety. Using the gray correlation analysis method, the D value
was taken as the reference series (X0), and the nine individual
index DC values of the 15 varieties were used as the comparison
series (Xi). The formulas (6) and (7) were used to find the
correlation degree (γi) between each index and the D values.
Excel 2019 and OriginPro 8.5 were used to organize and plot
the data. SPSS 23.0 was employed for single-factor analysis
of variance and principal component analysis, and Duncan
multiple-range method was used for multiple comparisons
at the 0.05 level.

RESULTS

Effects of Drought Stress on Phenotypic
Traits and RWC Content
The DDI increased significantly after drought stress (P < 0.05).
Among the tested varieties, the DDI of QH444, LN, and
DY2 increased slightly after being affected by drought stress,
while that of JM, BL, MW and QY1 increased the most,
which was 4.33 times of the control (Figure 1A). After
drought stress, the RWC of all the tested materials was
significantly reduced (P < 0.05). Compared with that of
the control, the RWC of LX, QH444, and DY2 slightly
decreased under drought stress. However, JM, MW, and QY1
exhibited the largest decreases in RWC, which were 0.41,
0.39, and 0.43 times those of their corresponding controls,
respectively (Figure 1B).

Effects of Drought Stress on the Content
of SP and SSC
The SP content of BF, BL, MW, and Q1 (P > 0.05), and
the SP content of the other varieties increased significantly
after drought stress (P < 0.05). Of these, the SP content
of DY2 increased the most after drought stress, which
was 1.47 times that of the control (Figure 2A). Drought
stress also increased the SSC content of the tested cultivars.
The SSC content increased significantly after drought
stress (P < 0.05). The SSC content of QY1, BY14, BL,
and DY2 increased substantially, specifically by 1.53, 1.41,
1.38, and 1.32 times that of their corresponding controls,
respectively (Figure 2B).

Effects of Drought Stress on Enzyme
Activities in the Antioxidant System
The SOD, POD, and CAT activities of the various tested
varieties increased under drought stress. Among them, the
SOD activity of MW was slightly increased, whereas the
SOD activity of DY2 was significantly higher than that of
the control. In particular, the SOD activity of DY2 was
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FIGURE 1 | Effects of drought stress on the drought damage index (DDI) (A) and relative water content (RWC%) content (B) in leaves of different oat varieties. Each
value represents the mean ± SD. Each experiment was repeated three times. An analysis of variance test followed by a Tukey test was performed. CL, control; DL,
drought stress. Different letters indicate that the differences between treatments were significant (P < 0.05).

2.12 times that of the control (Figure 3A). JM and Q2
exhibited a slight increase in POD activity. Q1, DY2, and
QH444 displayed the largest increases in activity under
drought stress, which were 1.93, 1.81, and 1.73 times that
of their corresponding controls, respectively (Figure 3B).
Compared with the control, the CAT activities of JM and
MW slightly increased under drought stress. However, QH444,
Q1, and DY2 exhibited the largest increases, which were 1.63,
1.74, and 1.53 times that of their corresponding controls,
respectively (Figure 3C).

Effects of Drought Stress on REC and
MDA Content
After drought stress, the REC and MDA contents of the tested
cultivars increased. The REC significantly increased after drought
stress (P< 0.05). Among the cultivars tested, the REC of MW and
JM increased the most, specifically by 8.39 and 11.53 times that of
their controls, respectively. QH444 and DY2 displayed only slight
increases, which were 2.19 and 2.82 times those of their controls,
respectively (Figure 4A). The MDA contents of TY2 and DY2
were not significantly increased after drought stress (P > 0.05),
but increased slightly, specifically by 1.08 and 1.05 times that of
their controls, respectively. Additionally, the MDA content of the
other varieties was significantly higher than that of the control
(P < 0.05). Among them, the content of Q1 and MW increased

the most, specifically by 2.49 and 2.92 times that of their controls,
respectively (Figure 4B).

Effects of Drought Stress on Fv/Fm and
the Chl Content
The Chl content and Fv/Fm of all the materials decreased.
The Fv/Fm of LX, TY2, BY14, and DY2 was not significantly
different after drought stress (P > 0.05), but decreased slightly,
specifically by 0.97, 0.97, 0.97, and 0.98 times that of their
controls, respectively. However, the Fv/Fm of the other tested
varieties displayed a larger decline and was significantly lower
than that of the control (P < 0.05) (Figure 5A). The Chl
content of QY1 was not significantly different after drought
stress (P > 0.05) and was 0.96 times that of the control. In
contrast, the Chl content of the other varieties was significantly
reduced (P < 0.05). Of these, the Chl content in MW
declined the most, specifically by 0.55 times that of the
control (Figure 5B).

Classification of Physiological Indexes
for Drought Resistance of Oat Seedlings
Under PEG Stress
A principal component analysis was performed on the drought
resistance coefficients of the 11 indicators. The first three
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FIGURE 2 | Effects of soluble protein (SP) (A) and soluble sugar (SSC) content (B) in leaves of different oat varieties under drought stress. Each value represents the
mean ± standard deviation. Each experiment was repeated three times. An analysis of variance test was performed, followed by Tukey test. CL, untreated control;
DL, drought stress. Different letters indicate that the differences between treatments were significant (P < 0.05).

principal components were extracted as the main factors
for drought resistance evaluation based on the principle
that the characteristic value of the principal component
was greater than 1 (Table 3). The results showed that the
characteristic root of the first principal component was 4.720,
and the contribution rate was 42.912%. Among the indicators,
the RWC and REC had the largest loads. This principal
component reflects the water status, water-holding capacity,
membrane stability, and other information of the varieties.
The characteristic root of the second principal component was
2.566, and the cumulative contribution rate was 66.239%. Of
these, POD and CAT had a strong load, indicating that the
principal component mainly reflected the relevant information
regarding the protective enzymes. The characteristic root of
the third principal component and cumulative contribution
rate were 1.125% and 76.463%, respectively. Among them,
Fv/Fm had a strong load, indicating that the principal
component mainly reflected the relevant information regarding
leaf photosynthesis.

As shown in Figure 6, DY2 and BY14 were mainly distributed
in group A, whereas MW and JM were mainly distributed in
group C. The other eight varieties were mainly distributed in
group B, indicating that the responses of these eight varieties to
drought stress were similar.

As for indicators, SOD activity; SP, Chl, and SSC content;
and Fv/Fm were distributed in group A; the RWC and POD

and CAT activity were distributed in group B, whereas the
DDI, MDA content, and REC were distributed in group C. The
indexes distributed in the same group had a strong correlation.
Of these, the responses of SOD activity; SP, Chl, and SSC
content; and Fv/Fm to drought stress were similar. The RWC,
POD and CAT activity, DDI, MDA content, and REC exhibited
similar responses to drought stress. The DDI, MDA content, and
REC were negatively correlated with plant drought resistance
lines (Figure 7).

Comprehensive Evaluation of Drought
Resistance of Oat Varieties
The first three factors were used to analyze the membership
function. The weight of each factor was calculated
according to formula (4), and then the average weighted
membership function value (D value) was obtained.
Based on the D values, the drought resistance of each
material was comprehensively evaluated. The higher the
D value, the stronger the drought resistance. As shown in
Table 4, the drought resistance of the 15 oat varieties was
ranked from strong to weak according to the D values:
DY2 > BY14 > LN > Q2 > LX > TY2 > TY1 > QY1 > JY2
> QH444> BL> BF> Q1> JM>MW.

Furthermore, according to the gray correlation theory, the
closer to the D value, the greater the correlation. The series
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FIGURE 3 | Superoxide dismutase (SOD) (A), peroxidase (POD) activity (B), and catalase (CAT) activity (C) in oat varieties under drought stress. Each value
represents the mean ± standard deviation. Each experiment was repeated three times. An analysis of variance test was performed, followed by Tukey test. CL,
untreated control; DL, drought stress. Different letters indicate that the differences between treatments were significant (P < 0.05).

X1, X2, X3, and X6 had the largest correlations with the D
value, thereby showing that the DDI, RWC, Fv/Fm, and MDA
content were closely related to the drought resistance of the oat
seedlings (Table 5). However, the correlation degree between
X9, X10, and X11 and the D value were the smallest, indicating
that the SOD, POD, and CAT activities were less affected
by drought stress.

DISCUSSION

Changes in the Phenotypic Characters
and RWC of Oat Leaves Under Drought
Stress
When a plant is in a state of drought stress, the cells in the plant
body respond in a timely manner, and finally, changes are mainly
observed in the appearance of the plant (Farooq et al., 2009);
hence, we can directly judge the degree of damage caused by
drought by observing the phenotypic characteristics of plants.

The external morphology, such as the withering degree and color
of the leaves, can reflect physiological changes in the plants.
Kabay et al. (2017) scored the phenotypes of kidney beans under
drought stress and determined drought-tolerant and drought-
sensitive bean varieties through significantly different phenotypic
scores and leaf RWC. In this study, under normal watering
conditions, the leaves of oat seedlings were normally green.
Under drought stress, there were significant differences in the
phenotypic characteristics of the different oat varieties, which
showed differences in their drought resistance. Varieties QH444,
LN, and DY2 with lower DDI values showed late symptoms of
drought injury and mild drought damage, with only a few leaves
showing curling symptoms and leaf margin yellowing, indicating
these had a strong ability to adapt to drought. In contrast,
varieties JM, MW, and QY1 showed severe drought symptoms,
with more than 60% of plants showing moderate wilting, which
gradually advanced to the whole stem in some plants, along with
leaf curling and yellowing. The results showed that these were
more sensitive to drought stress and had poor drought tolerance.
The RWC indicates the degree of water deficit in plants under
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FIGURE 4 | Relative electrical conductivity (REC%) (A) and malondialdehyde (MDA) content (B) in oat varieties under drought stress. Each value represents the
mean ± standard deviation. Each experiment was repeated three times. An analysis of variance test was performed, followed by Tukey test. CL, untreated control;
DL, drought stress. Different letters indicate that the differences between treatments were significant (P < 0.05).

stress and reflects the physiological state of water in the plant
leaf cells (Zegaoui et al., 2017). Therefore, the RWC is often
regarded as a comprehensive and effective index for identifying
plant drought resistance (Zheng et al., 2009). In this study, the
RWC of the sensitive varieties JM, MW, and QY1 decreased
significantly, whereas it decreased only slightly in the drought-
resistant varieties (LX, QH444, and DY2), which was consistent
with the trend observed in Sorghum sudanense (Zhu et al., 2019).

Responses of Physiological Indicators to
Drought Stress at the Seedling Stage in
Oat
Evaluation and screening of cultivars under drought stress
according to physiological parameters are the premise of crop
improvement (Talebi et al., 2013). Plants increase cell fluid
concentration by changing their content of SSC and SP and
decrease their osmotic potential to promote water absorption,
maintain cell swelling, and ensure cell growth and metabolism
(Morgan, 1984; Deligoz and Gur, 2015; Fang and Xiong, 2015).
The increase of SSC content could promote the viscosity,

elasticity, and cell sap concentration of protoplasts, thereby
improving the water absorption and water retention capacity of
crops (Wang et al., 2016). Osmotic regulation contributes to cell
development and promotes plant growth under drought stress
(Keshavarz et al., 2016). In this study, after drought stress, the
accumulation of SSC content in TY2 and DY2 was significantly
increased. This was consistent with previous results in wheat
(Wang et al., 2011). In addition, the SP content of the tested oat
varieties increased under drought stress, which was consistent
with the changing trend of forages (Jin et al., 2015). Under
drought stress, the SP content of DY2 was significantly increased
by 1.47 times that of the control. The SSC content of TY2
accumulated, indicating that the osmotic regulation ability of
DY2 and TY2 was stronger than that of the other materials.
Therefore, it was inferred that under drought stress, oat could
reduce damage by increasing the content of SP to increase the
osmotic potential (Zhang, 2018).

Plant cells can also utilize the protective enzyme system (Gill
and Tuteja, 2010) including SOD, POD, and CAT to defend
against the poison of active oxygen ions and to prevent plant
cells from being damaged and losing physiological functions
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FIGURE 5 | Photochemical efficiency (Fv/Fm) (A) and chlorophyll content (B) in oat varieties under drought stress. Each value represents the mean ± SD. Each
experiment was repeated three times. An analysis of variance test was performed, followed by Tukey test. CL, untreated control; DL, drought stress. Different letters
indicate that the differences between treatments were significant (P < 0.05).

(Keshavarz and Moghadam, 2017). SOD is considered the first
line of defense against reactive oxygen species (Sayfzadeh et al.,
2011). POD can reduce the accumulation of H2O2 and maintain
the integrity of the cell membrane (Chakhchar et al., 2015). CAT
is an effective enzyme for the decomposition of H2O2 (Weng
et al., 2015), preventing POD from degrading fatty acids (Gill
and Tuteja, 2010). SOD activity of licorice (Pan et al., 2006),
cowpea (Manivannan et al., 2007), poplar (Xiao et al., 2008),
sunflower (Gunes et al., 2008), and tomato (Celik et al., 2017)
increases under drought stress. The plant–water relationship
plays a key role in the activation and regulation of the antioxidant
defense mechanism under drought stress (Pan et al., 2014).
Tolerant plants accumulate less hydrogen peroxide and free
radicals by maintaining enzyme activities and have a superior
protection system (Sinhababu and Kar, 2003). The activities of
SOD and POD in drought-resistant varieties are higher than
those in sensitive varieties (Seyed Ebrahimi et al., 2016). In this
study, the activities of POD, CAT, and SOD of Q1 and DY2
increased under drought stress, which were consistent with the
conclusions found in oats (Islam et al., 2011; Zhang et al., 2013)
and maize (Kolarovič et al., 2009). Thus, this indicated that oat

could also reduce the damage of drought stress by increasing
the activity of oxidase to eliminate the excessive accumulation
of free radicals.

Plant physiological activities and physiological functions
are affected by drought stress. MDA and REC content are
important indicators of cell plasma membrane permeability,
which could be used to measure the degree of damage to the
cell membrane structure (Giannopelitis and Ries, 1977; Sedaghat
et al., 2017). MDA can increase antioxidant enzyme activities and
antioxidant capacity, thereby eliminating reactive oxygen species
and decreasing membrane lipid peroxidation damage (Esfandiari
et al., 2007; Ge et al., 2014). In this study, the increase of REC
in QH444 and DY2 was the smallest, and the MDA content in
DY2 increased the least, indicating that the membrane stabilities
of QH444 and DY2 were strong under drought stress. The
MDA content of drought-tolerant varieties was lower than that
of the drought-sensitive oat varieties, suggesting that drought-
resistant oat varieties maintained stronger self-protection ability
under drought stress. This is consistent with previous conclusions
(Zhang et al., 2013), so it was inferred that MDA and REC are
often negatively correlated with drought resistance (Tian et al.,
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TABLE 3 | Results of principal component analysis of indexes.

Index Principal component

PC1 PC2 PC3

DDI −0.391 0.241 −0.224

RWC 0.403 −0.192 0.241

Fv/Fm 0.169 0.309 0.687

Chl 0.251 0.413 −0.041

REC −0.372 −0.027 0.363

MDA −0.247 −0.335 0.183

SP 0.366 0.186 0.018

SSC 0.106 0.383 −0.422

SOD 0.283 0.155 0.082

POD 0.269 −0.427 −0.068

CAT 0.310 −0.371 −0.250

Characteristic root 4.720 2.566 1.125

Cumulative contribution rate (%) 42.912 66.239 76.463

DDI, drought damage index; RWC, relative water content; Fv/Fm, photochemical
efficiency; Chl, chlorophyll; REC, relative electrical conductivity; MDA,
malondialdehyde; SP, soluble protein; SSC, soluble sugar; SOD, superoxide
dismutase; POD, peroxidase; CAT, catalase.

FIGURE 6 | Principal component analysis of different oat varieties.

2012). The greater the degree of increase in MDA and REC, the
weaker the stability of the cell membrane.

The Chl fluorescence technique is used to screen tolerant
varieties under abiotic stress. It provides valuable information
about incomplete energy dissipation and changes in Fv/Fm
(Ohashi et al., 2006; Oukarroum et al., 2007; Ristic et al., 2007;
Jumrani et al., 2016). The Chl fluorescence parameter Fv/Fm
reflects damage to the PSII center and is an appropriate index
to evaluate the photoinhibition of plants under abiotic stress
(Paknejad et al., 2007). Crop varieties that can maintain high
Fv/Fm under drought conditions are considered to be stress-
tolerant (Zlatev, 2009). Drought stress can damage chloroplasts
and inhibit the synthesis of Chl, leading to a reduction in Chl

FIGURE 7 | Principal component analysis of different indicators.

TABLE 4 | Subordinate function and D value of the drought resistance evaluation.

Variety Subordinate function value D value Rank

µ1 µ2 µ3

JM 0.060 0.620 0.719 0.244 14

BF 0.254 0.533 0.440 0.278 12

LX 0.559 0.571 1.000 0.476 5

BL 0.337 0.696 0.142 0.322 11

MW 0.000 0.428 0.468 0.148 15

TY2 0.590 0.596 0.808 0.475 6

TY1 0.357 0.676 0.923 0.405 7

JY2 0.355 0.711 0.766 0.397 9

QH444 0.736 0.251 0.121 0.387 10

Q1 0.517 0.000 0.418 0.264 13

QY1 0.398 1.000 0.000 0.404 8

LN 0.709 0.550 0.558 0.490 3

Q2 0.508 0.953 0.369 0.478 4

BY14 0.665 0.880 0.642 0.557 2

DY2 1.000 0.682 0.580 0.647 1

and depressed photosynthesis (Fang and Xiong, 2015; Guo et al.,
2018). The decrease of Chl concentration in plants may be
a nonstomatal limiting factor, and Chl in plants with strong
drought resistance is less affected by drought (Kraus et al., 1995).
Studies on legumes, chickpeas, and wheat showed that drought
stress decreased the content of Chl a and b (Mafakheri et al.,
2010; Mathobo et al., 2017). The Chl content of drought-tolerant
varieties was higher than that of drought-sensitive varieties
(Khayatnezhad and Zaeifizadeh, 2011; Sharifi and Mohammad
Khani, 2016). The Fv/Fm and Chl l were positively correlated
with the plant’s sensitivity to drought (Maxwell and Johnson,
2000; Guo et al., 2016; Mo et al., 2016; Amor et al., 2018).
Here, the Fv/Fm declined in all the tested materials. This was
consistent with Dactylis under drought stress (Li et al., 2015).
LX, TY2, and DY2 exhibited the smallest decreases in Fv/Fm,
indicating that the three varieties possessed a strong tolerance
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TABLE 5 | Gray correlation analysis between the identification indices and D values.

Index X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

DDI RWC Fv/Fm Chl REC MDA SP SSC SOD POD CAT

Correlation
degree

0.839 0.885 0.843 0.791 0.829 0.865 0.660 0.666 0.603 0.591 0.627

Correlation
order

4 1 3 6 5 2 8 7 10 11 9

DDI, drought damage index; RWC, relative water content; Fv/Fm, photochemical efficiency; Chl, chlorophyll, REC, relative electrical conductivity; MDA, malondialdehyde;
SP, soluble protein; SSC, soluble sugar; SOD, superoxide dismutase; POD, peroxidase; CAT, catalase.

to drought. Moreover, the Chl content of oat varieties decreased
after drought stress, which may be the result of damage to
chloroplasts and inhibition of Chl synthesis. Chl in plants with
strong drought resistance is less affected by drought (Luo et al.,
2018; Upadhyay et al., 2020). It was indicated that Fv/Fm and
Chl content provide an important basis for drought resistance
screening of different oat varieties.

Screening of Drought Resistance
Indexes at the Seedling Stage
The drought tolerance coefficient (DC) is an index to measure
drought effect based on the degree of decrease for each character
under water stress compared with that under water adequacy.
It can be used to identify drought tolerance varieties (Classen
and Shaw, 1970; Fischer et al., 1989; Regan et al., 1993).
Membership function value is a multi-index comprehensive
evaluation method for determining the drought resistance
of materials (Yan et al., 2009; Peng et al., 2013). Among
the multivariate classification methods, principal component
analysis is a commonly used sample classification method
(Kim et al., 2013). Principal component analysis converts
numerous related indicators into a new comprehensive index
with less numbers and no correlation, based on retaining a large
amount of the original information (Chen et al., 2014). It is
difficult to associate drought resistance with specific physiological
processes without using multivariate analysis. These methods
enable many hypothetical drought tolerance traits to be sorted,
depending on the degree of importance within crops, thus
highlighting the traits that have a causal relationship with
drought resistance. Yuan et al. (2019) screened the main drought
resistance evaluation indexes using principal component analysis
by measuring physiological indexes, such as osmotic adjustment
substances and enzyme activities, considering that peroxidase
activity and proline content were related to drought resistance
ability of rice. Zeng et al. (2020) conducted gray correlation
analysis on different physiological indicators of bermudagrass
and screened for electrical conductivity, Chl content, and MDA
content as the main drought resistance evaluation indicators.
In our study, the DDI, RWC, Fv/Fm, and MDA content
reflected the drought resistance of oat seedlings based on a
principal component analysis and gray correlation analysis,
which was similar to the results of Li et al. (2017). Therefore,
it could be concluded that the photosynthetic characteristics
(Fv/Fm), DDI, RWC, and membrane stability (MDA) could
be used as the main evaluation indexes of oat seedlings under

PEG drought stress. In the present study, 11 single indexes
were transformed into three independent comprehensive indices
using the principal component analysis. The first principal
component mainly reflected information related to the water
status, water-holding capacity, and membrane stability of the
plant. Meanwhile, the second principal component mainly
reflected the information related to protective enzymes, and
the third principal component mainly reflects the information
related to leaf photosynthetic physiology. Based on these three
principal components, membership function analysis was carried
out, and the comprehensive drought resistance value (D value)
was also calculated. Finally, the three varieties with the strongest
drought resistance were DY2, BY14, and LN. They can be used to
select for more suitable varieties in regions that need crops with
these characteristics. Additionally, a genotype that originated
from Canada, LX, also had relatively strong drought resistance
and thus could be used as a drought-resistant alternative cultivar
among the introduced varieties. Principal component analysis
and gray correlation analysis are simple and effective tools,
which provided the possibility of early assessment of genotypic
potential from the perspective of water stress tolerance. These
methods could be used to evaluate plant responses to various
environmental stresses in the early stage of development.

CONCLUSION

We found that oat demonstrated an effective adaptation
mechanism by analyzing the drought resistance of enzymes,
MDA, and osmotic regulators. Oat responded to drought stress
by up-regulating antioxidant and osmotic regulation systems,
thus enhancing their drought resistance. In addition, the DDI,
RWC, Fv/Fm, and MDA content could be used as key attributes
for evaluating drought resistance in oats. The varieties DY2 and
BY14 were the most drought-resistant and could be used as
candidate materials for breeding drought-resistant oats. These
varieties can be effectively used as control parents in different
cross breeding programs for the genetic improvement of oats for
drought resistance.
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