

# PAPER • OPEN ACCESS

Conversion coefficients from total air kerma to the newly proposed ICRU/ICRP operational quantities for radiation protection for photon reference radiation qualities

To cite this article: Rolf Behrens and Thomas Otto 2022 J. Radiol. Prot. 42 011519

View the article online for updates and enhancements.

# You may also like

- <u>On the operational quantity H<sub>p</sub>(3) for eye</u> lens dosimetry R Behrens

- Conversion coefficients from absorbed dose to tissue to the newly proposed ICRU/ICRP operational quantities for radiation protection for beta reference radiation qualities Rolf Behrens

 Impact of the implementation of the new radiation quantities recommended by ICRU/ICRP for practical use in interventional radiology: a Monte Carlo study Mahmoud Abdelrahman, Pasquale Lombardo, Jérémie Dabin et al.

This content was downloaded from IP address 202.8.112.164 on 07/07/2023 at 08:52

# Journal of Radiological Protection



PAPER

**OPEN ACCESS** 

RECEIVED 2 September 2020 REVISED

27 October 2020

ACCEPTED FOR PUBLICATION 6 November 2020

PUBLISHED 25 January 2022

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.



Conversion coefficients from total air kerma to the newly proposed ICRU/ICRP operational quantities for radiation protection for photon reference radiation qualities

Rolf Behrens<sup>1,\*</sup> D and Thomas Otto<sup>2</sup>

Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig D-38116, Germany

<sup>2</sup> Technology Department, CERN, CH-1211 Geneve 23, Switzerland

\* Author to whom any correspondence should be addressed.

# E-mail: Rolf.Behrens@PTB.de

**Keywords:** conversion coefficients, proposed operational quantities, photon radiation fields from ISO 4037 Supplementary material for this article is available online

### Abstract

The International Commission on Radiation Units and Measurements (ICRU) has recently proposed a set of new operational quantities for radiation protection. ICRU supplied conversion coefficients for mono-energetic photons but not for photon reference radiation qualities defined by the International Organization for Standardization (ISO) in ISO 4037 and by the International Electrotechnical Commission (IEC) in IEC 61267. Therefore, in this work, conversion coefficients from total air kerma to the newly proposed operational quantities are averaged for photon reference radiation qualities. Also, parameters necessary to determine the influence of the air density on the conversion coefficients are determined. Finally, the impact of the newly proposed quantities upon the response of dosemeters is investigated.

# 1. Introduction

In its report number 57 on operational quantities used in radiological protection [1], the International Commission on Radiation Units and Measurements (ICRU) published conversion coefficients for those quantities for mono-energetic particles (photons, electrons, and neutrons). However, over the years, ICRU has developed new definitions of operational quantities in radiation protection and has published corresponding values of conversion coefficients from fluence to the newly proposed quantities for mono-energetic particles of several types (photons, electrons, neutrons, and others) as well as conversion coefficients from fluence for photons [2–4]. The corresponding report ICRU 95 has been jointly published by ICRU and ICRP (International Commission on Radiological Protection) in 2020 [5].

In this work, data for spectrum averaged conversion coefficients from total air kerma to the new quantities are calculated for the x- and gamma radiation qualities defined by the international standards ISO 4037 [6–9] and IEC 61267 [10], using the methods described earlier [11] to determine the corresponding conversion coefficients for the current operational quantities according to ICRU 57 [1]. Furthermore, the influence of the air density on the spectral distributions and consequently on the conversion coefficients is determined by applying the exponential attenuation law for photons to the spectra. Subsequently, the conversion coefficients are calculated for air densities from  $\rho = 0.96$  kg m<sup>-3</sup> to  $\rho = 1.32$  kg m<sup>-3</sup> (i.e. -20 % to +10 % from reference air density,  $\rho_{ref} = 1.1974$ kg m<sup>-3</sup>, covering the range of standard test conditions recommended by ISO [8]) to obtain the corresponding correction factors for the conversion coefficients that have been calculated [12].

As mentioned above, the same methods described in earlier publications of one of the authors are used and only the conversion coefficients for mono-energetic particles for the newly proposed operational quantities are applied instead of those according to ICRU 57. Therefore, several formulas and descriptions have been adopted from the author's previous publications [11, 12].

# 2. Quantities considered

The new operational quantities are as follows [5]:

- estimates of the effective dose for the protection against stochastic effects and, accordingly, in the unit Sv:
- \* ambient dose,  $H^*$ , and
- \* personal dose,  $H_{\rm p}$ , depending on the direction of incidence,  $\Omega$ ;

• estimates of the dose to the lens of the eye for the protection against the tissue effects (often deterministic) and, accordingly, in the unit Gy:

- \* directional absorbed dose in the lens of the eye,  $D'_{lens}(\Omega)$ , depending on,  $\Omega$ ,
- \* personal absorbed dose in the lens of the eye,  $D_{p \text{ lens}}$ , depending on  $\Omega$ ;

• estimates of the dose to local skin for the protection against the tissue effects (often deterministic) and, accordingly, in the unit Gy:

- \* directional absorbed dose in local skin,  $D'_{\text{local skin}}(\Omega)$ , depending on  $\Omega$ , defined in a slab,
- \* personal absorbed dose in local skin,  $D_{p \text{ local skin}}$ , depending on  $\Omega$ , for the trunk of the body defined in a slab,
- \* personal absorbed dose in local skin,  $D_{p \text{ local skin}}$ , depending on  $\Omega$ , for the extremities defined in a pillar,
- \* personal absorbed dose in local skin,  $D_{p \text{ local skin}}$ , depending on  $\Omega$ , for the finger defined in a rod.

The corresponding values of conversion coefficients from total air kerma,  $K_a$ , to these quantities are denoted accordingly with small symbols instead of capital ones, i.e.  $h^*_K = H^*/K_a$  and  $h_{pK} = H_p/K_a$  for example.

The numerical values of conversion coefficients for  $d'_{lensK}$  and  $d_{p \, lensK}$  are identical for the same particle type, energy and direction or angle of incidence. The symbol used is  $d_{lensK}$ .

Accordingly, the numerical values of conversion coefficients for  $d'_{\text{local skin }K}$  and  $d_{\text{p local skin }K}$ , the latter for exposure of the slab phantom, are identical for the same particle type, energy and direction or angle of incidence. The symbol used is  $d_{\text{local skin }K}$ .

For  $d_{\text{local skin }K}$ , additional indices describe the calibration phantom considered:  $d_{\text{local skin }K \text{ slab}}$ ,  $d_{\text{local skin }K \text{ pillar}}$  and  $d_{\text{local skin }K \text{ rod}}$  denote the quantity  $D_{\text{p local skin}}$  on the slab, the pillar and the rod respectively. Finally, table 1 shows an overview of all quantities for which values are determined in this work.

ritary, table 1 shows an overview of an quantities for which values are determined in this wor

All values presented in this paper are based on data calculated using the kerma-approximation method, i.e. during an irradiation charged particle equilibrium must be assured, e.g. by placing a sufficiently thick plate made of polymethyl methacrylate (PMMA) in front of the object to be irradiated. For details, see ISO 4037–3 [8].

# 3. Conversion coefficients

#### 3.1. Calculation of spectrum averaged conversion coefficients

Spectrum averaged values of the conversion coefficients,  $c_K(E_i;\alpha)$ , from total air kerma to quantity *C* for radiation quality R are obtained by averaging the spectra with the corresponding conversion coefficients for msono-energetic photons. The spectra are available in binned form and the averaging is performed by a sum over all bins:

$$c_K(\mathbf{R};\alpha) = \frac{\sum\limits_{i=1}^{N} \left\{ \Phi(\mathbf{R};E_i) \cdot k_{\Phi}(E_i) \cdot c_K(E_i;\alpha) \right\}}{\sum\limits_{i=1}^{N} \left\{ \Phi(\mathbf{R};E_i) \cdot k_{\Phi}(E_i) \right\}}$$
(1)

where N is the number of energy channels of the spectrum,

 $\Phi(\mathbf{R}; E_i)$  is the spectral fluence of the radiation quality R, at photon energy  $E_i$ .

 $c_K(E_i;\alpha)$  is the conversion coefficient from total air kerma to the operational quantity

calculated using the kerma-approximation method at photon energy  $E_i$ .

 $k_{\Phi}(E_i)$  is the conversion coefficient from photon fluence to total air kerma for photon energy  $E_i$  given by  $k_{\Phi}(E_i) = K_a/\Phi = (\mu_{en}/\rho) \cdot E_i/(1-g)$  with the energy absorption coefficient,  $(\mu_{en}/\rho)$ , and fraction of radiative losses in air, g, for energy  $E_i$ . The values for  $(\mu_{en}/\rho)$  are from the literature [14, 15] with renormalized Scofield photoeffect cross sections from ICRU report 90 [13] and actual values for g [16]. These values for

| Quantity                                                        | Physical identity                                                                   | Name of conversion coefficient                                                                                                                                                                                  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{h^*_K}$                                              | $H^*/K_a$                                                                           | Total air kerma to ambient dose                                                                                                                                                                                 |
| $h_{\mathrm{p}K}(\alpha)$                                       | $H_{\rm p}(\alpha)/K_{\rm a}$                                                       | Total air kerma to personal dose                                                                                                                                                                                |
| $d_{\mathrm{lens}K}(\alpha)$                                    | $\dot{D}_{\text{lens}}(\alpha)/K_{a} = D_{\text{plens}}(\alpha)/K_{a}$              | Total air kerma to directional absorbed dose in the lens<br>of the eye total air kerma to personal absorbed dose in<br>the lens of the eye                                                                      |
| $d_{	ext{local skin }K}(lpha)_{	ext{slab}}$                     | $D'_{\rm local  skin}(\alpha)/K_{\rm a} = D_{\rm p  local  skin}(\alpha)/K_{\rm a}$ | Total air kerma to directional absorbed dose in local<br>skin total air kerma to personal absorbed dose in local<br>skin on the slab phantom                                                                    |
| $d_{local \ skin \ K}(\alpha)_{pillar}$                         | $D_{ m p local skin}(lpha)/K_{ m a}$                                                | Total air kerma to personal absorbed dose in local skin<br>on the pillar phantom                                                                                                                                |
| $d_{\operatorname{local skin} K}(\alpha)_{\operatorname{rod}}$  | $D_{\rm p\ local\ skin}(lpha)/K_{\rm a}$                                            | Total air kerma to personal absorbed dose in local skin<br>on the rod phantom                                                                                                                                   |
| $k_{\Phi}$                                                      | $K_a/\Phi$                                                                          | Fluence to total air kerma                                                                                                                                                                                      |
| (1-g)                                                           | -                                                                                   | One minus the fraction of radiative losses in air                                                                                                                                                               |
| $\left(\frac{\mu_{en, not, renorm.}}{\mu_{en, renorm.}}\right)$ |                                                                                     | Energy absorption coefficient based on not<br>renormalized photoeffect cross sections divided by<br>energy absorption coefficient based on renormalized<br>photoeffect cross sections (taken from ICRU 90 [13]) |

| Table 1. Sv | zmbols used | for the | conversion   | coefficients  | and further   | quantities.  |
|-------------|-------------|---------|--------------|---------------|---------------|--------------|
|             | moore acca  | 101 010 | 001110101011 | 0001110101110 | and the thirt | quantitieres |

|                                 | Table 2. Sources for the spectra used.                                 |                            |
|---------------------------------|------------------------------------------------------------------------|----------------------------|
| Type of radiation quality       | Radiation qualities and abbreviation <sup>a</sup>                      | Source of spectra          |
| X radiation qualities with high | Low air kerma rate series: L-10 up to L-240                            | Catalogue of x-ray spectra |
| voltages up to 300 kV           | Narrow spectrum series: N-10 up to N-300                               | [17]                       |
|                                 | Wide spectrum series: W-60 up to W-300 High                            |                            |
|                                 | air kerma rate series: H-10 up to H-300                                |                            |
| X radiation qualities with high | Narrow spectrum series: N-350 up to N-400                              | Ankerhold [18]             |
| voltages above 300 kV           | High air kerma rate series: H-350 up to H-400                          |                            |
| Gamma radiation qualities from  | Photons from <sup>137</sup> Cs and <sup>60</sup> Co: S-Cs and S-Co     | EGSnrc code package [19]   |
| radioactive sources             |                                                                        | 1 0 1 1                    |
| Gamma radiation qualities from  | Photons from the de-excitation of <sup>12</sup> C and <sup>16</sup> O: | Behrens <i>et al</i> [20]  |
| nuclear reactions               | R-C and R-F                                                            |                            |
| X radiation qualities used for  | RQR qualities according to IEC 61267 [10]:                             | Büermann [21]              |
| medical diagnostics with high   | RQR-2 up to RQR-10                                                     |                            |
| voltages up to 150 kV           | -                                                                      |                            |

<sup>a</sup> Where available, the abbreviations are taken from ISO 4037-1 [7], otherwise from the corresponding reference given in col. 3.

 $k_{\Phi}(E_i)$  deviate from those presumed in ISO 4037 [5–7] as there, no renormalized photoeffect cross sections were used while in the new ICRU/ICRP report and, therefore, also in this paper, renormalized cross sections are used. For that reason and for information purposes, the value (1-g) and the ratio  $(\mu_{en,not\_renormalized}/\mu_{en,renormalized})$  have also been determined and are given in the results section.

The sources of the x and gamma radiation spectra,  $\Phi(R;E_i)$ , are given in table 2. All data for  $c_K(E_i;\alpha)$  as well as for  $k_{\Phi}(E_i)$  are taken for mono-energetic photons from the new ICRU/ICRP report 95 [5]: the data for  $c_K(E_i;\alpha)$  and  $k_{\Phi}(E_i)$  are taken from the new ICRU/ICRP report, all calculated using the kerma-approximation method. In the cases of  $h^*_K$  and  $h_{pK}(\alpha)$  below 10 keV, the data determined not using the kerma-approximation method are used as no data using the kerma- approximation method were available and the conversion coefficients  $h^*_K(E_i)$  and  $h_{pK}(E_i;\alpha)$  are assumed to smoothly tend to zero at 3 keV. Furthermore, for  $d_{local skin K}(E_i;\alpha)_{slab}$  below 10 keV the data determined for the pillar phantom are used as no data were available for the slab. Both methods are justified as for these photon energies the size of the backscattering phantom is not relevant as long as it exceeds the continuous slowing down approximation (CSDA) range of secondary electrons which is approximately 2.5  $\mu$ m in tissue for 10 keV electrons. Furthermore, corresponding data for 10 keV deviate by less than 1 %, i.e. the data for  $h^*_K(E_i)$  and  $h_{pK}(E_i;\alpha)$ with and without the kerma- approximation method as well as the data for  $d_{local skin K}(E_i;\alpha)_{slab}$  and  $d_{local skin K}(E_i;\alpha)_{pillar}$  at 10 keV deviate less than 1 %.

The following interpolation methods are used to obtain values for photon energies  $E_i$  between the discrete photon energies:

• for  $h_{K}^{*}(E_{i})$  and  $h_{pK}(E_{i};\alpha)$ , for all energies, a natural cubic spline interpolation is used;

• for all other conversion coefficients  $c_K(E_i;\alpha)$  a natural cubic spline interpolation is used up to 100 keV photon energy and above 100 keV a linear-logarithmic interpolation, i.e. a straight line in a linear-logarithmic diagram is used in order to avoid oscillations;

• for  $k_{\Phi}(E_i)$  a logarithmic-logarithmic interpolation, i.e. a straight line in a double logarithmic diagram is used, except between 50 keV and 80 keV a natural cubic spline interpolation is used in order to better follow the curvature.

The fluence spectra used, see table 2, partly contain negative fluence values due to small oscillations of the deconvolution at photon energies where the real fluence usually is zero. These negative fluences are not set to zero but fully considered as they balance with corresponding fluence at similar photon energies and as they do not significantly contribute to the sums in equation (1) [17].

### 3.2. Validation of the calculations

In order to make sure the interpolations and averaging of the spectra are properly achieved, both authors have determined corresponding values of conversion coefficients independently. The corresponding results are numerically equal apart from minor rounding effects well below 1 % or in the last significant digit and can be neglected; in conclusion, the differences are well within the uncertainties stated in the tables of results, see below.

Conversion coefficients for the ambient dose,  $h^*_{K}(R)$ , as well as for the personal dose for different incident directions  $\alpha$ ,  $h_{pK}(R;\alpha)$  in a calibration distance of 1 m, here reported in table A2, are numerically equal to a previous publication [22] in which the mono-energetic conversion coefficients calculated with full electron transport from [5] were used. At photon energies below 400 keV this choice yields no noticeable difference in the results.

#### 3.3. Results

The resulting values for the conversion coefficients,  $c_K(R;\alpha)$ , as well as the fluence weighted mean energy, E(R), the kerma coefficient,  $k_{\Phi}(R)$ , the radiative loss correction in air, (1-g)(R), and the ratio  $(\mu_{en,not\_renormalized}/\mu_{en,renormalized})(R)$  are listed in appendix A in tables (A1)-(A7) for a distance of 1.0 m between the radiation source and the point of test and in appendix B in tables (B1)-(B7) for a distance of 2.5 m. In tables B1-B7, i.e. for a distance of 2.5 m, values are only given in case they deviate from those at 1.0 m by more than 0.2 %. This is also the case for the mean energies. The deviations occur because the additional air path of 1.5 m results in scattering and absorption of—especially low energy—photons. This, in turn, hardens the photon spectra, i.e. the mean energy increases. Significant deviations occur at small energies and at large angles of incidence. This is due to the fact that here the conversion coefficients  $c_K(E_i;\alpha)$  or  $k_{\Phi}(E_i)$  strongly depend on the photon energy.

From the tables, it is obvious that the data for  $h_{K}^{*}$  and  $h_{pK}(0^{\circ})$  are equal as the corresponding values for mono-energetic photons are equal. Anyway, two separate columns are given for these quantities in tables (A2) and (B2) to clearly demonstrate that these different quantities have the same values.

The shape of the x-ray spectra affects the actual value of the conversion coefficient, (especially below 30 kV tube voltage). Therefore, before applying the values, it must be ensured that the spectra used in the laboratory that is willing to apply the values from this work are sufficiently similar to the ones used in this work, see table 2, i.e. matched reference radiation fields according to ISO 4037 are used. For matched fields a laboratory needs to operate their facility using the exact conditions given in clause 4 of ISO 4037–1 [6] like the high voltage and inherent filtration of the x-ray tube, the additional filtration and others. Otherwise, the laboratory needs to determine the conversion coefficients for their own spectra either by determining the conversion coefficients using spectrometry, or the required value is measured directly using secondary standard dosimeters, i.e. they use characterized reference radiation fields according to ISO 4037–1 [6]. The energy dependences of the conversion coefficients of the quantities considered in this work are different to those of the quantities treated in ISO 4037-1. Therefore, the exact requirements for the high voltage, inherent tube filtration and additional filtration to produce the x-ray spectra may deviate from the requirements given in ISO 4037-1. Further details can be found in subsection 4.2 of ISO 4037-1. Alternatively, x-ray spectrometry needs to be undertaken and the conversion coefficients to be determined by applying equation (1), i.e. characterized reference radiation fields according to ISO 4037 are used. Details and hints regarding spectrometry can be found in ISO 4037–4 [9].

Figures (1)–(3) show the conversion coefficients from total air kerma to three different dose quantities. Data are shown for the mono-energetic photons taken from ICRU [5] and interpolated as described in the bullets in subsection 3.1, plotted as lines, as well as data for radiation qualities, plotted as symbols at the mean energies of the corresponding spectra, averaged according to equation (1). Data for normal radiation incidence ( $\alpha = 0^{\circ}$ ) as well as for rotational incidence (ROT) are presented. The different radiation qualities

have different degrees of filtration with decreasing filter thickness from the L, N, W, H to the RQR series, see figure 4. Thus, the spectra of the L series are narrowest, i.e. similar to mono-energetic photons, while the spectra of the RQR series are broadest. The spectra of the S and R series are dominated by one or a few mono-energetic photon energies. Thus, as expected, the values for the L, S and R series lie almost on the lines for mono-energetic photons, while the values for the N, W, H and RQR series lie further below the lines the less filtration the series have, i.e. the broader the corresponding spectra are. The reason for this is, especially for broad spectra like the RQR series, that the conversion coefficients for mono-energetic photons from the left and right of the spectrum's mean energy contribute to the averaging according to equation (1) and lead to lower mean values, see e.g. the curve for  $\alpha = 0^{\circ}$  in figure 3), the averaging according to equation (1) does not lead to significantly lower values than for mono-energetic photons. Therefore, almost all symbols in figure 3 nearly match the lines. Thus, the corresponding conversion coefficient, in this case  $d_{\text{local skin } K}(0^{\circ})_{\text{rod}}$ , can be approximated by the value for the respective spectrum's mean energy. This is not the case if the values for mono-energetic photons strongly depend on the energy, see e.g. Figure 1.

# 3.4. Values for air kerma, $K_a$ , and conversion coefficients to the operational quantities, $c_K$ : ICRU 90 vs ISO 4037

To be clear: the values for air kerma,  $K_a$ , the kerma coefficient,  $k_{\Phi}$ , and the conversion coefficients,  $c_K$ , according to this work are based on total air kerma according to ICRU 90 [13],  $K_{a,\text{ICRU90}}$ , i.e., using renormalized cross sections for the mass energy absorption coefficients or air,  $(\mu_{en}/\rho)$ . However, in the current version of ISO 4037-3 [8] all values are based on not renormalized cross sections and total air kerma,  $K_{a,\text{total}}$ . What is even more different is that in the outdated but still often used version of ISO 4037-3 as of 1999, all values are based on collision air kerma,  $K_{a,\text{col}}$ , and also on not renormalized cross sections.

To obtain  $K_{a,ISO2019}$  and  $c_{K,ISO2019}$ , alternative values which are compatible with the values in ISO 4037-3 [8], from the values for  $K_{a,ICRU90}$  and  $c_{K,ICRU90}$  stated in this work the following equations need to be used:

$$K_{a,\text{ISO2019}} = K_{a,\text{ICRU90}} \cdot k_{\text{ISO2019},\text{ICRU90}} \text{ and } c_{K,\text{ISO2019}} = \frac{c_{K,\text{ICRU90}}}{k_{\text{ISO2019},\text{ICRU90}}}$$

with  $k_{\text{ISO2019,ICRU90}} = \frac{K_{\text{a,total}}}{K_{\text{a,ICRU90}}} = \frac{\left(\frac{\mu_{\text{en}}}{\rho}\right)_{\text{not\_renormalized}}}{\left(\frac{\mu_{\text{en}}}{\rho}\right)_{\text{renormalized}}}.$ 

To obtain corresponding values which are compatible with the values in the outdated ISO 4037-3 as of 1999, the following equations need to be used:

$$K_{a,ISO1999} = \{K_{a,ICRU90} \cdot k_{ISO2019,ICRU90} \cdot (1-g)\}$$
  
and  $c_{K,ISO1999} = \frac{c_{K,ICRU90}}{\{k_{ISO2019,ICRU90} \cdot (1-g)\}}$ 

with *g* being the fraction of the kinetic energy transferred to charged particles that is subsequently lost on average in radiative processes (bremsstrahlung, in-flight annihilation, and fluorescence radiations) as the charged particles slow to rest in the material (air) [13].

Thus, of course, the values for the operational quantities, C, are independent of the scheme used, be it according to ICRU90, ISO1999 or ISO2019 as the corresponding corrections cancel each other out during the multiplication leading to the operational quantity:

$$C = K_{a} \cdot c_{K}$$

with C either being H or D.

#### 3.5. Impact of the newly proposed quantities

The impact of the newly proposed quantities is investigated by the calculation of the ratio of the conversion coefficients for the newly proposed and the current operational quantities, see figure 5. This ratio represents the response of a dosemeter with respect to the newly proposed quantities while the dosemeter is assumed to have an ideal response of unity with respect to the current quantities.

From the top of figure 5 it is obvious that, for whole body and area dosemeters, a simple change of the calibration factor can be sufficient (depending on the dosemeter's response with respect to the current quantities) to fulfill at least the minimum performance requirements according to IEC 62387 [23] or IEC 61526 [24], i.e. a response within 0.71 and 1.67 between 80 keV and 1.25 MeV; possibly even between about 50 keV and 7 MeV.



**Figure 1.** Conversion coefficients from total air kerma to personal dose for normal radiation incidence ( $\alpha = 0^\circ$ , red upper curve) as well as for rotational incidence (ROT, blue lower curve) for mono-energetic values taken from ICRU [5], interpolated as described in the text, lines, as well as values averaged over radiation qualities, symbols.



**Figure 2.** Conversion coefficients from total air kerma to directional and personal absorbed dose in the lens of the eye for normal radiation incidence ( $\alpha = 0^{\circ}$ , red upper curve) as well as for rotational incidence (ROT, blue lower curve) for mono-energetic values taken from ICRU [5], interpolated as described in the text, lines, as well as values averaged over radiation qualities, symbols.







**Figure 4.** Comparison of spectra of the L, N, H, W and RQR series with 100 keV endpoint energy (only in the W series 100 keV endpoint energy is not available, therefore, 110 keV was chosen). The degree of filtration is largest for the L series and smallest for the RQR series [17, 21].





The middle part of figure 5 shows that, for eye lens dosemeters, above about 13 keV possibly no change of the calibration factor is required to fulfill the relevant IEC standard.

The bottom part of figure 5 reveals that, for local skin dosemeters, possibly no change is necessary at all. The strong difference between the graphs for  $h_{pK}(0.07;\alpha)_{rod}/d_{local skin K}(\alpha)_{rod}$  and  $h'_{K}(0.07;\alpha)/d_{local skin K}(\alpha)_{slab}$  below about 20 keV have their reason in different interpolation methods used

for  $h_{pK}(0.07;\alpha)_{rod}$  and  $h'_K(0.07;\alpha)$ , see the corresponding references given in ISO 4037–3 [8]. For all types of dosemeters, the following applies: if one wants to reach a more or less perfect response, i.e. unity, or one wants to fulfill the relevant IEC standard in a broader energy range, or the dosmeter's response with respect to the current quantities is rather disadvantageous, either the algorithm to determine

the dose from the detector's signal(s) or, more likely, the detector's housing and/or filter material will need to be changed.

### 4. Correction factors to account for air densities apart from the reference air density

#### 4.1. Method

The spectrum of low energy photon radiation qualities depends on the air density during an irradiation as, for example, a larger air density results in more absorption and scattering between the radiation source (usually an x-ray tube) and the point of test. Therefore, the spectra of all radiation qualities with a mean energy below 40 keV are calculated for air densities from  $\rho = 0.96$  kg m<sup>-3</sup> to  $\rho = 1.32$  kg m<sup>-3</sup> by applying the exponential attenuation law for photons. As a basis, the spectra at reference conditions, i.e. at  $\rho_{ref} = 1.1974$  kg m<sup>-3</sup>, are used. From the resulting spectra at different air densities the conversion coefficients  $h(\rho)$  and  $d(\rho)$  have been calculated. The corresponding correction factor is given by

$$k(\rho,h) = \frac{h(\rho)}{h(\rho_{\rm ref})}$$
(2.1)

or

$$k(\rho, d) = \frac{d(\rho)}{d(\rho_{\text{ref}})}$$
(2.2)

where  $\rho$  is the considered air density,  $\rho_{ref}$  is the reference air density, and  $h(\rho_{ref})$  or  $d(\rho_{ref})$  is the conversion coefficient calculated in the previous section, i.e. given in tables (A1)–(A7). The corresponding correction factor for the quantity total air kerma is

$$k(\rho, K_{a}) = \frac{K_{a}(\rho)}{K_{a}(\rho_{\text{ref}})}$$
(2.3)

The dependence of the conversion coefficients on the air density is approximately linear resulting in

$$k(\rho,h) = 1 + m(d_{\text{air}}) \cdot (\rho - \rho_{\text{ref}})$$
(3.1)

or

$$k(\rho, d) = 1 + m(d_{air}) \cdot (\rho - \rho_{ref})$$
(3.2)

where  $m(d_{air})$  is the slope for an air path  $d_{air}$  between the source and the point of test. For the quantity total air kerma,  $K_a$ , the following equation applies

$$k(\rho, K_{\rm a}) = 1 + m(d_{\rm air}) \cdot (\rho - \rho_{\rm ref}) \cdot (1 - \frac{d_{\rm MC}}{d_{\rm air}})$$
(3.3)

where  $d_{MC}$  is the distance between the source and the monitor chamber to determine the total air kerma during an actual irradiation, see ISO 4037–2 [8].

The slope for both the total air kerma and the conversion coefficient  $m(d_{air})$  depends approximately linearly on the distance  $d_{air}$ 

$$m(d_{\rm air}) = m(1.0 \text{ m}) + m_d \cdot (d_{\rm air} - 1.0 \text{ m})$$
(4)

where m(1.0 m) is the slope for  $d_{\text{air}} = 1.0 \text{ m}$  and  $m_d$  is the slope of the slope  $m(d_{\text{air}})$ .

From the parameters m(1.0 m) and  $m_d$ , a correction factor for the air density during an irradiation,  $\rho_{irr}$ , finally results in (by inserting equation 6 into equation 5.1)

$$k(\rho_{\rm irr}, h) = 1 + \{m(1.0 \ {\rm m}) + m_d (d_{\rm air} - 1.0 \ {\rm m})\} \cdot (\rho_{\rm irr} - \rho_{\rm ref})$$
(5.1)

or

$$k(\rho_{\rm irr}, d) = 1 + \{m(1.0 \text{ m}) + m_d \cdot (d_{\rm air} - 1.0 \text{ m})\} \cdot (\rho_{\rm irr} - \rho_{\rm ref})$$
(5.2)

for the conversion coefficients h or d, and to (by inserting equation 6 into equations 5.2 or 5.3)

$$k(\rho_{\rm in}, K_{\rm a}) = 1 + \{m(1.0 \text{ m}) + m_d \cdot (d_{\rm air} - 1.0 \text{ m})\} \cdot (\rho_{\rm in} - \rho_{\rm ref}) \cdot \left(1 - \frac{d_{\rm MC}}{d_{\rm air}}\right)$$
(5.3)

for the total air kerma  $K_a$ . The approximation via the slopes m(1.0 m) and  $m_d$  results in errors not larger than 1 % for the ranges of air densities specified in the tables of results (see below).

As the operational quantities are given by the product  $H = K_a \cdot h$  or  $D = K_a \cdot d$ , the corresponding correction factor is given by the product of the two contributions:

$$k(\rho_{\rm irr}, H) = k(\rho_{\rm irr}, K_{\rm a}) \cdot k(\rho_{\rm irr}, h) \tag{6.1}$$

or

$$k(\rho_{\rm irr}, D) = k(\rho_{\rm irr}, K_{\rm a}) \cdot k(\rho_{\rm irr}, d) \tag{6.2}$$

The dose during an irradiation finally results from the dose under reference conditions in

$$K_{a}(\rho_{irr}) = k(\rho_{irr}, K_{a}) \cdot K_{a}(\rho_{ref})$$
(7.1)

for total air kerma  $K_a$  and in

$$H(\rho_{\rm irr}) = k(\rho_{\rm irr}, H) \cdot H(\rho_{\rm ref}) = k(\rho_{\rm irr}, K_{\rm a}) \cdot K_{\rm a}(\rho_{\rm ref}) \cdot k(\rho_{\rm irrr}, h) \cdot h(\rho_{\rm ref})$$
(7.2)

or

$$D(\rho_{\rm irr}) = k(\rho_{\rm irr}, D) \cdot D(\rho_{\rm ref}) = k(\rho_{\rm irr}, K_a) \cdot K_a(\rho_{\rm ref}) \cdot k(\rho_{\rm irr}, d) \cdot d(\rho_{\rm ref})$$
(7.3)

for the operational quantity H or D. Further details and examples for the calculation of the correction factors were outlined in a previous publication [12]. Reproduced from [12] by permission of Oxford University Press.

#### 4.2. Results for the factors to account for air densities apart from the reference air density

Some typical values of the correction factors,  $k(\rho)$ , are shown in figure 6. It can be seen that the correction of the influence of the ambient conditions is more important for the measurand air kerma,  $K_a$ , than for the quantity personal dose,  $H_p$ . This is due to the fact that the correction factor for the personal dose,  $k(\rho,H_p)$ , results from the product of the correction factors for both, the quantity air kerma,  $k(\rho,K_a)$ , and the conversion coefficient from air kerma to the personal dose,  $k(\rho,h_{pK})$ :  $k(\rho,H_p) = k(\rho,K_a) \cdot k(\rho,h_{pK})$ . As can be seen from figure 6, these two correction factors compensate in part. Furthermore, the correction factor is closer to unity the larger the spectrum's mean energy as the absorption and scattering of photons decreases with rising energy.

The parameters m(1.0 m) and  $m_d$  to determine  $m(d_{air})$  according to equation (4) are given for low energy photon reference radiation qualities in appendix C in tables (C1a)–(C7b) for the total air kerma,  $K_a(R)$ , the kerma coefficient,  $k_{\Phi}(R)$ , and the conversion coefficients,  $c(R;\alpha)$ . The parameters are only given for those radiation qualities where the conversion coefficient itself is at least 0.0005 Sv Gy<sup>-1</sup> or 0.0005 Gy Gy<sup>-1</sup>, for *h* and *d*, respectively.



**Figure 6.** Dependence of the correction factors to account for air density,  $\rho$ , for some radiation qualities and for two different spectrum properties, see legend. The data are given for  $d_{air} = 2.5$  m and  $d_{MC} = 0.23$  m.

# 5. Summary

In this work, a complete data set necessary to perform accurate photon irradiations in terms of the newly proposed operational quantities in radiation protection is presented:

• conversion coefficients as well as correction factors for other radiation field characteristics, e.g. the mean energy or the total air kerma, ready for adoption in ISO 4037–3 [8] and

• correction factors for these conversion coefficients and radiation field characteristics to account for the actual air density during an irradiation, ready for adoption in ISO 4037–4 [9].

• Finally, the impact of the newly proposed quantities on the response of dosemeters is investigated for both individual and area monitoring as well as for normal and oblique radiation incidences.

All data are presented in the Appendices, see below. For convenience, the same data are available on the journal's website as supplementary data files in ASCII format compiled in a single zip file (available online at stacks.iop.org/JRP/42/011519/mmedia).

## Acknowledgments

The authors wish to thank Oliver Hupe (PTB) for the motivation to undertake this work, George Winterbottom and Susanne Eger (both PTB) for English checking of the manuscript, the referees for their valuable comments and last but not least ICRU for the honour of being member in its report committee RC26 [2] and the whole RC26 for the interesting work in it.

# Appendix A. Tabulated results for a distance of 1.0 m between the radiation source and the point of test

Table A1 provides data for the fluence weighted mean energy,  $E(\mathbf{R})$ , the kerma coefficient (i.e. total air kerma using the divided by photon fluence),  $k_{\Phi}(\mathbf{R})$ , one minus radiative losses in air,  $(1-g)(\mathbf{R})$ , and the ratio  $(\mu_{\text{en,not\_renormalized}}/\mu_{\text{en,renormalized}})(\mathbf{R})$  for reference radiation qualities R. Tables (A2)–(A7) provide data for the conversion coefficients,  $c_K(\mathbf{R};\alpha)$ , for the coefficients listed in table 1.

All values presented are based on data calculated using the kerma-approximation method, i.e. during an irradiation, charged particle equilibrium must be assured.

# Appendix B. Tabulated results for a distance of 2.5 m between the radiation source and the point of test

Table B1 provides data for the fluence weighted mean energy, E(R), the kerma coefficient,  $k_{\Phi}(R)$ , one minus radiative losses in air, (1-g)(R), and the ratio  $(\mu_{en,not\_renormalized}/\mu_{en,renormalized})(R)$  for reference radiation qualities *R*. Tables (B2)–(B7) provide data for the conversion coefficients  $c_K(R;\alpha)$ , for the coefficients listed in table 1. No data for the RQR radiation qualities are given for 2.5 m between the radiation source and the point of test as no corresponding spectra are available.

All values presented are based on data calculated using the kerma-approximation method, i.e. during an irradiation, charged particle equilibrium must be assured.

# Appendix C. Tabulated parameters to determine the correction factors to account for air densities apart from reference air density

Tables (C1a)–(C7a) provide values for m(1 m) and tables (C1b)–(C7b) provide values for  $m_d$  for the determination of the air density correction, see equations (2) and following, as well as the corresponding text for details.

**Table A1.** Fluence weighted mean energy,  $E(\mathbf{R})$ , kerma coefficient,  $k_{\Phi}(\mathbf{R})$ , one minus radiative losses in air,  $(1-g)(\mathbf{R})$ , and the ratio  $(\mu_{\text{en,renormalized}}/\mu_{\text{en,renormalized}})(\mathbf{R})$  for photon reference radiation qualities, **R**. The values are valid for a distance of 1.0 m between the radiation source and the point of test.

|                     | fluence weighted | karma coofficiant      | one minus<br>radiative | ratio                                                                     |
|---------------------|------------------|------------------------|------------------------|---------------------------------------------------------------------------|
|                     | $E(\mathbf{R})$  | $k_{\Phi}(\mathbf{R})$ | $(1-g)(\mathbf{R})$    | $(\mu_{	ext{en,not_renormalized}})$<br>$\mu_{	ext{en,renormalized}})$ (R) |
| Radiation quality R | [keV]            | [pGy cm <sup>2</sup> ] | [1]                    | [1]                                                                       |
| L-10                | 8.99             | 9.41                   | 0.9998                 | 1.0270                                                                    |
| L-20                | 17.33            | 2.377                  | 0.9997                 | 1.0260                                                                    |
| L-30                | 26.66            | 0.944                  | 0.9996                 | 1.0246                                                                    |
| L-35                | 30.43            | 0.728                  | 0.9996                 | 1.0239                                                                    |
| L-55                | 47.8             | 0.3486                 | 0.9995                 | 1.0182                                                                    |
| L-70                | 60.6             | 0.2928                 | 0.9996                 | 1.0123                                                                    |
| L-100               | 86.8             | 0.3302                 | 0.9996                 | 1.0053                                                                    |
| L-125               | 109.4            | 0.414                  | 0.9995                 | 1.0030                                                                    |
| L-170               | 148.5            | 0.595                  | 0.9995                 | 1.0013                                                                    |
| L-210               | 184.6            | 0.777                  | 0.9994                 | 1.0003                                                                    |
| L-240               | 211.4            | 0.915                  | 0.9993                 | 1.0000                                                                    |
| N-10                | 8.50             | 10.78                  | 0.9998                 | 1.0270                                                                    |
| N-15                | 12.37            | 4.98                   | 0.9997                 | 1.0266                                                                    |
| N-20                | 16.29            | 2.794                  | 0.9997                 | 1.0262                                                                    |
| N-25                | 20.32            | 1.733                  | 0.9996                 | 1.0257                                                                    |
| N-30                | 24.62            | 1.149                  | 0.9996                 | 1.0251                                                                    |
| N-40                | 33.27            | 0.624                  | 0.9996                 | 1.0232                                                                    |
| N-60                | 47.9             | 0.3577                 | 0.9995                 | 1.0183                                                                    |
| N-80                | 65.2             | 0.2928                 | 0.9996                 | 1.0107                                                                    |
| N-100               | 83.3             | 0.3211                 | 0.9996                 | 1.0059                                                                    |
| N-120               | 100.4            | 0.3784                 | 0.9996                 | 1.0037                                                                    |
| N-150               | 118.2            | 0.455                  | 0.9995                 | 1.0025                                                                    |
| N-200               | 164.8            | 0.676                  | 0.9994                 | 1.00025                                                                   |
| N-250               | 207.3            | 0.894                  | 0.9993                 | 1,0000                                                                    |
| N-300               | 207.5            | 1 108                  | 0.9992                 | 1,0000                                                                    |
| N-350               | 240.4            | 1 317                  | 0.9991                 | 1,0000                                                                    |
| N-400               | 326.6            | 1.516                  | 0.9990                 | 1,0000                                                                    |
| W-30                | 22 95            | 1 381                  | 0.9996                 | 1.0000                                                                    |
| W-30                | 22.93            | 0.819                  | 0.9996                 | 1.0230                                                                    |
| W-40<br>W/60        | 27.77            | 0.017                  | 0.9995                 | 1.0242                                                                    |
| W-00                | 44.0<br>56 5     | 0.401                  | 0.9995                 | 1.0197                                                                    |
| W-00                | 50.5<br>70.1     | 0.3232                 | 0.9995                 | 1.0140                                                                    |
| W-110<br>W/ 150     | 104.2            | 0.3176                 | 0.9990                 | 1.0071                                                                    |
| W-130               | 104.2            | 0.403                  | 0.9995                 | 1.0037                                                                    |
| W-200               | 137.3            | 0.340                  | 0.9993                 | 1.0017                                                                    |
| W-250               | 172.5            | 0.710                  | 0.9994                 | 1.0006                                                                    |
| W-500               | 205.4            | 0.005                  | 0.9995                 | 1.0000                                                                    |
| п-10                | 8.05             | 12.35                  | 0.9998                 | 1.02/1                                                                    |
| H-20                | 15.06            | 5.09                   | 0.9997                 | 1.0267                                                                    |
| H-30                | 19.48            | 2.268                  | 0.9997                 | 1.0260                                                                    |
| H-40                | 25.57            | 1.285                  | 0.9996                 | 1.0255                                                                    |
| H-60                | 37.96            | 0.581                  | 0.9996                 | 1.0225                                                                    |
| H-80                | 48.8             | 0.408                  | 0.9996                 | 1.0188                                                                    |
| H-100               | 57.3             | 0.3555                 | 0.9996                 | 1.0154                                                                    |
| H-150               | 78.0             | 0.3419                 | 0.9996                 | 1.0085                                                                    |
| H-200               | 99.3             | 0.405                  | 0.9995                 | 1.0048                                                                    |
| H-250               | 121.5            | 0.492                  | 0.9995                 | 1.0028                                                                    |
| H-280               | 143.2            | 0.589                  | 0.9995                 | 1.0016                                                                    |
| H-300               | 144.6            | 0.591                  | 0.9995                 | 1.0015                                                                    |
| H-350               | 167.2            | 0.701                  | 0.9994                 | 1.0008                                                                    |
| H-400               | 189.7            | 0.812                  | 0.9993                 | 1.0003                                                                    |

(Continued.)

|                     | fluence weighted<br>mean energy,<br><i>E</i> (R) | kerma coefficient,<br>$k_{\Phi}(\mathbf{R})$ | one minus<br>radiative<br>losses in air,<br>(1-g)(R) | ratio $(\mu_{	ext{en,not_renormalized}})$ $\mu_{	ext{en,renormalized}})(	ext{R})$ |
|---------------------|--------------------------------------------------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|
| Radiation quality R | [keV]                                            | [pGy cm <sup>2</sup> ]                       | [1]                                                  | [1]                                                                               |
| S-Cs                | 639                                              | 3.006                                        | 0.9982                                               | 1.0000                                                                            |
| S-Co                | 1197                                             | 5.120                                        | 0.9967                                               | 1.0000                                                                            |
| R-C                 | 4437                                             | 13.06                                        | 0.9854                                               | 1.0000                                                                            |
| R-F                 | 4573                                             | 12.05                                        | 0.9837                                               | 1.0000                                                                            |
| RQR-2 <sup>a</sup>  | 28.44                                            | 0.921                                        | 0.9996                                               | 1.0245                                                                            |
| RQR-3 <sup>a</sup>  | 32.59                                            | 0.747                                        | 0.9996                                               | 1.0238                                                                            |
| RQR-4 <sup>a</sup>  | 36.71                                            | 0.627                                        | 0.9996                                               | 1.0229                                                                            |
| RQR-5 <sup>a</sup>  | 40.5                                             | 0.554                                        | 0.9996                                               | 1.0219                                                                            |
| RQR-6 <sup>a</sup>  | 44.3                                             | 0.500                                        | 0.9996                                               | 1.0208                                                                            |
| RQR-7 <sup>a</sup>  | 47.9                                             | 0.460                                        | 0.9996                                               | 1.0197                                                                            |
| RQR-8 <sup>a</sup>  | 51.1                                             | 0.434                                        | 0.9996                                               | 1.0186                                                                            |
| RQR-9 <sup>a</sup>  | 56.8                                             | 0.402                                        | 0.9996                                               | 1.0166                                                                            |
| RQR-10 <sup>a</sup> | 64.4                                             | 0.3820                                       | 0.9996                                               | 1.0140                                                                            |

Table A1. (Continued.)

<sup>a</sup> Radiation quality defined in IEC 61267 [10]

| quality $d_{a} = 1.0n$ (Seq) $0^{\circ}$ $1^{\circ}$ $0^{\circ}$ $1^{\circ}$ $0^{\circ}$ $1^{\circ}$ </th <th>Radiation</th> <th><math>h^*_{K}(\mathbf{R})</math> for</th> <th></th> <th></th> <th></th> <th></th> <th><math>h_{\mathrm{p}K}(\mathrm{R}; \mathbf{c})</math></th> <th><math>\alpha</math>) for <math>d_{\rm air} = 1</math></th> <th>.0 m [Sv/Gy] 1</th> <th>or <math>\alpha =</math></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Radiation | $h^*_{K}(\mathbf{R})$ for                       |        |              |              |              | $h_{\mathrm{p}K}(\mathrm{R}; \mathbf{c})$ | $\alpha$ ) for $d_{\rm air} = 1$ | .0 m [Sv/Gy] 1 | or $\alpha =$ |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|--------|--------------|--------------|--------------|-------------------------------------------|----------------------------------|----------------|---------------|--------|--------|--------|--------|
| 1.0 $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ $0.0053$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | quality R | $d_{\rm air} = 1.0 \mathrm{m} [\mathrm{Sv/Gy}]$ | 00     | $15^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | 60°                                       | 75°                              | 90°            | $180^{\circ}$ | ROT    | ISO    | OSI-SS | IS-ISO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-10      | 0.0053                                          | 0.0053 | 0.0053       | 0.0050       | 0.0043       | 0.0036                                    | 0.0026                           | 0.0016         | 0.0020        | 0.0029 | 0.0025 | 0.0026 | 0.0024 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-20      | 0.0783                                          | 0.0783 | 0.0767       | 0.0715       | 0.0625       | 0.0489                                    | 0.0334                           | 0.0205         | 0.0078        | 0.0343 | 0.0280 | 0.0283 | 0.0271 |
| $ \begin{array}{ ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-30      | 0.3065                                          | 0.3065 | 0.3007       | 0.2829       | 0.2510       | 0.2046                                    | 0.1444                           | 0.0903         | 0.0758        | 0.1497 | 0.1179 | 0.1198 | 0.1158 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-35      | 0.4302                                          | 0.4302 | 0.4234       | 0.3984       | 0.3534       | 0.2915                                    | 0.2114                           | 0.1344         | 0.1373        | 0.2209 | 0.1738 | 0.1777 | 0.1702 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-55      | 1.0420                                          | 1.0420 | 1.0250       | 0.9766       | 0.8753       | 0.7427                                    | 0.5752                           | 0.3998         | 0.5691        | 0.6255 | 0.5013 | 0.5132 | 0.4835 |
| $ \begin{array}{ ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-70      | 1.3215                                          | 1.3215 | 1.3075       | 1.2405       | 1.1224       | 0.9670                                    | 0.7617                           | 0.5456         | 0.8245        | 0.8378 | 0.6764 | 0.6918 | 0.6576 |
| $ \begin{array}{ ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-100     | 1.4252                                          | 1.4252 | 1.4133       | 1.3427       | 1.2297       | 1.0731                                    | 0.8601                           | 0.6355         | 0.9802        | 0.9565 | 0.7725 | 0.7924 | 0.7443 |
| $ \begin{array}{ ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-125     | 1.3701                                          | 1.3701 | 1.3446       | 1.2800       | 1.1860       | 1.0410                                    | 0.8492                           | 0.6303         | 0.9540        | 0.9231 | 0.7561 | 0.7808 | 0.7366 |
| $ \begin{array}{{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L-170     | 1.2514                                          | 1.2514 | 1.2322       | 1.1903       | 1.1011       | 0.9714                                    | 0.8039                           | 0.6093         | 0.8993        | 0.8696 | 0.7193 | 0.7411 | 0.6955 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-210     | 1.1803                                          | 1.1803 | 1.1759       | 1.1299       | 1.0536       | 0.9382                                    | 0.7840                           | 0.6006         | 0.8674        | 0.8421 | 0.6989 | 0.7153 | 0.6732 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L-240     | 1.1470                                          | 1.1470 | 1.1477       | 1.0974       | 1.0308       | 0.9245                                    | 0.7777                           | 0.5987         | 0.8525        | 0.8287 | 0.6892 | 0.7044 | 0.6651 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-10      | 0.0039                                          | 0.0039 | 0.0040       | 0.0038       | 0.0033       | 0.0028                                    | 0.0021                           | 0.0013         | 0.0017        | 0.0023 | 0.0020 | 0.0021 | 0.0019 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-15      | 0.0219                                          | 0.0219 | 0.0216       | 0.0198       | 0.0168       | 0.0132                                    | 0.003                            | 0.0056         | 0.0033        | 0.0097 | 0.0082 | 0.0085 | 0.0081 |
| $ N-25 \qquad 0.1298 \qquad 0.1298 \qquad 0.1270 \qquad 0.1190 \qquad 0.1051 \qquad 0.0833 \qquad 0.0572 \qquad 0.0352 \qquad 0.0179 \qquad 0.0588 \qquad 0.0472 \qquad 0.0474 \qquad 0.0458 \\ N-30 \qquad 0.2357 \qquad 0.2357 \qquad 0.2357 \qquad 0.2357 \qquad 0.2390 \qquad 0.2171 \qquad 0.1925 \qquad 0.1126 \qquad 0.1088 \qquad 0.0677 \qquad 0.0500 \qquad 0.0071 \qquad 0.0487 \\ N-40 \qquad 0.5222 \qquad 0.5232 \qquad 0.5120 \qquad 0.4851 \qquad 0.4851 \qquad 0.0455 \qquad 0.1281 \qquad 0.1292 \qquad 0.2144 \qquad 0.1133 \\ N-60 \qquad 1.0139 \qquad 1.0139 \qquad 0.9990 \qquad 0.9990 \qquad 0.9970 \qquad 0.0672 \qquad 0.0589 \qquad 0.0721 \qquad 0.5506 \qquad 0.3883 \qquad 0.5608 \qquad 0.4872 \qquad 0.4985 \qquad 0.4702 \\ N-10 \qquad 1.4256 \qquad 1.4326 \qquad 1.3429 \qquad 1.2401 \qquad 1.1616 \qquad 1.0045 \qquad 0.7227 \qquad 0.5596 \qquad 0.3883 \qquad 0.5706 \qquad 0.5738 \qquad 0.7426 \qquad 0.4872 \qquad 0.4851 \\ N-10 \qquad 1.4256 \qquad 1.4326 \qquad 1.3412 \qquad 1.2429 \qquad 1.1616 \qquad 1.0076 \qquad 0.8559 \qquad 0.5308 \qquad 0.9734 \qquad 0.7658 \qquad 0.7899 \qquad 0.7412 \\ N-10 \qquad 1.4316 \qquad 1.1314 \qquad 1.1342 \qquad 1.1616 \qquad 1.1076 \qquad 0.8352 \qquad 0.6045 \qquad 0.9734 \qquad 0.7638 \qquad 0.7893 \qquad 0.7412 \\ N-10 \qquad 1.13169 \qquad 1.1316 \qquad 1.1017 \qquad 1.1062 \qquad 0.9734 \qquad 0.6045 \qquad 0.9734 \qquad 0.7638 \qquad 0.7763 \qquad 0.7569 \\ N-20 \qquad 1.11164 \qquad 1.1104 \qquad 1.0076 \qquad 0.9538 \qquad 0.7791 \qquad 0.9734 \qquad 0.7638 \qquad 0.7769 \qquad 0.7561 \\ N-20 \qquad 1.1014 \qquad 1.1164 \qquad 1.1101 \qquad 1.0076 \qquad 0.9538 \qquad 0.771 \qquad 0.8616 \qquad 0.8636 \qquad 0.7667 \qquad 0.7668 \qquad 0.7667 \\ N-20 \qquad 1.1014 \qquad 1.11164 \qquad 1.1101 \qquad 1.0076 \qquad 0.9919 \qquad 0.9912 \qquad 0.8754 \qquad 0.8754 \qquad 0.8754 \qquad 0.6608 \qquad 0.7697 \qquad 0.7661 \\ N-20 \qquad 1.1014 \qquad 1.11164 \qquad 1.1101 \qquad 1.0076 \qquad 0.9928 \qquad 0.7714 \qquad 0.8161 \qquad 0.8354 \qquad 0.8754 \qquad 0.6075 \qquad 0.6996 \qquad 0.7661 \\ N-40 \qquad 0.1081 \qquad 0.1081 \qquad 0.1089 \qquad 0.9899 \qquad 0.7744 \qquad 0.6018 \qquad 0.8354 \qquad 0.8754 \qquad 0.6975 \qquad 0.6666 \qquad 0.7462 \\ N-40 \qquad 0.3723 \qquad 0.9879 \qquad 0.8879 \qquad 0.8879 \qquad 0.8879 \qquad 0.8879 \qquad 0.8834 \qquad 0.7410 \qquad 0.7006 \qquad 0.1660 \\ N-40 \qquad 0.3723 \qquad 0.9889 \qquad 0.7410 \qquad 0.7341 \qquad 0.7016 \qquad 0.1923 \qquad 0.9164 \qquad 0.7489 \qquad 0.7579 \qquad 0.7699 \qquad 0.7579 \qquad 0.7569 \qquad 0.7591 \qquad 0.7569 \qquad $ | N-20      | 0.0611                                          | 0.0611 | 0.0599       | 0.0556       | 0.0484       | 0.0379                                    | 0.0260                           | 0.0159         | 0.0063        | 0.0267 | 0.0219 | 0.0222 | 0.0213 |
| N-30 $0.2357$ $0.2357$ $0.2357$ $0.2357$ $0.2357$ $0.2337$ $0.2000$ $0.0900$ $0.0871$ N-40 $0.2222$ $0.5150$ $0.4851$ $0.4955$ $0.1755$ $0.1755$ $0.1725$ $0.2781$ $0.27241$ $0.2133$ N-40 $1.0139$ $1.3639$ $1.3639$ $0.39502$ $0.8516$ $0.7227$ $0.5566$ $0.8733$ $0.6687$ $0.2066$ $0.2741$ N-40 $1.3679$ $1.3639$ $1.3693$ $1.3693$ $1.3679$ $0.2967$ $0.2740$ $0.2472$ N-100 $1.4256$ $1.4134$ $1.3429$ $1.2045$ $1.0706$ $0.5536$ $0.8733$ $0.5689$ $0.7412$ N-120 $1.3339$ $1.3333$ $1.3393$ $1.3314$ $1.2429$ $1.2047$ $1.00766$ $0.5379$ $0.6539$ $0.7733$ $0.7412$ N-120 $1.1314$ $1.1240$ $1.1017$ $1.0076$ $0.5379$ $0.6337$ $0.9552$ $0.7583$ $0.7733$ N-120 $1.1514$ $1.1140$ $1.1077$ $1.0076$ $0.5379$ $0.6339$ $0.9373$ $0.9669$ $0.7412$ N-250 $1.1514$ $1.1514$ $1.1140$ $1.0766$ $0.5738$ $0.7590$ $0.5836$ $0.7583$ $0.7597$ N-250 $1.1164$ $1.1140$ $1.0766$ $0.5738$ $0.7733$ $0.8667$ $0.7848$ $0.7697$ $0.7569$ N-260 $0.1154$ $0.1872$ $0.5990$ $0.6530$ $0.8354$ $0.8669$ $0.7467$ $0.7667$ $0.7679$ N-260 $0.1872$ <td>N-25</td> <td>0.1298</td> <td>0.1298</td> <td>0.1270</td> <td>0.1190</td> <td>0.1051</td> <td>0.0833</td> <td>0.0572</td> <td>0.0352</td> <td>0.0179</td> <td>0.0588</td> <td>0.0472</td> <td>0.0474</td> <td>0.0458</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-25      | 0.1298                                          | 0.1298 | 0.1270       | 0.1190       | 0.1051       | 0.0833                                    | 0.0572                           | 0.0352         | 0.0179        | 0.0588 | 0.0472 | 0.0474 | 0.0458 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-30      | 0.2357                                          | 0.2357 | 0.2309       | 0.2171       | 0.1925       | 0.1556                                    | 0.1088                           | 0.0677         | 0.0500        | 0.1124 | 0.0890 | 0.0900 | 0.0871 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-40      | 0.5222                                          | 0.5222 | 0.5150       | 0.4851       | 0.4305       | 0.3574                                    | 0.2642                           | 0.1705         | 0.1929        | 0.2781 | 0.2192 | 0.2244 | 0.2133 |
| N*80 $1.3639$ $1.3639$ $1.3435$ $1.2804$ $1.1616$ $1.0045$ $0.7935$ $0.5726$ $0.8733$ $0.8757$ $0.7066$ $0.7240$ $0.6873$ N*100 $1.4256$ $1.4134$ $1.3429$ $1.2240$ $1.0706$ $0.8539$ $0.6337$ $0.9734$ $0.7864$ $0.7881$ $0.7112$ N*120 $1.3369$ $1.3124$ $1.3124$ $1.3047$ $1.2045$ $1.0766$ $0.5357$ $0.6639$ $0.7452$ $0.7452$ $0.7452$ N*150 $1.3369$ $1.3114$ $1.2742$ $1.1616$ $1.0076$ $0.0535$ $0.6337$ $0.9699$ $0.7452$ $0.7452$ $0.7452$ N*200 $1.1514$ $1.1514$ $1.1514$ $1.1510$ $1.0076$ $1.0076$ $0.9999$ $0.7713$ $0.5990$ $0.8835$ $0.7989$ $0.7676$ $0.7689$ $0.7689$ N*200 $1.1164$ $1.1140$ $1.0076$ $1.0076$ $1.0083$ $0.9999$ $0.7713$ $0.5992$ $0.8819$ $0.6808$ $0.6973$ $0.6565$ N*300 $1.1164$ $1.1140$ $1.0706$ $1.0083$ $0.9999$ $0.7674$ $0.618$ $0.7676$ $0.6973$ $0.6662$ N*400 $1.0949$ $1.0949$ $1.0949$ $1.0949$ $1.0949$ $1.0976$ $0.6931$ $0.7674$ $0.6018$ $0.6765$ $0.6973$ $0.6756$ N*200 $1.1164$ $1.1140$ $1.0706$ $1.0933$ $0.9929$ $0.7671$ $0.6062$ $0.9734$ $0.6909$ $0.6764$ N*400 $0.1831$ $0.14969$ $1.0976$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N-60      | 1.0139                                          | 1.0139 | 0666.0       | 0.9502       | 0.8516       | 0.7227                                    | 0.5596                           | 0.3883         | 0.5508        | 0.6080 | 0.4872 | 0.4985 | 0.4702 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-80      | 1.3639                                          | 1.3639 | 1.3485       | 1.2804       | 1.1616       | 1.0045                                    | 0.7935                           | 0.5726         | 0.8733        | 0.8757 | 0.7066 | 0.7240 | 0.6873 |
| N-120 $1.3933$ $1.3727$ $1.3047$ $1.2045$ $1.0552$ $0.8554$ $0.6337$ $0.9662$ $0.9774$ $0.7638$ $0.7869$ $0.7412$ N-150 $1.3369$ $1.3114$ $1.2542$ $1.1616$ $1.0207$ $0.8362$ $0.6337$ $0.9662$ $0.9779$ $0.7697$ $0.7533$ N-200 $1.2148$ $1.2148$ $1.2030$ $1.1616$ $1.0207$ $0.8362$ $0.5399$ $0.9745$ $0.7697$ $0.7533$ N-200 $1.1514$ $1.11514$ $1.1164$ $1.1162$ $1.1162$ $1.0107$ $1.0337$ $0.9999$ $0.7713$ $0.5990$ $0.8855$ $0.7088$ $0.7697$ $0.7563$ N-300 $1.1164$ $1.1164$ $1.1164$ $1.1164$ $1.1164$ $1.1164$ $0.7066$ $0.9999$ $0.7713$ $0.5992$ $0.8813$ $0.8813$ $0.6662$ N-300 $1.0149$ $1.0049$ $1.0766$ $1.0083$ $0.9999$ $0.7713$ $0.5992$ $0.8813$ $0.6662$ N-300 $1.01646$ $1.0407$ $0.9919$ $0.9999$ $0.7713$ $0.5992$ $0.8813$ $0.6765$ $0.6973$ $0.6965$ N-300 $1.0949$ $1.0666$ $1.0407$ $0.9191$ $0.1910$ $0.6662$ $0.8332$ $0.6983$ $0.6973$ $0.6967$ $0.6973$ N-300 $0.1881$ $0.1769$ $0.1864$ $0.1991$ $0.1909$ $0.7679$ $0.771$ $0.6061$ $0.8756$ $0.6973$ $0.6974$ N-40 $0.3723$ $0.3873$ $0.3689$ $0.6886$ $0.4740$ $0.707$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N-100     | 1.4256                                          | 1.4256 | 1.4134       | 1.3429       | 1.2280       | 1.0706                                    | 0.8559                           | 0.6308         | 0.9734        | 0.9520 | 0.7684 | 0.7881 | 0.7412 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-120     | 1.3933                                          | 1.3933 | 1.3727       | 1.3047       | 1.2045       | 1.0552                                    | 0.8554                           | 0.6337         | 0.9662        | 0.9374 | 0.7638 | 0.7869 | 0.7412 |
| N-200 $1.2148$ $1.2030$ $1.1602$ $1.0766$ $0.9538$ $0.7930$ $0.6045$ $0.8830$ $0.8555$ $0.7088$ $0.7278$ $0.6837$ N-200 $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1510$ $1.1017$ $1.0337$ $0.9262$ $0.7785$ $0.5990$ $0.8545$ $0.8304$ $0.6904$ $0.7060$ $0.6662$ N-300 $1.1164$ $1.1164$ $1.1140$ $1.0706$ $1.0337$ $0.9262$ $0.7785$ $0.5990$ $0.8545$ $0.8304$ $0.6904$ $0.7060$ $0.6662$ N-300 $1.1164$ $1.11164$ $1.11164$ $1.11164$ $1.11164$ $1.0706$ $1.0833$ $0.9999$ $0.77713$ $0.5992$ $0.8413$ $0.8163$ $0.6904$ $0.7060$ $0.6662$ N-300 $1.0949$ $1.0802$ $1.0802$ $1.0766$ $1.0933$ $0.9919$ $0.8813$ $0.7671$ $0.6183$ $0.8334$ $0.6975$ $0.6973$ $0.6574$ N-400 $1.0802$ $1.0802$ $1.0696$ $1.0477$ $0.9813$ $0.8928$ $0.7711$ $0.6012$ $0.8334$ $0.6761$ $0.6975$ $0.6975$ $0.6564$ W-40 $0.3723$ $0.1831$ $0.1732$ $0.1692$ $0.8334$ $0.6976$ $0.6975$ $0.6975$ $0.6564$ W-40 $0.3723$ $0.3879$ $0.6887$ $0.1690$ $0.6762$ $0.8933$ $0.0683$ $0.1666$ W-40 $0.3723$ $0.3879$ $0.1684$ $0.1160$ $0.1692$ $0.8334$ $0.6761$ $0.6975$ $0.6934$ W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N-150     | 1.3369                                          | 1.3369 | 1.3114       | 1.2542       | 1.1616       | 1.0207                                    | 0.8362                           | 0.6239         | 0.9379        | 0.9069 | 0.7452 | 0.7697 | 0.7253 |
| N-250 $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1514$ $1.1510$ $1.0017$ $1.0337$ $0.9262$ $0.7785$ $0.5990$ $0.8545$ $0.8034$ $0.6904$ $0.7060$ $0.6662$ N-300 $1.1164$ $1.1140$ $1.0706$ $1.0083$ $0.9999$ $0.77713$ $0.5992$ $0.8413$ $0.8163$ $0.6975$ $0.6975$ $0.6589$ N-300 $1.0949$ $1.0802$ $1.0802$ $1.0696$ $1.0407$ $0.9813$ $0.8928$ $0.7671$ $0.6062$ $0.8323$ $0.8034$ $0.6761$ $0.6975$ $0.6975$ $0.6564$ N-40 $0.1831$ $0.1793$ $0.1684$ $0.1491$ $0.1198$ $0.8928$ $0.7671$ $0.6062$ $0.8323$ $0.6683$ $0.6983$ $0.6983$ $0.6975$ $0.6975$ $0.6564$ W-40 $0.3723$ $0.1831$ $0.1793$ $0.1491$ $0.1198$ $0.8323$ $0.01160$ $0.1160$ $0.1633$ $0.1633$ $0.1467$ W-40 $0.3723$ $0.3879$ $0.8879$ $0.8879$ $0.8879$ $0.8879$ $0.8350$ $0.7430$ $0.7216$ $0.7426$ $0.4740$ $0.7707$ $0.7726$ $0.7679$ $0.7744$ W-40 $0.3723$ $0.1467$ $0.8879$ $0.8879$ $0.8879$ $0.8392$ $0.7430$ $0.7420$ $0.7126$ $0.7693$ $0.1637$ W-60 $0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-200     | 1.2148                                          | 1.2148 | 1.2030       | 1.1602       | 1.0766       | 0.9538                                    | 0.7930                           | 0.6045         | 0.8830        | 0.8555 | 0.7088 | 0.7278 | 0.6837 |
| N-300 $1.1164$ $1.1140$ $1.0706$ $1.0083$ $0.9099$ $0.7713$ $0.5922$ $0.8413$ $0.8163$ $0.6808$ $0.6936$ $0.6589$ N-350 $1.0949$ $1.0949$ $1.0869$ $1.0755$ $0.9919$ $0.8989$ $0.7771$ $0.5922$ $0.8413$ $0.6163$ $0.6975$ $0.6975$ $0.6576$ N-400 $1.0949$ $1.0949$ $1.0869$ $1.0407$ $0.9919$ $0.8928$ $0.7674$ $0.6018$ $0.8324$ $0.6761$ $0.6975$ $0.6975$ $0.6564$ N-400 $1.0802$ $1.0802$ $1.0696$ $1.0407$ $0.9813$ $0.9919$ $0.8928$ $0.7671$ $0.6012$ $0.8323$ $0.8034$ $0.6761$ $0.6975$ $0.6574$ W-30 $0.1831$ $0.1793$ $0.1684$ $0.1491$ $0.1198$ $0.8322$ $0.0732$ $0.8303$ $0.6689$ $0.6689$ $0.6761$ $0.6973$ $0.6564$ W-40 $0.3723$ $0.3723$ $0.3448$ $0.3372$ $0.1869$ $0.6783$ $0.6899$ $0.0689$ $0.6564$ W-40 $0.3723$ $0.3723$ $0.3448$ $0.33723$ $0.3487$ $0.08879$ $0.6899$ $0.7430$ $0.7820$ W-40 $0.3723$ $0.3723$ $0.3879$ $0.3743$ $0.0732$ $0.0732$ $0.0733$ $0.1467$ $0.4266$ W-40 $0.3772$ $0.7829$ $0.6686$ $0.4740$ $0.7736$ $0.7366$ $0.7266$ $0.4024$ W-80 $1.1772$ $1.1626$ $1.0479$ $0.8355$ $0.6130$ $0.7485$ $0.7795$ </td <td>N-250</td> <td>1.1514</td> <td>1.1514</td> <td>1.1510</td> <td>1.1017</td> <td>1.0337</td> <td>0.9262</td> <td>0.7785</td> <td>0.5990</td> <td>0.8545</td> <td>0.8304</td> <td>0.6904</td> <td>0.7060</td> <td>0.6662</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N-250     | 1.1514                                          | 1.1514 | 1.1510       | 1.1017       | 1.0337       | 0.9262                                    | 0.7785                           | 0.5990         | 0.8545        | 0.8304 | 0.6904 | 0.7060 | 0.6662 |
| N-350 $1.0949$ $1.0949$ $1.0869$ $1.0535$ $0.9919$ $0.8989$ $0.7674$ $0.6018$ $0.8354$ $0.8081$ $0.6765$ $0.6973$ $0.6561$ N-400 $1.0802$ $1.0802$ $1.0802$ $1.0696$ $1.0407$ $0.9813$ $0.8928$ $0.7671$ $0.6062$ $0.8323$ $0.8034$ $0.6761$ $0.6975$ $0.6564$ W-30 $0.1831$ $0.1793$ $0.1684$ $0.1491$ $0.1198$ $0.0832$ $0.0516$ $0.0342$ $0.0859$ $0.0683$ $0.0689$ $0.0666$ W-40 $0.3723$ $0.3663$ $0.3748$ $0.3759$ $0.2516$ $0.1823$ $0.1160$ $0.1160$ $0.1160$ $0.1163$ $0.1467$ W-40 $0.3723$ $0.3723$ $0.3763$ $0.3748$ $0.3723$ $0.3683$ $0.3748$ $0.3739$ $0.1683$ $0.0683$ $0.0683$ W-40 $0.3723$ $0.3723$ $0.3763$ $0.3763$ $0.7482$ $0.6536$ $0.4167$ W-40 $0.3773$ $0.3879$ $0.8879$ $0.8750$ $0.8879$ $0.6686$ $0.4140$ $0.1160$ $0.1168$ $0.4266$ W-40 $0.1772$ $1.1072$ $1.1043$ $0.9961$ $0.8856$ $0.4829$ $0.6531$ $0.7679$ $0.6734$ $0.5715$ W-40 $0.18772$ $1.1772$ $1.1626$ $1.0479$ $0.8365$ $0.6130$ $0.7485$ $0.7639$ $0.7634$ $0.7712$ W-110 $1.4021$ $1.3879$ $1.2762$ $1.0479$ $0.8355$ $0.6130$ $0.9411$ $0.7485$ $0.7779$ <td>N-300</td> <td>1.1164</td> <td>1.1164</td> <td>1.1140</td> <td>1.0706</td> <td>1.0083</td> <td>6606.0</td> <td>0.7713</td> <td>0.5992</td> <td>0.8413</td> <td>0.8163</td> <td>0.6808</td> <td>0.6986</td> <td>0.6589</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-300     | 1.1164                                          | 1.1164 | 1.1140       | 1.0706       | 1.0083       | 6606.0                                    | 0.7713                           | 0.5992         | 0.8413        | 0.8163 | 0.6808 | 0.6986 | 0.6589 |
| N-400         1.0802         1.0606         1.0407         0.8813         0.8828         0.7671         0.6062         0.8323         0.8034         0.6761         0.6975         0.6564           W-30         0.1831         0.1793         0.1684         0.1491         0.1198         0.0832         0.0819         0.0859         0.6683         0.0689         0.0666           W-40         0.3723         0.3663         0.3448         0.3059         0.2516         0.180         0.1160         0.1160         0.1160         0.1503         0.1687         0.6666           W-40         0.3723         0.3663         0.3448         0.3059         0.5216         0.1823         0.1160         0.1160         0.1160         0.1683         0.0689         0.0666           W-60         0.8879         0.8879         0.8750         0.8730         0.7430         0.6686         0.4740         0.7077         0.7168         0.4266         0.4014           W-10         1.1772         1.1626         1.1043         0.9961         0.8355         0.6130         0.7485         0.7679         0.5714           W-110         1.4021         1.3383         1.2762         1.10479         0.8355         0.6130         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-350     | 1.0949                                          | 1.0949 | 1.0869       | 1.0535       | 0.9919       | 0.8989                                    | 0.7674                           | 0.6018         | 0.8354        | 0.8081 | 0.6765 | 0.6973 | 0.6561 |
| W-30         0.1831         0.1793         0.1684         0.1491         0.1198         0.0832         0.0516         0.0342         0.0859         0.0683         0.0689         0.0666           W-40         0.3723         0.3723         0.3463         0.348         0.3723         0.1533         0.1533         0.1467           W-40         0.3723         0.3653         0.3448         0.3059         0.2516         0.1823         0.1160         0.1160         0.1906         0.1533         0.1467           W-60         0.8879         0.8750         0.8309         0.7430         0.6280         0.4829         0.3088         0.4166         0.4266         0.4024           W-60         0.8879         0.8750         0.8309         0.7430         0.6686         0.4740         0.7007         0.7326         0.6034         0.5715           W-10         1.4021         1.3879         1.3182         1.2042         1.0479         0.8355         0.6130         0.7485         0.7679         0.77485         0.7679         0.7748         0.7721         0.7444           W-110         1.3604         1.3383         1.2762         1.1778         1.0323         0.8392         0.6230         0.9438         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N-400     | 1.0802                                          | 1.0802 | 1.0696       | 1.0407       | 0.9813       | 0.8928                                    | 0.7671                           | 0.6062         | 0.8323        | 0.8034 | 0.6761 | 0.6975 | 0.6564 |
| W-40         0.3723         0.3653         0.3448         0.3059         0.2516         0.1823         0.1160         0.1160         0.1906         0.1533         0.1457           W-60         0.8879         0.8879         0.8750         0.8309         0.7430         0.6280         0.4829         0.3308         0.4550         0.518         0.4168         0.4266         0.4024           W-60         0.8879         0.8750         0.8309         0.7430         0.6280         0.4740         0.5218         0.4168         0.4266         0.4024           W-80         1.1772         1.1626         1.1043         0.9961         0.8540         0.6686         0.4740         0.7007         0.7326         0.5034         0.5715           W-110         1.4021         1.3879         1.3182         1.2042         1.0479         0.8355         0.6130         0.9411         0.9263         0.7785         0.7794         0.7445         0.7779         0.77485         0.7779         0.7244           W-150         1.3604         1.3383         1.2762         1.1778         1.0323         0.8392         0.6230         0.9438         0.71489         0.7779         0.7721         0.7721         0.7721         0.7775     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W-30      | 0.1831                                          | 0.1831 | 0.1793       | 0.1684       | 0.1491       | 0.1198                                    | 0.0832                           | 0.0516         | 0.0342        | 0.0859 | 0.0683 | 0.0689 | 0.0666 |
| W-60         0.8879         0.8879         0.8750         0.8309         0.7430         0.6280         0.4829         0.3308         0.4550         0.5218         0.4168         0.4266         0.4024           W-80         1.1772         1.1626         1.1043         0.9961         0.8540         0.6686         0.4740         0.7007         0.7326         0.5895         0.6034         0.5715           W-110         1.4021         1.3879         1.3182         1.2042         1.0479         0.8365         0.6130         0.9411         0.9263         0.7785         0.7779         0.7744           W-150         1.3604         1.3383         1.2762         1.1778         1.0323         0.8392         0.6230         0.9438         0.7485         0.7779         0.7771         0.7775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W-40      | 0.3723                                          | 0.3723 | 0.3663       | 0.3448       | 0.3059       | 0.2516                                    | 0.1823                           | 0.1160         | 0.1160        | 0.1906 | 0.1503 | 0.1533 | 0.1467 |
| W-80       1.1772       1.1772       1.1626       1.1043       0.9961       0.8540       0.6686       0.4740       0.7007       0.7326       0.5895       0.6034       0.5715         W-110       1.4021       1.3879       1.3182       1.2042       1.0479       0.8365       0.6130       0.9411       0.9263       0.7485       0.7279       0.7244         W-150       1.3604       1.3383       1.2762       1.1778       1.0323       0.8392       0.6230       0.9164       0.7489       0.7721       0.7755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W-60      | 0.8879                                          | 0.8879 | 0.8750       | 0.8309       | 0.7430       | 0.6280                                    | 0.4829                           | 0.3308         | 0.4550        | 0.5218 | 0.4168 | 0.4266 | 0.4024 |
| W-110         1.4021         1.3879         1.3182         1.2042         1.0479         0.8365         0.6130         0.9411         0.9263         0.7485         0.7679         0.7244           W-150         1.3604         1.3383         1.2762         1.1778         1.0323         0.8392         0.6230         0.9164         0.7489         0.7275         0.7275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W-80      | 1.1772                                          | 1.1772 | 1.1626       | 1.1043       | 0.9961       | 0.8540                                    | 0.6686                           | 0.4740         | 0.7007        | 0.7326 | 0.5895 | 0.6034 | 0.5715 |
| W-150 1.3604 1.3604 1.3383 1.2762 1.1778 1.0323 0.8392 0.6230 0.9438 0.9164 0.7489 0.7721 0.7275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W-110     | 1.4021                                          | 1.4021 | 1.3879       | 1.3182       | 1.2042       | 1.0479                                    | 0.8365                           | 0.6130         | 0.9411        | 0.9263 | 0.7485 | 0.7679 | 0.7244 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W-150     | 1.3604                                          | 1.3604 | 1.3383       | 1.2762       | 1.1778       | 1.0323                                    | 0.8392                           | 0.6230         | 0.9438        | 0.9164 | 0.7489 | 0.7721 | 0.7275 |

are valid for a distance of **Table A2.** Conversion coefficients for the ambient dose,  $h^*_{\kappa}(\mathbf{R})$ , as well as for the personal dose for different irradiation geometries,  $h_{\kappa}(\mathbf{R};\alpha)$ , for photon reference radiation qualities,  $\mathbf{R}$  in SV/Gv. The values

|                             |                                                 |        |        |              | Table . | A2. (Continued                   | (;)                        |               |               |        |        |        |        |
|-----------------------------|-------------------------------------------------|--------|--------|--------------|---------|----------------------------------|----------------------------|---------------|---------------|--------|--------|--------|--------|
| Radiation                   | $h^*_{\kappa}(\mathbf{R})$ for                  |        |        |              |         | $h_{\mathrm{p}K}(\mathrm{R}; c)$ | x) for $d_{\rm air} = 1$ . | 0 m [Sv/Gy] f | or $\alpha =$ |        |        |        |        |
| quality R                   | $d_{\rm air} = 1.0 \mathrm{m} [\mathrm{Sv/Gy}]$ | 00     | 15°    | $30^{\circ}$ | 45°     | 60°                              | 75°                        | °06           | $180^{\circ}$ | ROT    | ISO    | SS-ISO | IS-ISO |
| W-200                       | 1.2741                                          | 1.2741 | 1.2550 | 1.2064       | 1.1177  | 0.9856                           | 0.8133                     | 0.6135        | 0.9094        | 0.8801 | 0.7263 | 0.7481 | 0.7035 |
| W-250                       | 1.2004                                          | 1.2004 | 1.1917 | 1.1451       | 1.0670  | 0.9487                           | 0.7911                     | 0.6040        | 0.8764        | 0.8499 | 0.7047 | 0.7229 | 0.6805 |
| W-300                       | 1.1545                                          | 1.1545 | 1.1507 | 1.1048       | 1.0353  | 0.9273                           | 0.7797                     | 0.6005        | 0.8568        | 0.8316 | 0.6915 | 0.7087 | 0.6680 |
| H-10                        | 0.0030                                          | 0.0030 | 0.0031 | 0.0029       | 0.0026  | 0.0022                           | 0.0016                     | 0.0010        | 0.0015        | 0.0018 | 0.0016 | 0.0017 | 0.0016 |
| H-20                        | 0.0233                                          | 0.0233 | 0.0230 | 0.0212       | 0.0183  | 0.0144                           | 0.0100                     | 0.0061        | 0.0034        | 0.0104 | 0.0088 | 0.0090 | 0.0085 |
| H-30                        | 0.0923                                          | 0.0923 | 0.0904 | 0.0845       | 0.0744  | 0.0592                           | 0.0409                     | 0.0252        | 0.0145        | 0.0422 | 0.0340 | 0.0343 | 0.0331 |
| H-40                        | 0.2086                                          | 0.2086 | 0.2048 | 0.1924       | 0.1703  | 0.1383                           | 0.0982                     | 0.0618        | 0.0515        | 0.1021 | 0.0810 | 0.0822 | 0.0790 |
| H-60                        | 0.5746                                          | 0.5746 | 0.5659 | 0.5354       | 0.4771  | 0.3989                           | 0.2999                     | 0.1996        | 0.2476        | 0.3199 | 0.2541 | 0.2599 | 0.2462 |
| H-80                        | 0.8891                                          | 0.8891 | 0.8772 | 0.8320       | 0.7467  | 0.6342                           | 0.4897                     | 0.3391        | 0.4749        | 0.5312 | 0.4254 | 0.4354 | 0.4121 |
| H-100                       | 1.0811                                          | 1.0811 | 1.0683 | 1.0141       | 0.9151  | 0.7842                           | 0.6131                     | 0.4341        | 0.6353        | 0.6714 | 0.5395 | 0.5524 | 0.5224 |
| H-150                       | 1.3190                                          | 1.3190 | 1.3019 | 1.2383       | 1.1309  | 0.9823                           | 0.7850                     | 0.5726        | 0.8659        | 0.8619 | 0.6989 | 0.7177 | 0.6779 |
| H-200                       | 1.3231                                          | 1.3231 | 1.3050 | 1.2465       | 1.1464  | 1.0033                           | 0.8139                     | 0.6037        | 0.9082        | 0.8889 | 0.7264 | 0.7471 | 0.7043 |
| H-250                       | 1.2823                                          | 1.2823 | 1.2672 | 1.2131       | 1.1221  | 0.9885                           | 0.8112                     | 0.6091        | 0.9046        | 0.8802 | 0.7236 | 0.7438 | 0.7007 |
| H-280                       | 1.2398                                          | 1.2398 | 1.2278 | 1.1770       | 1.0937  | 0.9690                           | 0.8023                     | 0.6079        | 0.8910        | 0.8652 | 0.7143 | 0.7339 | 0.6913 |
| H-300                       | 1.2426                                          | 1.2426 | 1.2301 | 1.1794       | 1.0960  | 0.9706                           | 0.8037                     | 0.6089        | 0.8936        | 0.8670 | 0.7159 | 0.7357 | 0.6928 |
| H-350                       | 1.2015                                          | 1.2015 | 1.1914 | 1.1444       | 1.0673  | 0.9505                           | 0.7931                     | 0.6060        | 0.8771        | 0.8505 | 0.7048 | 0.7242 | 0.6820 |
| H-400                       | 1.1721                                          | 1.1721 | 1.1630 | 1.1194       | 1.0468  | 0.9363                           | 0.7862                     | 0.6050        | 0.8659        | 0.8391 | 0.6975 | 0.7169 | 0.6751 |
| S-Cs                        | 1.0158                                          | 1.0158 | 1.0181 | 0.9938       | 0.9509  | 0.8838                           | 0.7886                     | 0.6518        | 0.8368        | 0.8058 | 0.6982 | 0.7130 | 0.6770 |
| S-Co                        | 0.9971                                          | 0.9971 | 0.9949 | 0.9819       | 0.9499  | 0.9029                           | 0.8276                     | 0.7116        | 0.8631        | 0.8376 | 0.7423 | 0.7591 | 0.7271 |
| R-C                         | 1.0000                                          | 1.0000 | 0.9975 | 0.9898       | 0.9722  | 0.9454                           | 0.9043                     | 0.8363        | 0.9219        | 0.9055 | 0.8443 | 0.8558 | 0.8308 |
| R-F                         | 0.9974                                          | 0.9974 | 0.9948 | 0.9864       | 0.9709  | 0.9454                           | 0.9075                     | 0.8485        | 0.9244        | 0.9096 | 0.8553 | 0.8649 | 0.8420 |
| RQR-2 <sup>a</sup>          | 0.3201                                          | 0.3201 | 0.3147 | 0.2961       | 0.2626  | 0.2151                           | 0.1548                     | 0.0981        | 0.0928        | 0.1615 | 0.1275 | 0.1298 | 0.1244 |
| RQR-3 <sup>a</sup>          | 0.4208                                          | 0.4208 | 0.4142 | 0.3907       | 0.3470  | 0.2872                           | 0.2115                     | 0.1371        | 0.1512        | 0.2230 | 0.1764 | 0.1802 | 0.1714 |
| RQR-4 <sup>a</sup>          | 0.5239                                          | 0.5239 | 0.5158 | 0.4877       | 0.4344  | 0.3623                           | 0.2710                     | 0.1795        | 0.2170        | 0.2884 | 0.2291 | 0.2341 | 0.2221 |
| RQR-5 <sup>a</sup>          | 0.6121                                          | 0.6121 | 0.6032 | 0.5709       | 0.5097  | 0.4278                           | 0.3236                     | 0.2178        | 0.2785        | 0.3468 | 0.2762 | 0.2824 | 0.2678 |
| $RQR-6^{a}$                 | 0.6978                                          | 0.6978 | 0.6881 | 0.6518       | 0.5835  | 0.4925                           | 0.3758                     | 0.2564        | 0.3418        | 0.4050 | 0.3235 | 0.3309 | 0.3136 |
| RQR-7 <sup>a</sup>          | 0.7788                                          | 0.7788 | 0.7685 | 0.7283       | 0.6536  | 0.5541                           | 0.4259                     | 0.2939        | 0.4036        | 0.4613 | 0.3691 | 0.3776 | 0.3578 |
| RQR-8 <sup>a</sup>          | 0.8467                                          | 0.8467 | 0.8359 | 0.7925       | 0.7127  | 0.6064                           | 0.4687                     | 0.3263        | 0.4574        | 0.5095 | 0.4082 | 0.4178 | 0.3956 |
| RQR-9 <sup>a</sup>          | 0.9571                                          | 0.9571 | 0.9452 | 0.8966       | 0.8094  | 0.6925                           | 0.5400                     | 0.3808        | 0.5475        | 0.5891 | 0.4734 | 0.4848 | 0.4587 |
| RQR-10 <sup>a</sup>         | 1.0726                                          | 1.0726 | 1.0587 | 1.0055       | 0.9118  | 0.7847                           | 0.6182                     | 0.4417        | 0.6471        | 0.6753 | 0.5448 | 0.5588 | 0.5283 |
| <sup>a</sup> Radiation qual | ity defined in IEC 61267 [10]                   |        |        |              |         |                                  |                            |               |               |        |        |        |        |

**Table A3.** Conversion coefficients for the maximum absorbed dose in the complete lens for left and right irradiations for different irradiation geometries,  $d_{\text{lens}K}(\mathbf{R};\alpha)$ , for photon reference radiation qualities, R, in Gy/Gy. The values are valid for a distance of 1.0 m between the radiation source and the point of test. The standard uncertainties (k = 1) are in the order of  $5 \cdot 10^{-4}$  or  $\pm 2$  %, whatever is larger.

| Radiation      |        |              | $d_{\text{lens}K}(\mathbf{R};$ | $(\alpha)$ for $d_{air} = 1$ | 1.0 m [Gy/Gy] | for $\alpha =$ |              |        |
|----------------|--------|--------------|--------------------------------|------------------------------|---------------|----------------|--------------|--------|
| quality R      | 0°     | $15^{\circ}$ | $30^{\circ}$                   | $45^{\circ}$                 | $60^{\circ}$  | $75^{\circ}$   | $90^{\circ}$ | ROT    |
| L-10           | 0.0496 | 0.0484       | 0.0455                         | 0.0396                       | 0.0300        | 0.0175         | 0.0067       | 0.0160 |
| L-20           | 0.6466 | 0.6418       | 0.6281                         | 0.6057                       | 0.5687        | 0.5021         | 0.3941       | 0.2764 |
| L-30           | 1.0381 | 1.0438       | 1.0413                         | 1.0284                       | 1.0002        | 0.9515         | 0.8592       | 0.5278 |
| L-35           | 1.1427 | 1.1527       | 1.1519                         | 1.1421                       | 1.1140        | 1.0714         | 0.9847       | 0.6065 |
| L-55           | 1.4722 | 1.4853       | 1.4995                         | 1.4997                       | 1.4902        | 1.4397         | 1.3599       | 0.8861 |
| L-70           | 1.5634 | 1.5779       | 1.6022                         | 1.6022                       | 1.5922        | 1.5377         | 1.4748       | 0.9877 |
| L-100          | 1.5494 | 1.5595       | 1.5791                         | 1.5792                       | 1.5643        | 1.5375         | 1.4860       | 1.0224 |
| L-125          | 1.4738 | 1.4797       | 1.4983                         | 1.4984                       | 1.4894        | 1.4745         | 1.4286       | 0.9954 |
| L-170          | 1.3904 | 1.4004       | 1.4116                         | 1.4202                       | 1.4104        | 1.4012         | 1.3684       | 0.9695 |
| L-210          | 1.3385 | 1.3485       | 1.3656                         | 1.3757                       | 1.3584        | 1.3555         | 1.3257       | 0.9579 |
| L-240          | 1.3150 | 1.3250       | 1.3366                         | 1.3506                       | 1.3309        | 1.3265         | 1.3045       | 0.9495 |
| N-10           | 0.0318 | 0.0312       | 0.0293                         | 0.0254                       | 0.0190        | 0.0108         | 0.0040       | 0.0102 |
| N-15           | 0.2723 | 0.2683       | 0.2571                         | 0.2370                       | 0.2064        | 0.1587         | 0.0970       | 0.1006 |
| N-20           | 0.5549 | 0.5499       | 0.5361                         | 0.5133                       | 0.4761        | 0.4115         | 0.3110       | 0.2307 |
| N-25           | 0.7805 | 0.7779       | 0.7666                         | 0.7462                       | 0.7142        | 0.6515         | 0.5450       | 0.3546 |
| N-30           | 0.9523 | 0.9548       | 0.9489                         | 0.9332                       | 0.9049        | 0.8505         | 0.7524       | 0.4670 |
| N-40           | 1.2040 | 1.2171       | 1.2161                         | 1.2088                       | 1.1845        | 1.1413         | 1.0569       | 0.6552 |
| N-60           | 1.4564 | 1.4696       | 1.4832                         | 1.4829                       | 1.4724        | 1.4215         | 1.3433       | 0.8730 |
| N-80           | 1.5685 | 1.5885       | 1.6067                         | 1.6067                       | 1.5968        | 1.5492         | 1.4871       | 1.0039 |
| N-100          | 1.5560 | 1.5694       | 1.5870                         | 1.5871                       | 1.5734        | 1.5441         | 1.4903       | 1.0235 |
| N-120          | 1.5032 | 1.5083       | 1.5304                         | 1.5304                       | 1.5169        | 1.4977         | 1.4519       | 1.0063 |
| N-150          | 1.4486 | 1.4567       | 1.4711                         | 1.4734                       | 1.4664        | 1.4534         | 1.4098       | 0.9867 |
| N-200          | 1.3645 | 1.3746       | 1.3887                         | 1.3981                       | 1.3846        | 1.3786         | 1.3474       | 0.9637 |
| N-250          | 1.3184 | 1.3284       | 1.3399                         | 1.3537                       | 1.3346        | 1.3298         | 1.3075       | 0.9503 |
| N-300          | 1.2907 | 1.2976       | 1.3032                         | 1.3219                       | 1.3020        | 1.2932         | 1.2806       | 0.9407 |
| N-350          | 1.2665 | 1.2698       | 1.2778                         | 1.2966                       | 1.2776        | 1.2677         | 1.2564       | 0.9353 |
| N-400          | 1.2473 | 1.2519       | 1.2614                         | 1.2773                       | 1.2613        | 1.2514         | 1.2372       | 0.9319 |
| W-30           | 0.8647 | 0.8647       | 0.8561                         | 0.8381                       | 0.8078        | 0.7494         | 0.6473       | 0.4102 |
| W-40           | 1 0764 | 1 0841       | 1 0809                         | 1 0693                       | 1 0424        | 0 9943         | 0.9032       | 0 5593 |
| W-60           | 1 3960 | 1 4103       | 1 4190                         | 1 4174                       | 1.0121        | 1 3553         | 1 2754       | 0.8196 |
| W-80           | 1.5900 | 1.1105       | 1.5417                         | 1.5414                       | 1.1012        | 1.3355         | 1.2751       | 0.0190 |
| W-110          | 1.5532 | 1.5217       | 1.5117                         | 1.5111                       | 1.5510        | 1.1005         | 1.1101       | 1 0151 |
| W-150          | 1.3352 | 1.3000       | 1.5051                         | 1.5067                       | 1.3732        | 1.3392         | 1.4320       | 0.9953 |
| W-200          | 1.4061 | 1.4002       | 1.3033                         | 1.3007                       | 1.4251        | 1.4750         | 1.4520       | 0.9747 |
| W 250          | 1 3530 | 1 3629       | 1.4290                         | 1.4555                       | 1.4251        | 1.4154         | 1.3766       | 0.9747 |
| W 300          | 1.3350 | 1.3022       | 1.3701                         | 1.3532                       | 1.3713        | 1.3037         | 1.3076       | 0.9003 |
| H 10           | 0.0206 | 0.0202       | 0.0191                         | 0.0165                       | 0.0122        | 0.0068         | 0.0024       | 0.0066 |
| H 20           | 0.0200 | 0.0202       | 0.0171                         | 0.0105                       | 0.0122        | 0.0000         | 0.0024       | 0.0000 |
| H 30           | 0.2450 | 0.2418       | 0.2331                         | 0.2170                       | 0.1932        | 0.1550         | 0.1040       | 0.0943 |
| H 40           | 0.3837 | 0.3827       | 0.3717                         | 0.3318                       | 0.3198        | 0.4030         | 0.3733       | 0.2362 |
| П-40<br>Ц 60   | 0.8489 | 0.8499       | 0.8417                         | 0.8244                       | 0.7957        | 0.7572         | 0.6392       | 0.4091 |
| П-00<br>Ц 80   | 1.1970 | 1.2078       | 1.2090                         | 1.2017                       | 1.1807        | 1.1550         | 1.04/5       | 0.0098 |
| П-80<br>Ц 100  | 1.5/19 | 1.3860       | 1.3951                         | 1.3921                       | 1.3/09        | 1.5265         | 1.2515       | 0.8090 |
| H-100          | 1.4544 | 1.4094       | 1.4820                         | 1.4812                       | 1.4082        | 1.4215         | 1.5502       | 0.0090 |
| H-150          | 1.5162 | 1.5286       | 1.5469                         | 1.54/2                       | 1.5366        | 1.5015         | 1.4446       | 0.9852 |
| H-200          | 1.4/44 | 1.4853       | 1.5019                         | 1.5048                       | 1.4943        | 1.4/13         | 1.4244       | 0.98/8 |
| п-250<br>Ц 290 | 1.4262 | 1.4364       | 1.4516                         | 1.45/3                       | 1.4452        | 1.4303         | 1.3910       | 0.9/91 |
| H-280          | 1.3876 | 1.3971       | 1.4102                         | 1.4189                       | 1.4051        | 1.3939         | 1.3613       | 0.9690 |
| H-300          | 1.3877 | 1.3972       | 1.4105                         | 1.4189                       | 1.4054        | 1.3953         | 1.3622       | 0.9694 |
| H-350          | 1.3545 | 1.3630       | 1.3746                         | 1.3859                       | 1.3707        | 1.3616         | 1.3345       | 0.9600 |
| H-400          | 1.3294 | 1.3371       | 1.3480                         | 1.3609                       | 1.3449        | 1.3365         | 1.3131       | 0.9532 |

(Continued.)

| Radiation           |             |              | $d_{\text{lens}K}(\mathbf{R};$ | $\alpha$ ) for $d_{air} = 1$ | l.0 m [Gy/Gy] | for $\alpha =$ |              |        |
|---------------------|-------------|--------------|--------------------------------|------------------------------|---------------|----------------|--------------|--------|
| quality R           | $0^{\circ}$ | $15^{\circ}$ | $30^{\circ}$                   | $45^{\circ}$                 | $60^{\circ}$  | $75^{\circ}$   | $90^{\circ}$ | ROT    |
| S-Cs                | 1.1712      | 1.1734       | 1.1910                         | 1.2111                       | 1.2010        | 1.1733         | 1.1732       | 0.9337 |
| S-Co                | 1.1276      | 1.1366       | 1.1466                         | 1.1579                       | 1.1543        | 1.1366         | 1.1374       | 0.9528 |
| R-C                 | 1.0854      | 1.0854       | 1.0908                         | 1.0955                       | 1.0954        | 1.0800         | 1.0800       | 0.9783 |
| R-F                 | 1.0758      | 1.0774       | 1.0765                         | 1.0823                       | 1.0819        | 1.0719         | 1.0713       | 0.9731 |
| RQR-2 <sup>a</sup>  | 1.0221      | 1.0276       | 1.0230                         | 1.0096                       | 0.9818        | 0.9309         | 0.8366       | 0.5201 |
| RQR-3 <sup>a</sup>  | 1.0981      | 1.1063       | 1.1033                         | 1.0926                       | 1.0677        | 1.0181         | 0.9269       | 0.5788 |
| RQR-4 <sup>a</sup>  | 1.1673      | 1.1769       | 1.1767                         | 1.1680                       | 1.1456        | 1.0966         | 1.0082       | 0.6339 |
| RQR-5 <sup>a</sup>  | 1.2191      | 1.2296       | 1.2321                         | 1.2248                       | 1.2041        | 1.1550         | 1.0693       | 0.6772 |
| RQR-6 <sup>a</sup>  | 1.2652      | 1.2768       | 1.2813                         | 1.2751                       | 1.2559        | 1.2070         | 1.1240       | 0.7175 |
| RQR-7 <sup>a</sup>  | 1.3065      | 1.3190       | 1.3252                         | 1.3200                       | 1.3021        | 1.2538         | 1.1734       | 0.7546 |
| RQR-8 <sup>a</sup>  | 1.3386      | 1.3515       | 1.3594                         | 1.3550                       | 1.3379        | 1.2904         | 1.2124       | 0.7848 |
| RQR-9 <sup>a</sup>  | 1.3873      | 1.4003       | 1.4111                         | 1.4079                       | 1.3921        | 1.3465         | 1.2731       | 0.8332 |
| RQR-10 <sup>a</sup> | 1.4302      | 1.4430       | 1.4562                         | 1.4544                       | 1.4407        | 1.3988         | 1.3309       | 0.8827 |

Table A3. (Continued.)

<sup>a</sup> Radiation quality defined in IEC 61267 [10]

**Table A4.** Conversion coefficients for the directional absorbed dose in local skin as well as for the personal absorbed dose in local skin on the slab phantom for different irradiation geometries,  $d_{\text{local skin }K}(R;\alpha)_{\text{slab}}$ , for photon reference radiation qualities, R, in Gy/Gy. The values are valid for a distance of 1.0 m between the radiation source and the point of test. The standard uncertainties (k = 1) are in the order of 5·10<sup>-4</sup> or  $\pm 2$  %, whatever is larger.

| Radiation       |             | $d_{\rm local}$ | $_{\rm skin \ K}({ m R};\alpha)_{\rm slab}$ for | $d_{\rm air} = 1.0 \text{ m} [\text{Gy}]$ | (Gy] for $\alpha =$ |        |
|-----------------|-------------|-----------------|-------------------------------------------------|-------------------------------------------|---------------------|--------|
| quality R       | $0^{\circ}$ | $15^{\circ}$    | 30°                                             | $45^{\circ}$                              | $60^{\circ}$        | 75°    |
| L-10            | 0.9511      | 0.9491          | 0.9448                                          | 0.9289                                    | 0.8979              | 0.7994 |
| L-20            | 1.0454      | 1.0457          | 1.0456                                          | 1.0357                                    | 1.0259              | 0.9996 |
| L-30            | 1.2106      | 1.2043          | 1.2051                                          | 1.1892                                    | 1.1621              | 1.1151 |
| L-35            | 1.2890      | 1.2797          | 1.2790                                          | 1.2594                                    | 1.2205              | 1.1596 |
| L-55            | 1.6341      | 1.6242          | 1.6139                                          | 1.5698                                    | 1.5024              | 1.3703 |
| L-70            | 1.7617      | 1.7517          | 1.7329                                          | 1.6914                                    | 1.6126              | 1.4657 |
| L-100           | 1.7297      | 1.7233          | 1.7139                                          | 1.6812                                    | 1.6152              | 1.5035 |
| L-125           | 1.6428      | 1.6424          | 1.6375                                          | 1.6192                                    | 1.5690              | 1.4784 |
| L-170           | 1.5247      | 1.5246          | 1.5319                                          | 1.5220                                    | 1.5009              | 1.4397 |
| L-210           | 1.4609      | 1.4608          | 1.4635                                          | 1.4608                                    | 1.4556              | 1.4103 |
| L-240           | 1.4236      | 1.4236          | 1.4257                                          | 1.4271                                    | 1.4299              | 1.3926 |
| N-10            | 0.9363      | 0.9340          | 0.9277                                          | 0.9086                                    | 0.8692              | 0.7500 |
| N-15            | 0.9876      | 0.9863          | 0.9854                                          | 0.9739                                    | 0.9598              | 0.9142 |
| N-20            | 1.0292      | 1.0291          | 1.0289                                          | 1.0188                                    | 1.0083              | 0.9798 |
| N-25            | 1.0862      | 1.0856          | 1.0858                                          | 1.0752                                    | 1.0638              | 1.0336 |
| N-30            | 1.1622      | 1.1584          | 1,1590                                          | 1.1455                                    | 1.1255              | 1.0854 |
| N-40            | 1.3445      | 1.3346          | 1.3316                                          | 1.3098                                    | 1.2647              | 1.1919 |
| N-60            | 1.6175      | 1.6075          | 1.5969                                          | 1.5557                                    | 1.4891              | 1.3609 |
| N-80            | 1.7693      | 1.7593          | 1.7411                                          | 1.7001                                    | 1.6219              | 1.4798 |
| N-100           | 1.7410      | 1.7336          | 1.7229                                          | 1.6882                                    | 1.6200              | 1.5034 |
| N-120           | 1.6752      | 1.6733          | 1.6660                                          | 1.6635                                    | 1 5866              | 1 4883 |
| N-150           | 1.6088      | 1.6084          | 1.6078                                          | 1.5916                                    | 1 5498              | 1.1005 |
| N-200           | 1 4927      | 1.0001          | 1.0070                                          | 1.3916                                    | 1.3190              | 1.1070 |
| N-250           | 1.1927      | 1.127           | 1.1375                                          | 1.1710                                    | 1.1701              | 1.1252 |
| N-300           | 1.1200      | 1.1279          | 1 3844                                          | 1 3900                                    | 1.1550              | 1.3721 |
| N-350           | 1 3410      | 1.3/0/          | 1 3496                                          | 1.3582                                    | 1.1010              | 1.3721 |
| N-400           | 1 3150      | 1 3150          | 1.3476                                          | 1.3341                                    | 1 3532              | 1.3332 |
| W-30            | 1 1243      | 1.5150          | 1.1225                                          | 1 1 1 0 4                                 | 1.0945              | 1.0593 |
| W 40            | 1 2498      | 1.1221          | 1.1225                                          | 1.1104                                    | 1 1920              | 1.0375 |
| W-40<br>W-60    | 1.2490      | 1.2420          | 1.5303                                          | 1,2244                                    | 1.1720              | 1.1300 |
| W-80            | 1,5492      | 1.5592          | 1.6650                                          | 1.4242                                    | 1.5519              | 1.3177 |
| W 110           | 1.0000      | 1.07.20         | 1.0050                                          | 1.6243                                    | 1.5517              | 1.4105 |
| W 150           | 1.7411      | 1.7550          | 1.7210                                          | 1.6302                                    | 1.5701              | 1.4740 |
| W 200           | 1.0407      | 1.0407          | 1.5520                                          | 1.5407                                    | 1.5701              | 1.4700 |
| W 250           | 1.3451      | 1.5400          | 1.3320                                          | 1.763                                     | 1.5150              | 1.4405 |
| W 300           | 1.4707      | 1.4707          | 1,4305                                          | 1,4705                                    | 1.4000              | 1.4107 |
| H 10            | 0.9172      | 0.9144          | 0.9057                                          | 0.8824                                    | 0.8336              | 0.6928 |
| н 20            | 0.9172      | 0.9794          | 0.9037                                          | 0.0024                                    | 0.0330              | 0.0920 |
| H 30            | 1.0488      | 1.0477          | 1.0473                                          | 1.0358                                    | 1 0217              | 0.0034 |
| H 40            | 1.0400      | 1,0477          | 1.0475                                          | 1 1199                                    | 1.0217              | 1 0595 |
| H 60            | 1.1500      | 1.1555          | 1.1555                                          | 1.1177                                    | 1.1001              | 1.0375 |
| H 80            | 1.5007      | 1.5305          | 1.5341                                          | 1.3291                                    | 1.2045              | 1.2038 |
| H 100           | 1.5597      | 1.5500          | 1.5205                                          | 1.4071                                    | 1.4200              | 1.3103 |
| H 150           | 1.6255      | 1,6202          | 1.6794                                          | 1.5717                                    | 1.5051              | 1.5054 |
| H 200           | 1.0908      | 1.0903          | 1.0794                                          | 1.0471                                    | 1.5625              | 1.4045 |
| H 250           | 1.0403      | 1.0307          | 1.0317                                          | 1.0070                                    | 1.5005              | 1.4040 |
| H 280           | 1.57.55     | 1.5755          | 1.5725                                          | 1.3373                                    | 1.5245              | 1.4403 |
| п-200<br>Ц 200  | 1.5214      | 1.5205          | 1.521/                                          | 1.5128                                    | 1.4922              | 1.4301 |
| H-300           | 1.5224      | 1.321/          | 1.5233                                          | 1.5144                                    | 1.493/              | 1.4320 |
| п-350<br>Ц. 400 | 1.4/42      | 1.4/38          | 1.4//2                                          | 1.4/31                                    | 1.4029              | 1.4125 |
| H-400           | 1.4377      | 1.43/6          | 1.4424                                          | 1.4417                                    | 1.4390              | 1.3978 |

(Continued.)

| Radiation           |             | dlocal       | $_{\rm skin \ K}({\rm R};\alpha)_{\rm slab}$ for | $d_{\rm air} = 1.0 \text{ m [Gy/}$ | Gy] for $\alpha =$ |        |
|---------------------|-------------|--------------|--------------------------------------------------|------------------------------------|--------------------|--------|
| quality R           | $0^{\circ}$ | $15^{\circ}$ | $30^{\circ}$                                     | $45^{\circ}$                       | $60^{\circ}$       | 75°    |
| S-Cs                | 1.2136      | 1.2136       | 1.2238                                           | 1.2337                             | 1.2634             | 1.2909 |
| S-Co                | 1.1606      | 1.1606       | 1.1706                                           | 1.1806                             | 1.2021             | 1.2317 |
| R-C                 | 1.0947      | 1.0947       | 1.1048                                           | 1.1048                             | 1.1148             | 1.1372 |
| R-F                 | 1.0890      | 1.0890       | 1.0943                                           | 1.0943                             | 1.0995             | 1.1137 |
| RQR-2 <sup>a</sup>  | 1.2155      | 1.2098       | 1.2093                                           | 1.1933                             | 1.1656             | 1.1158 |
| RQR-3 <sup>a</sup>  | 1.2769      | 1.2701       | 1.2681                                           | 1.2488                             | 1.2142             | 1.1525 |
| RQR-4 <sup>a</sup>  | 1.3374      | 1.3298       | 1.3264                                           | 1.3034                             | 1.2627             | 1.1894 |
| RQR-5 <sup>a</sup>  | 1.3869      | 1.3788       | 1.3739                                           | 1.3483                             | 1.3029             | 1.2205 |
| RQR-6 <sup>a</sup>  | 1.4329      | 1.4243       | 1.4180                                           | 1.3903                             | 1.3406             | 1.2505 |
| RQR-7 <sup>a</sup>  | 1.4747      | 1.4658       | 1.4583                                           | 1.4288                             | 1.3755             | 1.2788 |
| RQR-8 <sup>a</sup>  | 1.5078      | 1.4988       | 1.4905                                           | 1.4598                             | 1.4037             | 1.3024 |
| RQR-9 <sup>a</sup>  | 1.5578      | 1.5491       | 1.5396                                           | 1.5077                             | 1.4481             | 1.3406 |
| RQR-10 <sup>a</sup> | 1.6016      | 1.5936       | 1.5838                                           | 1.5520                             | 1.4910             | 1.3801 |

Table A4. (Continued.)

<sup>a</sup> Radiation quality defined in IEC 61267 [10]

| for a distance of<br>Radiation | t 1.0 m between | the radiation s | ource and the | point of test. T | he standard und | certainties $(k = \frac{d_{\text{local skin }K}}{d}$ | $(R;\alpha)_{pillar}$ for | rder of $5 \cdot 10^{-4}$ o<br>$d_{air} = 1.0 \text{ m}$ | $r \pm 2$ %, whatever,<br>Gy/Gy] for $\alpha =$ | er is larger. |          |          |               |            |
|--------------------------------|-----------------|-----------------|---------------|------------------|-----------------|------------------------------------------------------|---------------------------|----------------------------------------------------------|-------------------------------------------------|---------------|----------|----------|---------------|------------|
| quality R                      | 00              | 15°             | 30°           | 45°              | 60°             | 75°                                                  | ٥0 <sub>°</sub>           | 105°                                                     | 120°                                            | 135°          | 150°     | 165°     | $180^{\circ}$ | ROT        |
| L-10                           | 0.9558          | 0.9532          | 0.9501        | 0.9356           | 0.9014          | 0.7983                                               | 0.2501                    | <0.0005                                                  | <0.0005                                         | <0.0005       | <0.0005  | <0.0005  | <0.0005       | 0.4388     |
| L-20                           | 1.0515          | 1.0560          | 1.0516        | 1.0456           | 1.0358          | 1.0162                                               | 0.7169                    | 0.1359                                                   | 0.0248                                          | 0.0057        | 0.0015   | 0.0006   | <0.0005       | 0.5512     |
| L-30                           | 1.1962          | 1.1950          | 1.1904        | 1.1853           | 1.1695          | 1.1475                                               | 0.9961                    | 0.5116                                                   | 0.2524                                          | 0.1430        | 0.1022   | 0.0808   | 0.0713        | 0.7161     |
| L-35                           | 1.2557          | 1.2479          | 1.2461        | 1.2380           | 1.2181          | 1.1983                                               | 1.0656                    | 0.6299                                                   | 0.3637                                          | 0.2285        | 0.1704   | 0.1397   | 0.1282        | 0.7855     |
| L-55                           | 1.4241          | 1.4384          | 1.4048        | 1.4286           | 1.3986          | 1.3958                                               | 1.2942                    | 0.9666                                                   | 0.6939                                          | 0.5366        | 0.4278   | 0.3866   | 0.3995        | 1.0229     |
| L-70                           | 1.4639          | 1.4672          | 1.4429        | 1.4515           | 1.4370          | 1.4433                                               | 1.3477                    | 1.0545                                                   | 0.7922                                          | 0.6435        | 0.5395   | 0.4873   | 0.4990        | 1.0930     |
| L-100                          | 1.4346          | 1.4069          | 1.4259        | 1.3963           | 1.3944          | 1.4052                                               | 1.3327                    | 1.0835                                                   | 0.8550                                          | 0.7008        | 0.6240   | 0.5589   | 0.5548        | 1.1014     |
| L-125                          | 1.3795          | 1.3639          | 1.3790        | 1.3658           | 1.3588          | 1.3689                                               | 1.3107                    | 1.0803                                                   | 0.8669                                          | 0.7182        | 0.6380   | 0.5821   | 0.5747        | 1.0857     |
| L-170                          | 1.3122          | 1.3117          | 1.3132        | 1.3197           | 1.3189          | 1.3300                                               | 1.2801                    | 1.0789                                                   | 0.8776                                          | 0.7496        | 0.6573   | 0.6107   | 0.5914        | 1.0695     |
| L-210                          | 1.2732          | 1.2804          | 1.2804        | 1.2829           | 1.2831          | 1.3004                                               | 1.2578                    | 1.0725                                                   | 0.8750                                          | 0.7569        | 0.6748   | 0.6269   | 0.6173        | 1.0553     |
| L-240                          | 1.2531          | 1.2609          | 1.2609        | 1.2612           | 1.2648          | 1.2827                                               | 1.2458                    | 1.0668                                                   | 0.8800                                          | 0.7673        | 0.6869   | 0.6409   | 0.6356        | 1.0490     |
| N-10                           | 0.9395          | 0.9368          | 0.9313        | 0.9132           | 0.8716          | 0.7492                                               | 0.2087                    | < 0.0005                                                 | < 0.0005                                        | < 0.0005      | < 0.0005 | < 0.0005 | < 0.0005      | 0.4234     |
| N-15                           | 0.9977          | 0.9951          | 0.9962        | 0.9856           | 0.9679          | 0.9186                                               | 0.4550                    | 0.0155                                                   | < 0.0005                                        | <0.0005       | <0.0005  | <0.0005  | < 0.0005      | 0.4858     |
| N-20                           | 1.0370          | 1.0392          | 1.0369        | 1.0291           | 1.0180          | 0.9937                                               | 0.6535                    | 0.0962                                                   | 0.0150                                          | 0.0032        | 0.0008   | <0.0005  | <0.0005       | 0.5336     |
| N-25                           | 1.0872          | 1.0943          | 1.0868        | 1.0843           | 1.0738          | 1.0535                                               | 0.8117                    | 0.2437                                                   | 0.0721                                          | 0.0280        | 0.0157   | 0.0109   | 0.0091        | 0.5929     |
| N-30                           | 1.1541          | 1.1577          | 1.1507        | 1.1479           | 1.1344          | 1.1127                                               | 0.9350                    | 0.4151                                                   | 0.1792                                          | 0.0935        | 0.0641   | 0.0496   | 0.0432        | 0.6688     |
| N-40                           | 1.2902          | 1.2822          | 1.2783        | 1.2724           | 1.2498          | 1.2323                                               | 1.1075                    | 0.6972                                                   | 0.4294                                          | 0.2836        | 0.2150   | 0.1804   | 0.1704        | 0.8288     |
| N-60                           | 1.4164          | 1.4274          | 1.3975        | 1.4171           | 1.3887          | 1.3851                                               | 1.2824                    | 0.9512                                                   | 0.6795                                          | 0.5226        | 0.4172   | 0.3754   | 0.3858        | 1.0115     |
| N-80                           | 1.4648          | 1.4576          | 1.4447        | 1.4404           | 1.4320          | 1.4398                                               | 1.3473                    | 1.0645                                                   | 0.8088                                          | 0.6595        | 0.5622   | 0.5049   | 0.5113        | 1.0991     |
| N-100                          | 1.4418          | 1.4151          | 1.4309        | 1.4025           | 1.4013          | 1.4119                                               | 1.3359                    | 1.0829                                                   | 0.8505                                          | 0.6972        | 0.6181   | 0.5530   | 0.5495        | 1.1032     |
| N-120                          | 1.3993          | 1.3792          | 1.3969        | 1.3773           | 1.3709          | 1.3811                                               | 1.3188                    | 1.0811                                                   | 0.8630                                          | 0.7108        | 0.6331   | 0.5739   | 0.5687        | 1.0909     |
| N-150                          | 1.3605          | 1.3493          | 1.3599        | 1.3532           | 1.3484          | 1.3584                                               | 1.3022                    | 1.0801                                                   | 0.8703                                          | 0.7278        | 0.6430   | 0.5901   | 0.5782        | 1.0814     |
| N-200                          | 1.2926          | 1.2961          | 1.2967        | 1.3016           | 1.3013          | 1.3154                                               | 1.2691                    | 1.0759                                                   | 0.8764                                          | 0.7534        | 0.6659   | 0.6188   | 0.6039        | 1.0625     |
| N-250                          | 1.2558          | 1.2631          | 1.2631        | 1.2639           | 1.2674          | 1.2848                                               | 1.2474                    | 1.0673                                                   | 0.8801                                          | 0.7667        | 0.6855   | 0.6396   | 0.6335        | 1.0500     |
| N-300                          | 1.2323          | 1.2365          | 1.2365        | 1.2366           | 1.2479          | 1.2621                                               | 1.2334                    | 1.0588                                                   | 0.8945                                          | 0.7879        | 0.7022   | 0.6623   | 0.6583        | 1.0446     |
| N-350                          | 1.2151          | 1.2165          | 1.2159        | 1.2170           | 1.2337          | 1.2450                                               | 1.2233                    | 1.0539                                                   | 0.9071                                          | 0.8052        | 0.7173   | 0.6825   | 0.6777        | 1.0415     |
| N-400                          | 1.2033          | 1.2037          | 1.2015        | 1.2059           | 1.2229          | 1.2332                                               | 1.2169                    | 1.0553                                                   | 0.9155                                          | 0.8158        | 0.7330   | 0.7010   | 0.6918        | 1.0405     |
| W-30                           | 1.1208          | 1.1259          | 1.1188        | 1.1160           | 1.1040          | 1.0830                                               | 0.8722                    | 0.3291                                                   | 0.1263                                          | 0.0614        | 0.0405   | 0.0308   | 0.0266        | 0.6309     |
| W-40                           | 1.2211          | 1.2183          | 1.2135        | 1.2085           | 1.1906          | 1.1707                                               | 1.0201                    | 0.5550                                                   | 0.3019                                          | 0.1855        | 0.1369   | 0.1123   | 0.1036        | 0.7469     |
| W-60                           | 1.3874          | 1.3931          | 1.3700        | 1.3832           | 1.3553          | 1.3481                                               | 1.2407                    | 0.8922                                                   | 0.6211                                          | 0.4646        | 0.3671   | 0.3267   | 0.3317        | 0.9677     |
| W-80                           | 1.4392          | 1.4426          | 1.4196        | 1.4291           | 1.4097          | 1.4115                                               | 1.3131                    | 1.0037                                                   | 0.7389                                          | 0.5860        | 0.4840   | 0.4353   | 0.4444        | 1.0525     |
| W-110                          | 1.4431          | 1.4237          | 1.4307        | 1.4113           | 1.4067          | 1.4164                                               | 1.3373                    | 1.0768                                                   | 0.8391                                          | 0.6870        | 0.6025   | 0.5407   | 0.5404        | 1.1002     |
| W-150                          | 1.3852          | 1.3696          | 1.3819        | 1.3688           | 1.3639          | 1.3739                                               | 1.3115                    | 1.0774                                                   | 0.8603                                          | 0.7137        | 0.6313   | 0.5750   | 0.5667        | 1.0859     |
|                                |                 |                 |               |                  |                 |                                                      |                           |                                                          |                                                 |               |          |          | C             | ontinued.) |

F (R.o.) Ē -infolia .= C Table A5 Table A5. (Continued.)

| Radiation                   |                   |               |              |        |        | $d_{\text{local skin }K}$ | $(R;\alpha)_{pillar}$ for | $d_{\rm air} = 1.0 \text{ m} [0.01 \text{ m}]$ | $Gy/Gy$ ] for $\alpha =$ |               |               |               |               |        |
|-----------------------------|-------------------|---------------|--------------|--------|--------|---------------------------|---------------------------|------------------------------------------------|--------------------------|---------------|---------------|---------------|---------------|--------|
| quality R                   | 00                | 15°           | $30^{\circ}$ | 45°    | 60°    | 75°                       | ٥0°                       | $105^{\circ}$                                  | 120°                     | $135^{\circ}$ | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT    |
| W-200                       | 1.3258            | 1.3222        | 1.3272       | 1.3275 | 1.3252 | 1.3369                    | 1.2856                    | 1.0782                                         | 0.8739                   | 0.7416        | 0.6541        | 0.6046        | 0.5900        | 1.0720 |
| W-250                       | 1.2837            | 1.2876        | 1.2888       | 1.2913 | 1.2919 | 1.3070                    | 1.2633                    | 1.0730                                         | 0.8772                   | 0.7563        | 0.6715        | 0.6244        | 0.6131        | 1.0591 |
| W-300                       | 1.2564            | 1.2617        | 1.2619       | 1.2633 | 1.2686 | 1.2842                    | 1.2477                    | 1.0663                                         | 0.8842                   | 0.7708        | 0.6867        | 0.6426        | 0.6352        | 1.0511 |
| H-10                        | 0.9193            | 0.9162        | 0.9081       | 0.8854 | 0.8352 | 0.6922                    | 0.1712                    | <0.0005                                        | < 0.0005                 | <0.0005       | < 0.0005      | < 0.0005      | <0.0005       | 0.4057 |
| H-20                        | 0.9886            | 0.9868        | 0.9857       | 0.9741 | 0.9515 | 0.8875                    | 0.4188                    | 0.0253                                         | 0.0030                   | 0.0006        | < 0.0005      | <0.0005       | <0.0005       | 0.4771 |
| H-30                        | 1.0531            | 1.0554        | 1.0517       | 1.0449 | 1.0308 | 0.9986                    | 0.6727                    | 0.1572                                         | 0.0488                   | 0.0213        | 0.0133        | 0.0099        | 0.0085        | 0.5525 |
| H-40                        | 1.1283            | 1.1305        | 1.1250       | 1.1202 | 1.1062 | 1.0838                    | 0.8592                    | 0.3379                                         | 0.1503                   | 0.0834        | 0.0589        | 0.0472        | 0.0427        | 0.6399 |
| H-60                        | 1.2865            | 1.2864        | 1.2747       | 1.2763 | 1.2536 | 1.2372                    | 1.1020                    | 0.6891                                         | 0.4305                   | 0.2973        | 0.2288        | 0.1976        | 0.1940        | 0.8335 |
| H-80                        | 1.3742            | 1.3754        | 1.3578       | 1.3641 | 1.3415 | 1.3345                    | 1.2215                    | 0.8681                                         | 0.6033                   | 0.4543        | 0.3650        | 0.3238        | 0.3263        | 0.9550 |
| H-100                       | 1.4112            | 1.4092        | 1.3941       | 1.3965 | 1.3784 | 1.3774                    | 1.2753                    | 0.9539                                         | 0.6934                   | 0.5419        | 0.4486        | 0.4008        | 0.4050        | 1.0158 |
| H-150                       | 1.4235            | 1.4142        | 1.4115       | 1.4054 | 1.3957 | 1.4030                    | 1.3228                    | 1.0551                                         | 0.8150                   | 0.6653        | 0.5746        | 0.5195        | 0.5202        | 1.0817 |
| H-200                       | 1.3829            | 1.3741        | 1.3771       | 1.3714 | 1.3662 | 1.3761                    | 1.3099                    | 1.0723                                         | 0.8498                   | 0.7076        | 0.6197        | 0.5658        | 0.5592        | 1.0826 |
| H-250                       | 1.3426            | 1.3376        | 1.3417       | 1.3380 | 1.3355 | 1.3476                    | 1.2916                    | 1.0750                                         | 0.8647                   | 0.7306        | 0.6448        | 0.5932        | 0.5840        | 1.0744 |
| H-280                       | 1.3111            | 1.3093        | 1.3128       | 1.3108 | 1.3111 | 1.3243                    | 1.2758                    | 1.0727                                         | 0.8733                   | 0.7462        | 0.6611        | 0.6122        | 0.6028        | 1.0663 |
| H-300                       | 1.3111            | 1.3094        | 1.3134       | 1.3117 | 1.3114 | 1.3247                    | 1.2762                    | 1.0737                                         | 0.8735                   | 0.7459        | 0.6610        | 0.6119        | 0.6016        | 1.0665 |
| H-350                       | 1.2846            | 1.2850        | 1.2875       | 1.2871 | 1.2904 | 1.3040                    | 1.2621                    | 1.0693                                         | 0.8810                   | 0.7602        | 0.6749        | 0.6290        | 0.6200        | 1.0593 |
| H-400                       | 1.2650            | 1.2665        | 1.2678       | 1.2687 | 1.2748 | 1.2882                    | 1.2516                    | 1.0665                                         | 0.8876                   | 0.7719        | 0.6867        | 0.6435        | 0.6348        | 1.0545 |
| S-Cs                        | 1.1612            | 1.1523        | 1.1426       | 1.1622 | 1.1725 | 1.1733                    | 1.1821                    | 1.0697                                         | 0.9407                   | 0.8599        | 0.8066        | 0.7857        | 0.7527        | 1.0310 |
| S-Co                        | 1.1326            | 1.1213        | 1.1197       | 1.1313 | 1.1412 | 1.1578                    | 1.1494                    | 1.0587                                         | 0.9878                   | 0.9169        | 0.8790        | 0.8449        | 0.8372        | 1.0385 |
| R-C                         | 1.1152            | 1.0871        | 1.0795       | 1.0924 | 1.1048 | 1.0744                    | 1.0876                    | 1.0700                                         | 1.0276                   | 0.9705        | 0.9492        | 0.9367        | 0.9409        | 1.0424 |
| R-F                         | 1.0871            | 1.0666        | 1.0746       | 1.0846 | 1.0762 | 1.0647                    | 1.0753                    | 1.0342                                         | 0.9971                   | 0.9555        | 0.9705        | 0.9281        | 0.9355        | 1.0312 |
| RQR-2 <sup>a</sup>          | 1.1939            | 1.1934        | 1.1879       | 1.1836 | 1.1674 | 1.1472                    | 0.9821                    | 0.4946                                         | 0.2535                   | 0.1509        | 0.1099        | 0.0894        | 0.0819        | 0.7155 |
| RQR-3 <sup>a</sup>          | 1.2335            | 1.2328        | 1.2252       | 1.2230 | 1.2041 | 1.1858                    | 1.0348                    | 0.5770                                         | 0.3272                   | 0.2105        | 0.1578        | 0.1327        | 0.1263        | 0.7649 |
| RQR-4 <sup>a</sup>          | 1.2686            | 1.2690        | 1.2582       | 1.2592 | 1.2383 | 1.2223                    | 1.0828                    | 0.6500                                         | 0.3935                   | 0.2669        | 0.2041        | 0.1753        | 0.1711        | 0.8106 |
| RQR-5 <sup>a</sup>          | 1.2946            | 1.2956        | 1.2828       | 1.2855 | 1.2641 | 1.2503                    | 1.1182                    | 0.7042                                         | 0.4443                   | 0.3120        | 0.2425        | 0.2109        | 0.2085        | 0.8460 |
| RQR-6 <sup>a</sup>          | 1.3175            | 1.3181        | 1.3045       | 1.3074 | 1.2864 | 1.2749                    | 1.1491                    | 0.7523                                         | 0.4908                   | 0.3542        | 0.2798        | 0.2451        | 0.2439        | 0.8782 |
| RQR-7 <sup>a</sup>          | 1.3377            | 1.3374        | 1.3238       | 1.3262 | 1.3060 | 1.2967                    | 1.1765                    | 0.7959                                         | 0.5339                   | 0.3938        | 0.3155        | 0.2778        | 0.2774        | 0.9075 |
| RQR-8 <sup>a</sup>          | 1.3530            | 1.3515        | 1.3386       | 1.3401 | 1.3208 | 1.3134                    | 1.1979                    | 0.8306                                         | 0.5693                   | 0.4267        | 0.3459        | 0.3057        | 0.3059        | 0.9310 |
| RQR-9 <sup>a</sup>          | 1.3747            | 1.3716        | 1.3602       | 1.3603 | 1.3424 | 1.3382                    | 1.2310                    | 0.8865                                         | 0.6276                   | 0.4815        | 0.3971        | 0.3531        | 0.3541        | 0.9684 |
| RQR-10 <sup>a</sup>         | 1.3909            | 1.3865        | 1.3772       | 1.3764 | 1.3606 | 1.3600                    | 1.2628                    | 0.9453                                         | 0.6919                   | 0.5436        | 0.4558        | 0.4084        | 0.4092        | 1.0067 |
| <sup>a</sup> Radiation qual | ity defined in II | 3C 61267 [10] |              |        |        |                           |                           |                                                |                          |               |               |               |               |        |

| Radiation |        |              |              |              |        | $d_{\text{local skin }K}($ | R; $\alpha$ ) <sub>rod</sub> for $d_{\rm a}$ | $_{ m ir} = 1.0 \text{ m} [G$ | $\dot{N}/Gy$ for $\alpha =$ |        |               |               |               |            |
|-----------|--------|--------------|--------------|--------------|--------|----------------------------|----------------------------------------------|-------------------------------|-----------------------------|--------|---------------|---------------|---------------|------------|
| quality R | 00     | $15^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | 60°    | $75^{\circ}$               | °06                                          | $105^{\circ}$                 | $120^{\circ}$               | 135°   | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT        |
| L-10      | 0.9526 | 0.9529       | 0.9426       | 0.9213       | 0.8520 | 0.6639                     | 0.4245                                       | 0.1956                        | 0.0406                      | 0.0015 | <0.0005       | <0.0005       | <0.0005       | 0.4561     |
| L-20      | 1.0454 | 1.0457       | 1.0392       | 1.0355       | 1.0184 | 0.9457                     | 0.7993                                       | 0.6047                        | 0.4068                      | 0.2646 | 0.1895        | 0.1540        | 0.1433        | 0.6735     |
| L-30      | 1.1104 | 1.1098       | 1.1121       | 1.0994       | 1.0907 | 1.0629                     | 0.9917                                       | 0.8842                        | 0.7611                      | 0.6529 | 0.5793        | 0.5364        | 0.5228        | 0.8918     |
| L-35      | 1.1282 | 1.1286       | 1.1288       | 1.1188       | 1.1091 | 1.0880                     | 1.0262                                       | 0.9325                        | 0.8262                      | 0.7317 | 0.6651        | 0.6261        | 0.6140        | 0.9371     |
| L-55      | 1.1673 | 1.1766       | 1.1758       | 1.1751       | 1.1731 | 1.1545                     | 1.1040                                       | 1.0410                        | 0.9619                      | 0.8950 | 0.8473        | 0.8213        | 0.8121        | 1.0412     |
| L-70      | 1.1826 | 1.1840       | 1.1820       | 1.1820       | 1.1799 | 1.1619                     | 1.1225                                       | 1.0710                        | 1.0018                      | 0.9415 | 0.8983        | 0.8707        | 0.8635        | 1.0690     |
| L-100     | 1.2013 | 1.2021       | 1.1943       | 1.1940       | 1.1862 | 1.1794                     | 1.1515                                       | 1.1002                        | 1.0425                      | 0.9859 | 0.9415        | 0.9176        | 0.9099        | 1.0926     |
| L-125     | 1.1833 | 1.1833       | 1.1828       | 1.1853       | 1.1848 | 1.1750                     | 1.1477                                       | 1.1026                        | 1.0453                      | 0.9976 | 0.9587        | 0.9372        | 0.9295        | 1.0996     |
| L-170     | 1.1625 | 1.1614       | 1.1613       | 1.1695       | 1.1694 | 1.1605                     | 1.1397                                       | 1.1080                        | 1.0583                      | 1.0096 | 0.9766        | 0.9549        | 0.9480        | 1.0988     |
| L-210     | 1.1600 | 1.1526       | 1.1526       | 1.1552       | 1.1552 | 1.1526                     | 1.1326                                       | 1.1025                        | 1.0599                      | 1.0173 | 0.9839        | 0.9633        | 0.9578        | 1.0925     |
| L-240     | 1.1569 | 1.1481       | 1.1480       | 1.1484       | 1.1492 | 1.1488                     | 1.1288                                       | 1.0996                        | 1.0600                      | 1.0212 | 0.9883        | 0.9682        | 0.9636        | 1.0896     |
| N-10      | 0.9356 | 0.9359       | 0.9228       | 0.8966       | 0.8168 | 0.6222                     | 0.3870                                       | 0.1696                        | 0.0305                      | 0.0007 | < 0.0005      | < 0.0005      | < 0.0005      | 0.4376     |
| N-15      | 0.9974 | 0.9962       | 0.9882       | 0.9805       | 0.9412 | 0.8057                     | 0.5892                                       | 0.3495                        | 0.1495                      | 0.0540 | 0.0245        | 0.0145        | 0.0117        | 0.5327     |
| N-20      | 1.0336 | 1.0335       | 1.0259       | 1.0226       | 1.0007 | 0.9138                     | 0.7489                                       | 0.5397                        | 0.3368                      | 0.2021 | 0.1367        | 0.1073        | 0.0986        | 0.6348     |
| N-25      | 1.0657 | 1.0656       | 1.0639       | 1.0556       | 1.0433 | 0.9878                     | 0.8699                                       | 0.7064                        | 0.5312                      | 0.3951 | 0.3160        | 0.2750        | 0.2622        | 0.7475     |
| N-30      | 1.0948 | 1.0943       | 1.0962       | 1.0840       | 1.0750 | 1.0388                     | 0.9537                                       | 0.8289                        | 0.6880                      | 0.5686 | 0.4913        | 0.4476        | 0.4338        | 0.8447     |
| N-40      | 1.1373 | 1.1393       | 1.1384       | 1.1303       | 1.1209 | 1.1020                     | 1.0437                                       | 0.9563                        | 0.8575                      | 0.7696 | 0.7071        | 0.6709        | 0.6595        | 0.9599     |
| N-60      | 1.1659 | 1.1738       | 1.1729       | 1.1717       | 1.1690 | 1.1505                     | 1.1005                                       | 1.0365                        | 0.9569                      | 0.8893 | 0.8409        | 0.8139        | 0.8048        | 1.0371     |
| N-80      | 1.1903 | 1.1913       | 1.1858       | 1.1857       | 1.1802 | 1.1659                     | 1.1305                                       | 1.0794                        | 1.0142                      | 0.9524 | 0.9082        | 0.8807        | 0.8735        | 1.0739     |
| N-100     | 1.2016 | 1.2024       | 1.1939       | 1.1935       | 1.1851 | 1.1779                     | 1.1497                                       | 1.0985                        | 1.0405                      | 0.9821 | 0.9375        | 0.9128        | 0.9052        | 1.0901     |
| N-120     | 1.1899 | 1.1902       | 1.1879       | 1.1889       | 1.1867 | 1.1777                     | 1.1495                                       | 1.1014                        | 1.0433                      | 0.9938 | 0.9528        | 0.9309        | 0.9231        | 1.0980     |
| N-150     | 1.1768 | 1.1769       | 1.1764       | 1.1810       | 1.1805 | 1.1707                     | 1.1455                                       | 1.1046                        | 1.0494                      | 1.0008 | 0.9638        | 0.9421        | 0.9346        | 1.0995     |
| N-200     | 1.1610 | 1.1569       | 1.1569       | 1.1625       | 1.1624 | 1.1565                     | 1.1362                                       | 1.1055                        | 1.0593                      | 1.0135 | 0.9803        | 0.9592        | 0.9530        | 1.0958     |
| N-250     | 1.1570 | 1.1486       | 1.1486       | 1.1494       | 1.1502 | 1.1493                     | 1.1293                                       | 1.1000                        | 1.0599                      | 1.0206 | 0.9878        | 0.9676        | 0.9629        | 1.0900     |
| N-300     | 1.1500 | 1.1426       | 1.1426       | 1.1427       | 1.1452 | 1.1451                     | 1.1251                                       | 1.0976                        | 1.0600                      | 1.0249 | 0.9944        | 0.9744        | 0.9706        | 1.0876     |
| N-350     | 1.1436 | 1.1377       | 1.1377       | 1.1377       | 1.1418 | 1.1418                     | 1.1218                                       | 1.0959                        | 1.0600                      | 1.0281 | 0.9999        | 0.9799        | 0.9769        | 1.0859     |
| N-400     | 1.1381 | 1.1336       | 1.1336       | 1.1336       | 1.1391 | 1.1391                     | 1.1190                                       | 1.0945                        | 1.0600                      | 1.0309 | 1.0046        | 0.9846        | 0.9823        | 1.0845     |
| W-30      | 1.0801 | 1.0798       | 1.0798       | 1.0696       | 1.0588 | 1.0127                     | 0.9108                                       | 0.7662                        | 0.6081                      | 0.4806 | 0.4026        | 0.3605        | 0.3472        | 0.7953     |
| W-40      | 1.1161 | 1.1166       | 1.1172       | 1.1068       | 1.0975 | 1.0703                     | 0.9991                                       | 0.8934                        | 0.7740                      | 0.6705 | 0.6005        | 0.5603        | 0.5476        | 0.9028     |
| W-60      | 1.1596 | 1.1665       | 1.1653       | 1.1626       | 1.1579 | 1.1399                     | 1.0880                                       | 1.0185                        | 0.9349                      | 0.8628 | 0.8111        | 0.7823        | 0.7726        | 1.0197     |
| W-80      | 1.1765 | 1.1808       | 1.1782       | 1.1775       | 1.1740 | 1.1569                     | 1.1135                                       | 1.0557                        | 0.9825                      | 0.9179 | 0.8717        | 0.8442        | 0.8360        | 1.0539     |
| W-110     | 1.1963 | 1.1970       | 1.1905       | 1.1904       | 1.1840 | 1.1742                     | 1.1436                                       | 1.0927                        | 1.0323                      | 0.9744 | 0.9304        | 0.9053        | 0.8978        | 1.0863     |
| W-150     | 1.1839 | 1.1842       | 1.1818       | 1.1846       | 1.1822 | 1.1728                     | 1.1458                                       | 1.1009                        | 1.0439                      | 0.9928 | 0.9533        | 0.9308        | 0.9231        | 1.0958     |
|           |        |              |              |              |        |                            |                                              |                               |                             |        |               |               |               | ontinued.) |

in Gv/Gv. The ρ lition 1.04 for photo -(R:0)irradiatio am for different ուղո իսո 4 Ę orbed dose in local skin afficiants for the Table A6. Co

IOP Publishing

Table A6. (Continued.)

| Dadiation                   |                   |              |        |        |        | $d_{\text{local skin }K}($ | $(\mathbf{R};\alpha)_{\mathrm{rod}}$ for $d_{\mathrm{c}}$ | $_{\rm air} = 1.0 \text{ m} [G]$ | $\lambda$ (Gy] for $\alpha =$ |          |               |         |               |        |
|-----------------------------|-------------------|--------------|--------|--------|--------|----------------------------|-----------------------------------------------------------|----------------------------------|-------------------------------|----------|---------------|---------|---------------|--------|
| quality R                   | 00                | 15°          | 30°    | 45°    | 60°    | 75°                        | °06                                                       | 105°                             | 120°                          | 135°     | $150^{\circ}$ | 165°    | $180^{\circ}$ | ROT    |
| W-200                       | 1.1681            | 1.1664       | 1.1661 | 1.1718 | 1.1715 | 1.1634                     | 1.1408                                                    | 1.1056                           | 1.0548                        | 1.0071   | 0.9724        | 0.9508  | 0.9439        | 1.0979 |
| W-250                       | 1.1607            | 1.1552       | 1.1552 | 1.1589 | 1.1591 | 1.1549                     | 1.1343                                                    | 1.1034                           | 1.0588                        | 1.0153   | 0.9819        | 0.9611  | 0.9554        | 1.0939 |
| W-300                       | 1.1556            | 1.1485       | 1.1485 | 1.1502 | 1.1513 | 1.1496                     | 1.1295                                                    | 1.1004                           | 1.0597                        | 1.0204   | 0.9883        | 0.9680  | 0.9632        | 1.0905 |
| H-10                        | 0.9149            | 0.9146       | 0.8983 | 0.8662 | 0.7757 | 0.5779                     | 0.3495                                                    | 0.1457                           | 0.0228                        | < 0.0005 | < 0.0005      | <0.0005 | < 0.0005      | 0.4174 |
| H-20                        | 0.9866            | 0.9860       | 0.9773 | 0.9653 | 0.9185 | 0.7739                     | 0.5593                                                    | 0.3297                           | 0.1455                        | 0.0629   | 0.0368        | 0.0269  | 0.0241        | 0.5236 |
| H-30                        | 1.0379            | 1.0374       | 1.0323 | 1.0245 | 1.0009 | 0.9146                     | 0.7591                                                    | 0.5666                           | 0.3826                        | 0.2623   | 0.2022        | 0.1734  | 0.1645        | 0.6625 |
| H-40                        | 1.0779            | 1.0779       | 1.0761 | 1.0672 | 1.0536 | 1.0026                     | 0.8944                                                    | 0.7459                           | 0.5890                        | 0.4674   | 0.3950        | 0.3567  | 0.3447        | 0.7860 |
| H-60                        | 1.1319            | 1.1351       | 1.1346 | 1.1270 | 1.1185 | 1.0939                     | 1.0295                                                    | 0.9382                           | 0.8343                        | 0.7448   | 0.6831        | 0.6481  | 0.6368        | 0.9466 |
| H-80                        | 1.1576            | 1.1620       | 1.1603 | 1.1567 | 1.1509 | 1.1315                     | 1.0792                                                    | 1.0071                           | 0.9215                        | 0.8470   | 0.7944        | 0.7639  | 0.7544        | 1.0097 |
| H-100                       | 1.1717            | 1.1754       | 1.1723 | 1.1704 | 1.1650 | 1.1483                     | 1.1030                                                    | 1.0397                           | 0.9631                        | 0.8949   | 0.8460        | 0.8176  | 0.8089        | 1.0390 |
| H-150                       | 1.1849            | 1.1864       | 1.1831 | 1.1839 | 1.1802 | 1.1676                     | 1.1338                                                    | 1.0832                           | 1.0195                        | 0.9620   | 0.9192        | 0.8941  | 0.8864        | 1.0790 |
| H-200                       | 1.1795            | 1.1793       | 1.1770 | 1.1800 | 1.1776 | 1.1674                     | 1.1396                                                    | 1.0963                           | 1.0392                        | 0.9865   | 0.9474        | 0.9240  | 0.9167        | 1.0902 |
| H-250                       | 1.1727            | 1.1704       | 1.1690 | 1.1723 | 1.1710 | 1.1634                     | 1.1390                                                    | 1.1008                           | 1.0491                        | 1.0005   | 0.9639        | 0.9417  | 0.9350        | 1.0934 |
| H-280                       | 1.1665            | 1.1627       | 1.1619 | 1.1650 | 1.1646 | 1.1590                     | 1.1363                                                    | 1.1015                           | 1.0537                        | 1.0085   | 0.9737        | 0.9523  | 0.9462        | 1.0933 |
| H-300                       | 1.1666            | 1.1629       | 1.1622 | 1.1656 | 1.1653 | 1.1595                     | 1.1371                                                    | 1.1024                           | 1.0545                        | 1.0091   | 0.9742        | 0.9529  | 0.9467        | 1.0942 |
| H-350                       | 1.1607            | 1.1560       | 1.1556 | 1.1582 | 1.1589 | 1.1548                     | 1.1333                                                    | 1.1012                           | 1.0566                        | 1.0145   | 0.9813        | 0.9604  | 0.9550        | 1.0924 |
| H-400                       | 1.1559            | 1.1507       | 1.1505 | 1.1527 | 1.1542 | 1.1513                     | 1.1304                                                    | 1.1003                           | 1.0581                        | 1.0187   | 0.9869        | 0.9663  | 0.9615        | 1.0910 |
| S-Cs                        | 1.1202            | 1.1201       | 1.1201 | 1.1201 | 1.1210 | 1.1210                     | 1.1101                                                    | 1.0990                           | 1.0690                        | 1.0489   | 1.0289        | 1.0179  | 1.0178        | 1.0890 |
| S-Co                        | 1.1088            | 1.1088       | 1.1088 | 1.1171 | 1.1172 | 1.1172                     | 1.1070                                                    | 1.0969                           | 1.0782                        | 1.0581   | 1.0478        | 1.0362  | 1.0362        | 1.0885 |
| R-C                         | 1.0824            | 1.0900       | 1.0900 | 1.0900 | 1.0924 | 1.0824                     | 1.0824                                                    | 1.0724                           | 1.0624                        | 1.0600   | 1.0500        | 1.0424  | 1.0424        | 1.0724 |
| R-F                         | 1.0729            | 1.0780       | 1.0780 | 1.0781 | 1.0781 | 1.0728                     | 1.0678                                                    | 1.0618                           | 1.0512                        | 1.0502   | 1.0398        | 1.0340  | 1.0295        | 1.0617 |
| RQR-2 <sup>a</sup>          | 1.1067            | 1.1070       | 1.1075 | 1.0971 | 1.0876 | 1.0558                     | 0.9771                                                    | 0.8615                           | 0.7319                        | 0.6215   | 0.5489        | 0.5079  | 0.4949        | 0.8752 |
| RQR-3 <sup>a</sup>          | 1.1183            | 1.1199       | 1.1200 | 1.1109 | 1.1020 | 1.0742                     | 1.0022                                                    | 0.8969                           | 0.7781                        | 0.6761   | 0.6076        | 0.5689  | 0.5565        | 0.9071 |
| RQR-4 <sup>a</sup>          | 1.1281            | 1.1307       | 1.1307 | 1.1228 | 1.1149 | 1.0898                     | 1.0232                                                    | 0.9270                           | 0.8169                        | 0.7219   | 0.6571        | 0.6204  | 0.6086        | 0.9345 |
| RQR-5 <sup>a</sup>          | 1.1354            | 1.1384       | 1.1382 | 1.1312 | 1.1241 | 1.1006                     | 1.0379                                                    | 0.9481                           | 0.8441                        | 0.7542   | 0.6922        | 0.6568  | 0.6455        | 0.9539 |
| RQR-6 <sup>a</sup>          | 1.1423            | 1.1454       | 1.1448 | 1.1387 | 1.1319 | 1.1099                     | 1.0509                                                    | 0.9666                           | 0.8681                        | 0.7823   | 0.7228        | 0.6886  | 0.6778        | 0.9708 |
| RQR-7 <sup>a</sup>          | 1.1489            | 1.1520       | 1.1508 | 1.1456 | 1.1390 | 1.1184                     | 1.0628                                                    | 0.9834                           | 0.8899                        | 0.8079   | 0.7505        | 0.7174  | 0.7070        | 0.9861 |
| RQR-8 <sup>a</sup>          | 1.1542            | 1.1573       | 1.1557 | 1.1510 | 1.1447 | 1.1252                     | 1.0723                                                    | 0.9966                           | 0.9071                        | 0.8281   | 0.7724        | 0.7402  | 0.7302        | 0.9983 |
| RQR-9 <sup>a</sup>          | 1.1623            | 1.1652       | 1.1632 | 1.1597 | 1.1539 | 1.1362                     | 1.0878                                                    | 1.0181                           | 0.9349                        | 0.8613   | 0.8087        | 0.7782  | 0.7687        | 1.0183 |
| RQR-10 <sup>a</sup>         | 1.1694            | 1.1720       | 1.1697 | 1.1678 | 1.1630 | 1.1471                     | 1.1038                                                    | 1.0412                           | 0.9650                        | 0.8974   | 0.8484        | 0.8199  | 0.8110        | 1.0400 |
| <sup>a</sup> Radiation qual | ity defined in IE | C 61267 [10] |        |        |        |                            |                                                           |                                  |                               |          |               |         |               |        |

**Table A7.** Alternative conversion coefficients for the maximum absorbed dose in the sensitive cells of the lens for left and right irradiations for different irradiation geometries,  $d_{\text{lens,sens}K}(R;\alpha)$ , for photon reference radiation qualities, R, in Gy/Gy. The values are valid for a distance of 1.0 m between the radiation source and the point of test. The standard uncertainties (k = 1) are in the order of  $5 \cdot 10^{-4}$  or  $\pm 2$  %, whatever is larger.

| Radiation |             |              | $d_{\text{lens,sens}K}(]$ | <b>R</b> ; $\alpha$ ) for $d_{air} =$ | = 1.0 m [Gy/G | y] for $\alpha =$ |              |        |
|-----------|-------------|--------------|---------------------------|---------------------------------------|---------------|-------------------|--------------|--------|
| quality R | $0^{\circ}$ | $15^{\circ}$ | $30^{\circ}$              | $45^{\circ}$                          | $60^{\circ}$  | $75^{\circ}$      | $90^{\circ}$ | ROT    |
| L-10      | 0.0962      | 0.0934       | 0.0853                    | 0.0730                                | 0.0567        | 0.0355            | 0.0142       | 0.0306 |
| L-20      | 0.7381      | 0.7315       | 0.7135                    | 0.6840                                | 0.6347        | 0.5728            | 0.4529       | 0.3166 |
| L-30      | 1.0763      | 1.0825       | 1.0692                    | 1.0641                                | 1.0313        | 0.9854            | 0.8859       | 0.5550 |
| L-35      | 1.1717      | 1.1750       | 1.1723                    | 1.1697                                | 1.1334        | 1.0933            | 1.0011       | 0.6299 |
| L-55      | 1.4785      | 1.4782       | 1.4920                    | 1.5027                                | 1.4936        | 1.4495            | 1.3427       | 0.8921 |
| L-70      | 1.5586      | 1.5701       | 1.5901                    | 1.5929                                | 1.5837        | 1.5283            | 1.4694       | 0.9840 |
| L-100     | 1.5443      | 1.5591       | 1.5636                    | 1.5695                                | 1.5349        | 1.5330            | 1.4880       | 1.0174 |
| L-125     | 1.4695      | 1.4796       | 1.4881                    | 1.4937                                | 1.4728        | 1.4690            | 1.4233       | 0.9994 |
| L-170     | 1.3915      | 1.4015       | 1.4177                    | 1.4051                                | 1.4075        | 1.3999            | 1.3521       | 0.9655 |
| L-210     | 1.3457      | 1.3559       | 1.3683                    | 1.3701                                | 1.3587        | 1.3558            | 1.3207       | 0.9486 |
| L-240     | 1.3206      | 1.3346       | 1.3409                    | 1.3378                                | 1.3429        | 1.3345            | 1.3078       | 0.9419 |
| N-10      | 0.0644      | 0.0626       | 0.0572                    | 0.0489                                | 0.0375        | 0.0228            | 0.0087       | 0.0204 |
| N-15      | 0.3730      | 0.3665       | 0.3464                    | 0.3150                                | 0.2740        | 0.2188            | 0.1342       | 0.1370 |
| N-20      | 0.6527      | 0.6459       | 0.6260                    | 0.5947                                | 0.5466        | 0.4834            | 0.3670       | 0.2715 |
| N-25      | 0.8526      | 0.8505       | 0.8354                    | 0.8105                                | 0.7678        | 0.7118            | 0.5967       | 0.3906 |
| N-30      | 1.0005      | 1.0051       | 0.9905                    | 0.9777                                | 0.9432        | 0.8941            | 0.7885       | 0.4971 |
| N-40      | 1.2252      | 1.2320       | 1.2319                    | 1.2269                                | 1.1950        | 1.1586            | 1.0667       | 0.6746 |
| N-60      | 1.4613      | 1.4638       | 1.4778                    | 1.4847                                | 1.4736        | 1.4299            | 1.3300       | 0.8796 |
| N-80      | 1.5658      | 1.5838       | 1.5914                    | 1.5942                                | 1.5816        | 1.5366            | 1.4807       | 0.9947 |
| N-100     | 1.5521      | 1.5689       | 1.5705                    | 1.5764                                | 1.5437        | 1.5372            | 1.4909       | 1.0165 |
| N-120     | 1.4971      | 1.5082       | 1.5189                    | 1.5233                                | 1.4985        | 1.4941            | 1.4502       | 1.0072 |
| N-150     | 1.4464      | 1.4566       | 1.4654                    | 1.4663                                | 1.4522        | 1.4480            | 1.4002       | 0.9894 |
| N-200     | 1.3686      | 1.3787       | 1.3934                    | 1.3874                                | 1.3834        | 1.3780            | 1.3362       | 0.9569 |
| N-250     | 1.3238      | 1.3376       | 1.3445                    | 1.3406                                | 1.3461        | 1.3375            | 1.3097       | 0.9429 |
| N-300     | 1.2951      | 1.3075       | 1.3088                    | 1.3052                                | 1.3281        | 1.3074            | 1.2860       | 0.9389 |
| N-350     | 1.2723      | 1.2808       | 1.2790                    | 1.2900                                | 1.3061        | 1.2797            | 1.2586       | 0.9368 |
| N-400     | 1.2487      | 1.2659       | 1.2580                    | 1.2756                                | 1.2871        | 1.2618            | 1.2377       | 0.9326 |
| W-30      | 0.9251      | 0.9263       | 0.9113                    | 0.8926                                | 0.8540        | 0.8014            | 0.6911       | 0.4432 |
| W-40      | 1.1115      | 1.1166       | 1.1093                    | 1.1014                                | 1.0674        | 1.0245            | 0.9263       | 0.5844 |
| W-60      | 1.4037      | 1.4090       | 1.4183                    | 1.4209                                | 1.4058        | 1.3657            | 1.2665       | 0.8287 |
| W-80      | 1.5097      | 1.5191       | 1.5321                    | 1.5365                                | 1.5251        | 1.4788            | 1.4012       | 0.9333 |
| W-110     | 1.5488      | 1.5649       | 1.5709                    | 1.5752                                | 1.5502        | 1.5313            | 1.4829       | 1.0086 |
| W-150     | 1.4770      | 1.4888       | 1.4964                    | 1.4992                                | 1.4795        | 1.4733            | 1.4262       | 0.9959 |
| W-200     | 1.4069      | 1.4170       | 1.4297                    | 1.4250                                | 1.4182        | 1.4127            | 1.3670       | 0.9725 |
| W-250     | 1.3573      | 1.3686       | 1.3798                    | 1.3758                                | 1.3738        | 1.3676            | 1.3305       | 0.9540 |
| W-300     | 1.3244      | 1.3370       | 1.3437                    | 1.3392                                | 1.3488        | 1.3368            | 1.3080       | 0.9449 |
| H-10      | 0.0429      | 0.0417       | 0.0382                    | 0.0327                                | 0.0248        | 0.0147            | 0.0054       | 0.0135 |
| H-20      | 0.3264      | 0.3211       | 0.3051                    | 0.2805                                | 0.2469        | 0.2021            | 0.1346       | 0.1241 |
| H-30      | 0.6685      | 0.6647       | 0.6472                    | 0.6208                                | 0.5790        | 0.5230            | 0.4194       | 0.2942 |
| H-40      | 0.9104      | 0.9106       | 0.8972                    | 0.8785                                | 0.8390        | 0.7871            | 0.6797       | 0.4415 |
| H-60      | 1.2202      | 1.2261       | 1.2251                    | 1.2210                                | 1,1951        | 1.1545            | 1.0568       | 0.6780 |
| H-80      | 1.3816      | 1.3894       | 1.3965                    | 1.3970                                | 1.3790        | 1.3369            | 1.2485       | 0.8174 |
| H-100     | 1.4584      | 1.4684       | 1.4771                    | 1.4796                                | 1.4621        | 1.4231            | 1.3455       | 0.8925 |
| H-150     | 1.5135      | 1.5256       | 1.5358                    | 1.5395                                | 1.5217        | 1.4960            | 1.4391       | 0.9815 |
| H-200     | 1.4726      | 1.4845       | 1.4953                    | 1.4953                                | 1.4813        | 1.4661            | 1.4170       | 0.9853 |
| H-250     | 1.4266      | 1.4383       | 1.4489                    | 1.4474                                | 1.4375        | 1.4277            | 1.3842       | 0.9754 |
| H-280     | 1.3893      | 1.4012       | 1.4104                    | 1.4076                                | 1.4046        | 1.3951            | 1.3565       | 0,9653 |
| H-300     | 1.3894      | 1.4012       | 1.4110                    | 1.4078                                | 1.4037        | 1.3959            | 1.3565       | 0.9655 |
| H-350     | 1.3576      | 1.3688       | 1.3764                    | 1.3747                                | 1.3769        | 1.3656            | 1.3311       | 0.9567 |
| H-400     | 1 3329      | 1 3446       | 1 3500                    | 1 3505                                | 1 3562        | 1 3424            | 1 3109       | 0.9504 |
| S-Cs      | 1,1730      | 1,1738       | 1,1928                    | 1.2127                                | 1.2227        | 1,1832            | 1.1749       | 0.9355 |
|           | 1.17.50     | 1.17.50      | 1,1720                    | 1,212/                                | 1,222/        | 111052            | 1,1/1/       |        |

(Continued.)

|        |                                                                                                                            | $d_{\text{lens}, \text{sens}K}(1)$                                                                                                                                                                                                                                                                                                                                             | R; $\alpha$ ) for $d_{air} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 1.0 m [Gy/G                                           | y] for $\alpha =$                                       |                                                         |                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| 0°     | 15°                                                                                                                        | $30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                   | $45^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $60^{\circ}$                                            | 75°                                                     | 90°                                                     | ROT                                                     |
| 1.1333 | 1.1450                                                                                                                     | 1.1493                                                                                                                                                                                                                                                                                                                                                                         | 1.1586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1692                                                  | 1.1418                                                  | 1.1327                                                  | 0.9524                                                  |
| 1.0900 | 1.0908                                                                                                                     | 1.1008                                                                                                                                                                                                                                                                                                                                                                         | 1.1046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1001                                                  | 1.0853                                                  | 1.0900                                                  | 0.9715                                                  |
| 1.0759 | 1.0860                                                                                                                     | 1.0722                                                                                                                                                                                                                                                                                                                                                                         | 1.0876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0930                                                  | 1.0706                                                  | 1.0755                                                  | 0.9709                                                  |
| 1.0637 | 1.0677                                                                                                                     | 1.0585                                                                                                                                                                                                                                                                                                                                                                         | 1.0477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0124                                                  | 0.9669                                                  | 0.8655                                                  | 0.5473                                                  |
| 1.1315 | 1.1373                                                                                                                     | 1.1308                                                                                                                                                                                                                                                                                                                                                                         | 1.1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0908                                                  | 1.0481                                                  | 0.9475                                                  | 0.6021                                                  |
| 1.1946 | 1.2002                                                                                                                     | 1.1973                                                                                                                                                                                                                                                                                                                                                                         | 1.1916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1638                                                  | 1.1217                                                  | 1.0221                                                  | 0.6541                                                  |
| 1.2419 | 1.2478                                                                                                                     | 1.2479                                                                                                                                                                                                                                                                                                                                                                         | 1.2438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2185                                                  | 1.1760                                                  | 1.0792                                                  | 0.6948                                                  |
| 1.2841 | 1.2910                                                                                                                     | 1.2927                                                                                                                                                                                                                                                                                                                                                                         | 1.2899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2666                                                  | 1.2241                                                  | 1.1309                                                  | 0.7321                                                  |
| 1.3221 | 1.3299                                                                                                                     | 1.3328                                                                                                                                                                                                                                                                                                                                                                         | 1.3312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3089                                                  | 1.2673                                                  | 1.1779                                                  | 0.7667                                                  |
| 1.3516 | 1.3600                                                                                                                     | 1.3641                                                                                                                                                                                                                                                                                                                                                                         | 1.3634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3415                                                  | 1.3012                                                  | 1.2153                                                  | 0.7948                                                  |
| 1.3959 | 1.4052                                                                                                                     | 1.4114                                                                                                                                                                                                                                                                                                                                                                         | 1.4119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3911                                                  | 1.3533                                                  | 1.2736                                                  | 0.8403                                                  |
| 1.4346 | 1.4446                                                                                                                     | 1.4527                                                                                                                                                                                                                                                                                                                                                                         | 1.4543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4352                                                  | 1.4013                                                  | 1.3286                                                  | 0.8872                                                  |
|        | 0°<br>1.1333<br>1.0900<br>1.0759<br>1.0637<br>1.1315<br>1.1946<br>1.2419<br>1.2841<br>1.3221<br>1.3516<br>1.3959<br>1.4346 | 0°         15°           1.1333         1.1450           1.0900         1.0908           1.0759         1.0860           1.0637         1.0677           1.1315         1.1373           1.1946         1.2002           1.2419         1.2478           1.3221         1.3299           1.3516         1.3600           1.3959         1.4052           1.4346         1.4446 | $\begin{tabular}{ c c c c c c } \hline $d_{lens,sensK}(1) \\ \hline $0^{\circ}$ $15^{\circ}$ $30^{\circ}$ \\ \hline $1.1333$ $1.1450$ $1.1493$ \\ 1.0900$ $1.0908$ $1.1008$ \\ 1.0759$ $1.0860$ $1.0722$ \\ 1.0637$ $1.0677$ $1.0585$ \\ 1.1315$ $1.1373$ $1.1308$ \\ 1.1946$ $1.2002$ $1.1973$ \\ 1.2419$ $1.2478$ $1.2479$ \\ 1.2841$ $1.2910$ $1.2927$ \\ 1.3221$ $1.3299$ $1.3328$ \\ 1.3516$ $1.3600$ $1.3641$ \\ 1.3959$ $1.4052$ $1.4114$ \\ 1.4346$ $1.4446$ $1.4527$ \\ \hline \end{tabular}$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

Table A7. (Continued.)

<sup>a</sup> Radiation quality defined in IEC 61267 [10]

| auality R    | riuence weighted<br>mean energy, | Kerma coefficient, $k_{\varPhi}(\mathbf{R})$ | One minus radiative losses in air, $(1-g)(R)$ | Ratio $(\mu_{\mathrm{en,not\_renormalized}})$ |
|--------------|----------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| ( <b>I</b> - | $E(\mathbf{R})$ [keV]            | $[pGy cm^2]$                                 | [1]                                           | $\mu_{en,renormalized})(R)$ [1]               |
| L-10         | 9.17                             | 66.8                                         |                                               |                                               |
| L-20         | 17.38                            | 2.37                                         |                                               |                                               |
| L-30         |                                  |                                              |                                               |                                               |
| L-35         |                                  |                                              | I                                             |                                               |
| L-55         |                                  |                                              | I                                             |                                               |
| L-70         |                                  |                                              | ļ                                             |                                               |
| L-100        |                                  |                                              | l                                             |                                               |
| L-125        |                                  |                                              |                                               |                                               |
| L-170        |                                  |                                              |                                               |                                               |
| L-210        | 184.2                            | 0.775                                        |                                               |                                               |
| L-240        | 1                                | 1                                            |                                               |                                               |
| N-10         | 8.87                             | 9.72                                         |                                               |                                               |
| N-15         | 12.67                            | 4.69                                         |                                               |                                               |
| N-20         | 16.49                            | 2.706                                        |                                               |                                               |
| N-25         | 20.45                            | 1.707                                        |                                               |                                               |
| N-30         | 24.70                            | 1.140                                        |                                               |                                               |
| N-40         | 33.34                            | 0.621                                        | I                                             |                                               |
| N-60         | I                                | I                                            | I                                             |                                               |
| N-80         |                                  |                                              |                                               |                                               |
| N-100        |                                  |                                              |                                               |                                               |
| N-120        |                                  |                                              |                                               |                                               |
| N-150        |                                  |                                              |                                               |                                               |
| N-200        | I                                | 1                                            | I                                             |                                               |
| N-250        | ļ                                | I                                            | I                                             | I                                             |
| N-300        | 247.5                            | 1.103                                        |                                               |                                               |
| N-350        |                                  |                                              |                                               |                                               |
| N-400        | ļ                                |                                              |                                               |                                               |
| W-30         | 23.11                            | 1.357                                        | 1                                             |                                               |
| W-40         | 29.90                            | 0.809                                        |                                               |                                               |
| M-60         | I                                | 0.400                                        | I                                             | I                                             |
| W-80         |                                  | I                                            |                                               |                                               |
| W-110        |                                  |                                              |                                               |                                               |

olized)(R) for photon reference radiation qualities. R. The values are valid  $d/H_{od}$ - Hina ergy.  $E(\mathbb{R})$ , kerma coefficient.  $k_{\mathcal{A}}(\mathbb{R})$ , one minus radiative losses in air.  $(1-\varrho)(\mathbb{R})$ , and the ratio  $(\mu_{\omega})$ **Table B1.** Fluence weighted mean

IOP Publishing

|                        |                                                        | Table B1. (Continued.)                                             |                                               |                                                                               |
|------------------------|--------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------|
| tadiation<br>luality R | Fluence weighted<br>mean energy,<br><i>E</i> (R) [keV] | Kerma coefficient,<br>$k_{\varPhi}(R)$<br>$\ln G_{V \text{ cm}^2}$ | One minus radiative losses in air, $(1-g)(R)$ | Ratio<br>( $\mu_{en,not\_renormalized}/$<br>$\mu_{en,renormalized}(R)$<br>[1] |
|                        |                                                        |                                                                    |                                               |                                                                               |
| W-150                  | 104.6                                                  | 0.404                                                              |                                               | ļ                                                                             |
| <i>N</i> -200          | 137.9                                                  | 0.548                                                              | I                                             |                                                                               |
| W-250                  |                                                        | 1                                                                  |                                               |                                                                               |
| W-300                  | 1                                                      | 0.883                                                              |                                               |                                                                               |
| H-10                   | 8.65                                                   | 10.35                                                              |                                               |                                                                               |
| H-20                   | 14.01                                                  | 4.26                                                               |                                               |                                                                               |
| H-30                   | 20.07                                                  | 2.047                                                              |                                               |                                                                               |
| H-40                   | 25.75                                                  | 1.223                                                              |                                               |                                                                               |
| H-60                   | 38.13                                                  | 0.571                                                              |                                               |                                                                               |
| H-80                   | 48.9                                                   | 0.403                                                              |                                               |                                                                               |
| H-100                  | 57.4                                                   | 0.3532                                                             |                                               |                                                                               |
| H-150                  |                                                        |                                                                    |                                               |                                                                               |
| H-200                  |                                                        | I                                                                  |                                               |                                                                               |
| H-250                  | 1                                                      |                                                                    |                                               |                                                                               |
| H-280                  |                                                        |                                                                    |                                               |                                                                               |
| H-300                  | 145.1                                                  | 0.593                                                              |                                               |                                                                               |
| H-350                  |                                                        |                                                                    |                                               |                                                                               |
| H-400                  |                                                        |                                                                    |                                               |                                                                               |
| 5-Cs                   |                                                        |                                                                    |                                               |                                                                               |
| 3-Co                   | 1                                                      |                                                                    |                                               |                                                                               |
| R-C                    | 1                                                      |                                                                    |                                               |                                                                               |
| R-F                    |                                                        | 1                                                                  |                                               |                                                                               |
|                        |                                                        |                                                                    |                                               |                                                                               |

| than 0.2 %.            | E J (U/ *1                                                 |        |        |        |        | -<br>-                             |                           |                                   | c                          |        |        |        |            |
|------------------------|------------------------------------------------------------|--------|--------|--------|--------|------------------------------------|---------------------------|-----------------------------------|----------------------------|--------|--------|--------|------------|
| Radiation<br>quality R | $n_{K(K)}$ IOT $a_{air} =$<br>2.5 m [Sv Gy <sup>-1</sup> ] | 00     | ە<br>ت | 30°    | 450    | $h_{\rm pK}(\rm R;\alpha_{\rm o})$ | ) for $d_{\rm air} = 2.5$ | 0 m [Sv Gy <sup>-1</sup> ]<br>90° | for $\alpha = 180^{\circ}$ | ROT    | USI    | USI-SS | IS-ISO     |
|                        |                                                            |        | 21     | 20     | ĊF.    | 8                                  | 2                         | 2                                 | 100                        | 101    | 007    | 001-00 |            |
| L-10                   | 0.0058                                                     | 0.0058 | 0.0059 | 0.0055 | 0.0048 | 0.0039                             | 0.0029                    | 0.0017                            | 0.0021                     | 0.0032 | 0.0027 | 0.0028 | 0.0026     |
| L-20                   | 0.0789                                                     | 0.0789 | 0.0772 | 0.0720 | 0.0630 | 0.0493                             | 0.0337                    | 0.0206                            | 0.0079                     | 0.0346 | 0.0282 | 0.0284 | 0.0273     |
| L-30                   | Ι                                                          |        |        |        |        | 0.2050                             | 0.1447                    | 0.0905                            | 0.0760                     | 0.1500 | 0.1181 | 0.1201 | 0.1161     |
| L-35                   |                                                            |        | 0.4243 | 0.3992 | 0.3541 | 0.2921                             | 0.2119                    | 0.1347                            | 0.1378                     | 0.2215 | 0.1742 | 0.1781 | 0.1705     |
| L-55                   |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        | I          |
| L-70                   |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| L-100                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| L-125                  | Ι                                                          |        |        |        |        |                                    |                           |                                   |                            |        |        |        | I          |
| L-170                  | I                                                          |        |        |        |        |                                    |                           |                                   |                            |        |        |        | I          |
| L-210                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| L-240                  | Ι                                                          |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-10                   | 0.0049                                                     | 0.0049 | 0.0050 | 0.0046 | 0.0041 | 0.0034                             | 0.0025                    | 0.0015                            | 0.0019                     | 0.0027 | 0.0024 | 0.0025 | 0.0023     |
| N-15                   | 0.0244                                                     | 0.0244 | 0.0240 | 0.0220 | 0.0187 | 0.0147                             | 0.0103                    | 0.0062                            | 0.0034                     | 0.0107 | 0.0091 | 0.0094 | 0.0089     |
| N-20                   | 0.0643                                                     | 0.0643 | 0.0629 | 0.0585 | 0.0510 | 0.0398                             | 0.0273                    | 0.0167                            | 0.0065                     | 0.0280 | 0.0230 | 0.0233 | 0.0223     |
| N-25                   | 0.1327                                                     | 0.1327 | 0.1298 | 0.1217 | 0.1075 | 0.0853                             | 0.0585                    | 0.0360                            | 0.0185                     | 0.0602 | 0.0483 | 0.0484 | 0.0468     |
| N-30                   | 0.2381                                                     | 0.2381 | 0.2332 | 0.2193 | 0.1945 | 0.1573                             | 0.1100                    | 0.0684                            | 0.0508                     | 0.1137 | 0.0899 | 0.0910 | 0.0880     |
| N-40                   | 0.5250                                                     | 0.5250 | 0.5178 | 0.4877 | 0.4328 | 0.3593                             | 0.2658                    | 0.1715                            | 0.1945                     | 0.2799 | 0.2206 | 0.2258 | 0.2145     |
| N-60                   | I                                                          |        | 1.0010 | 0.9521 | 0.8533 | 0.7243                             | 0.5608                    | 0.3893                            | 0.5524                     | 0.6095 | 0.4884 | 0.4997 | 0.4714     |
| N-80                   | Ι                                                          |        |        |        |        |                                    |                           |                                   |                            |        |        |        | I          |
| N-100                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-120                  | I                                                          |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-150                  | Ι                                                          |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-200                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-250                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-300                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-350                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
| N-400                  |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        |        |            |
|                        |                                                            |        |        |        |        |                                    |                           |                                   |                            |        |        | 0)     | ontinued.) |

R Behrens and T Otto

|               |                                       | IS-ISO                       | 0.0683 | 0.1491 | 0.4038 |      |       |       |       |       |       | 0.0021 | 0.0113 | 0.0381 | 0.0842 | 0.2515 | 0.4178 | 0.5267 |       |       |       |       |       |       |       |      |      |     |     |
|---------------|---------------------------------------|------------------------------|--------|--------|--------|------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|------|------|-----|-----|
|               |                                       | OSI-SS                       | 0.0707 | 0.1558 | 0.4281 |      |       |       |       |       |       | 0.0022 | 0.0119 | 0.0395 | 0.0877 | 0.2655 | 0.4415 | 0.5569 |       |       |       |       |       |       |       |      |      |     |     |
|               |                                       | ISO                          | 0.0700 | 0.1527 | 0.4182 |      |       |       |       |       |       | 0.0022 | 0.0116 | 0.0391 | 0.0863 | 0.2596 | 0.4313 | 0.5439 |       |       |       |       |       |       |       |      |      |     | ļ   |
|               |                                       | ROT                          | 0.0881 | 0.1937 | 0.5236 |      |       |       |       |       |       | 0.0025 | 0.0139 | 0.0487 | 0.1089 | 0.3267 | 0.5386 | 0.6768 |       |       |       |       |       |       |       |      |      |     |     |
|               | for $\alpha =$                        | $180^{\circ}$                | 0.0355 | 0.1185 | 0.4570 |      |       |       |       |       |       | 0.0018 | 0.0040 | 0.0169 | 0.0558 | 0.2537 | 0.4822 | 0.6410 |       |       |       |       |       |       |       |      |      |     |     |
|               | 5 m [Sv Gy <sup>-1</sup> ]            | $90^{\circ}$                 | 0.0529 | 0.1179 | 0.3320 |      |       |       |       |       |       | 0.0013 | 0.0082 | 0.0291 | 0.0659 | 0.2039 | 0.3439 | 0.4377 |       |       |       |       |       |       |       |      |      |     |     |
| d.)           | () for $d_{\rm air} = 2.5$            | 75°                          | 0.0854 | 0.1852 | 0.4845 |      |       |       |       |       |       | 0.0022 | 0.0135 | 0.0472 | 0.1047 | 0.3062 | 0.4964 | 0.6180 |       |       |       |       |       |       |       |      |      |     |     |
| B2. (Continue | $h_{\mathrm{p}K}(\mathrm{R};\alpha)$  | $60^{\circ}$                 | 0.1228 | 0.2555 | 0.6300 |      |       |       |       |       |       | 0.0030 | 0.0194 | 0.0683 | 0.1473 | 0.4071 | 0.6427 | 0.7903 |       |       |       |       |       |       |       |      |      |     |     |
| Table         |                                       | $45^{\circ}$                 | 0.1528 | 0.3105 | 0.7453 |      |       |       |       |       |       | 0.0036 | 0.0248 | 0.0857 | 0.1812 | 0.4867 | 0.7565 | 0.9220 |       |       |       |       |       |       |       |      |      |     |     |
|               |                                       | $30^{\circ}$                 | 0.1725 | 0.3500 | 0.8334 |      |       |       |       |       |       | 0.0041 | 0.0287 | 0.0973 | 0.2046 | 0.5462 | 0.8430 | 1.0217 |       |       |       |       |       |       |       |      |      |     |     |
|               |                                       | $15^{\circ}$                 | 0.1837 | 0.3718 | 0.8776 |      |       |       |       |       |       | 0.0044 | 0.0310 | 0.1040 | 0.2177 | 0.5773 | 0.8887 | 1.0763 |       |       |       |       |       |       |       |      |      |     |     |
|               |                                       | 00                           | 0.1876 | 0.3779 | 0.8906 |      |       |       |       |       |       | 0.0043 | 0.0316 | 0.1062 | 0.2218 | 0.5861 | 0.9007 | 1.0892 |       |       |       |       |       |       |       |      |      |     |     |
|               | $h^*_{K}(\mathbb{R})$ for $d_{air} =$ | 2.5 m [Sv Gy <sup>-1</sup> ] | 0.1876 | 0.3779 | 0.8906 |      | Ι     | I     | Ι     |       | I     | 0.0043 | 0.0316 | 0.1062 | 0.2218 | 0.5861 | 0.9007 | 1.0892 |       | I     | I     |       |       | I     |       |      |      |     |     |
|               | Radiation                             | quality R                    | W-30   | W-40   | W-60   | W-80 | W-110 | W-150 | W-200 | W-250 | W-300 | H-10   | H-20   | H-30   | H-40   | H-60   | H-80   | H-100  | H-150 | H-200 | H-250 | H-280 | H-300 | H-350 | H-400 | S-Cs | S-Co | R-C | R-F |

**Table B3.** Conversion coefficients for the maximum absorbed dose in the complete lens for left and right irradiations for different irradiation geometries,  $d_{\text{lensK}}(R;\alpha)$ , for photon reference radiation qualities, R, in Gy/Gy. The values are valid for a distance of 2.5 m between the radiation source and the point of test. The standard uncertainties (k = 1) are in the order of  $5 \cdot 10^{-4}$  or  $\pm 2$  %, whatever is larger. Data are only given in case the deviation from the data for  $d_{\text{air}} = 1.0$  m is larger than 0.2 %.

| Radiation     |        |              | $d_{\text{lens}K}(\mathbf{R}; c)$ | (a) for $d_{air} = 2$ . | 5 m [Gy Gy <sup>-1</sup> | ] for $\alpha =$ |              |        |
|---------------|--------|--------------|-----------------------------------|-------------------------|--------------------------|------------------|--------------|--------|
| quality R     | 0°     | $15^{\circ}$ | $30^{\circ}$                      | $45^{\circ}$            | $60^{\circ}$             | 75°              | $90^{\circ}$ | ROT    |
| L-10          | 0.0578 | 0.0564       | 0.0530                            | 0.0462                  | 0.0352                   | 0.0209           | 0.0082       | 0.0187 |
| L-20          |        | —            | —                                 | —                       | —                        | 0.5032           | 0.3960       |        |
| L-30          |        | —            |                                   | —                       | —                        |                  | —            |        |
| L-35          |        |              |                                   |                         | —                        |                  |              | _      |
| L-55          |        | _            |                                   | _                       |                          |                  | _            |        |
| L-70          |        | _            | _                                 | _                       | _                        | _                | _            |        |
| L-100         |        |              |                                   |                         |                          |                  | _            | _      |
| L-125         |        | _            |                                   | _                       |                          |                  | _            |        |
| L-170         |        |              |                                   | _                       |                          |                  |              |        |
| L-210         |        |              |                                   | _                       |                          |                  |              |        |
| L-240         |        |              |                                   |                         |                          |                  |              |        |
| N-10          | 0.0446 | 0.0436       | 0.0409                            | 0.0356                  | 0.0269                   | 0.0156           | 0.0059       | 0.0144 |
| N-15          | 0.3021 | 0.2978       | 0.2857                            | 0.2643                  | 0.2315                   | 0.1800           | 0.1118       | 0.1126 |
| N-20          | 0 5732 | 0.5683       | 0.5545                            | 0.5317                  | 0 4944                   | 0.4292           | 0.3268       | 0 2396 |
| N-25          | 0.7873 | 0.7849       | 0.7737                            | 0.7535                  | 0.7218                   | 0.6594           | 0.5200       | 0.3588 |
| N-30          | 0.9547 | 0.9574       | 0.9516                            | 0.7355                  | 0.9078                   | 0.8536           | 0.3552       | 0.3500 |
| N-30          | 0.7547 | 0.7574       | 0.7510                            | 0.9500                  | 0.9078                   | 0.0550           | 1.0502       | 0.4007 |
| N-40          |        |              |                                   |                         |                          |                  | 1.0392       | 0.0307 |
| IN-00         |        |              |                                   |                         |                          |                  |              | _      |
| N-80          | _      |              |                                   | _                       |                          |                  | _            |        |
| N-100         | _      | _            | _                                 | _                       | _                        | _                | _            |        |
| N-120         |        |              |                                   |                         |                          |                  |              | _      |
| N-150         |        |              |                                   |                         |                          |                  |              |        |
| N-200         |        | —            | —                                 |                         | —                        | —                | —            |        |
| N-250         |        |              | —                                 | —                       | —                        | —                | —            | —      |
| N-300         |        | —            |                                   | —                       | —                        |                  | —            |        |
| N-350         |        | —            | —                                 | —                       | —                        | —                | —            | —      |
| N-400         |        | —            | —                                 | —                       | —                        | —                | —            |        |
| W-30          | 0.8721 | 0.8724       | 0.8641                            | 0.8463                  | 0.8163                   | 0.7582           | 0.6565       | 0.4151 |
| W-40          | 1.0824 | 1.0903       | 1.0873                            | 1.0758                  | 1.0490                   | 1.0012           | 0.9104       | 0.5636 |
| W-60          |        | —            |                                   | —                       | —                        |                  | —            |        |
| W-80          | _      | _            |                                   | _                       |                          |                  | _            | _      |
| W-110         |        |              |                                   |                         |                          |                  |              |        |
| W-150         |        | _            | _                                 | _                       | _                        | _                | _            |        |
| W-200         |        | _            |                                   | _                       |                          |                  | _            |        |
| W-250         |        |              |                                   | _                       | _                        |                  |              |        |
| W-300         |        |              |                                   |                         |                          |                  |              |        |
| H-10          | 0.0364 | 0.0356       | 0.0335                            | 0.0290                  | 0.0218                   | 0.0125           | 0.0047       | 0.0117 |
| H-20          | 0 3242 | 0 3204       | 0.3097                            | 0 2913                  | 0.2622                   | 0.2151           | 0 1500       | 0 1276 |
| H-30          | 0.6463 | 0.6435       | 0.6323                            | 0.6120                  | 0.5793                   | 0.5200           | 0.1200       | 0.2884 |
| H 40          | 0.8762 | 0.8777       | 0.8698                            | 0.8529                  | 0.8775                   | 0.3200           | 0.1217       | 0.4252 |
| H 60          | 1 2114 | 1 2224       | 1 2237                            | 1 2166                  | 1 1056                   | 1 1476           | 1.0617       | 0.4232 |
| H 80          | 1.2114 | 1.2224       | 1.2237                            | 1.2100                  | 1.1950                   | 1.1470           | 1.0017       | 0.0009 |
| П-00<br>Ц 100 | 1.3633 | 1.3977       | 1.4070                            | 1.4042                  | 1.3091                   | 1.3400           | 1.2033       | 0.0100 |
| H-100         | 1.4009 | 1.4/59       | 1.4895                            | 1.4000                  | 1.4/52                   | 1.4285           | 1.5575       | 0.8940 |
| п-150         | _      | _            |                                   | _                       |                          |                  | _            | _      |
| H-200         |        |              |                                   | _                       | _                        |                  | _            |        |
| H-250         |        |              |                                   |                         |                          |                  |              | _      |
| H-280         |        | —            |                                   | —                       |                          |                  | —            |        |
| H-300         |        | _            | —                                 | _                       | —                        | —                | —            |        |
| H-350         | —      |              |                                   |                         |                          |                  |              | _      |
| H-400         | —      |              |                                   |                         | —                        |                  | —            | —      |
| S-Cs          | _      | —            | —                                 | —                       | —                        | —                | —            | _      |
| S-Co          | —      |              |                                   | —                       | —                        |                  |              | —      |
| R-C           | —      |              |                                   |                         |                          |                  |              | —      |
| R-F           | —      |              |                                   |                         |                          |                  | —            | —      |
|               |        |              |                                   |                         |                          |                  |              |        |

**Table B4.** Conversion coefficients for the directional absorbed dose in local skin as well as for the personal absorbed dose in local skin on the slab phantom for different irradiation geometries,  $d_{\text{local skin }K}(R;\alpha)_{\text{slab}}$ , for photon reference radiation qualities, R, in Gy/Gy. The values are valid for a distance of 2.5 m between the radiation source and the point of test. The standard uncertainties (k = 1) are in the order of 5·10<sup>-4</sup> or  $\pm$  2 %, whatever is larger. Data are only given in case the deviation from the data for  $d_{\text{air}} = 1.0$  m is larger than 0.2 %.

| Radiation      |        | $d_{ m local  skin}$ | $_{\rm K}({\rm R};\alpha)_{\rm slab}$ for $d_{\rm air}$ = | $= 2.5 \text{ m} [\text{Gy Gy}^{-1}]$ | for $\alpha =$ |        |
|----------------|--------|----------------------|-----------------------------------------------------------|---------------------------------------|----------------|--------|
| quality R      | 0°     | 15°                  | 30°                                                       | 45°                                   | $60^{\circ}$   | 75°    |
| L-10           | 0.9550 | 0.9530               | 0.9492                                                    | 0.9341                                | 0.9056         | 0.8133 |
| L-20           | —      | —                    | —                                                         | —                                     | —              |        |
| L-30           | —      | —                    | —                                                         | —                                     | —              |        |
| L-35           | —      | —                    | —                                                         | —                                     | —              |        |
| L-55           | —      | —                    | —                                                         | —                                     | —              |        |
| L-70           | —      | —                    | —                                                         | —                                     | —              |        |
| L-100          | —      | —                    | —                                                         | —                                     | —              |        |
| L-125          | —      | —                    | —                                                         | —                                     | —              |        |
| L-170          | —      | —                    | —                                                         | —                                     | —              |        |
| L-210          | —      | —                    | —                                                         | —                                     | —              |        |
| L-240          | —      | —                    | —                                                         | —                                     | —              |        |
| N-10           | 0.9478 | 0.9457               | 0.9410                                                    | 0.9244                                | 0.8915         | 0.7881 |
| N-15           | 0.9916 | 0.9904               | 0.9898                                                    | 0.9786                                | 0.9657         | 0.9248 |
| N-20           | 1.0321 | 1.0322               | 1.0320                                                    | 1.0219                                | 1.0115         | 0.9836 |
| N-25           | 1.0884 | 1.0878               | 1.0879                                                    | —                                     | —              |        |
| N-30           | —      | —                    | —                                                         | —                                     | —              |        |
| N-40           | —      | —                    | —                                                         | —                                     | —              |        |
| N-60           | —      | —                    | —                                                         | —                                     | —              |        |
| N-80           | —      | —                    | —                                                         | —                                     | —              |        |
| N-100          | —      | —                    | —                                                         | —                                     | —              |        |
| N-120          | —      | —                    | —                                                         | —                                     | —              |        |
| N-150          | —      | —                    | —                                                         | —                                     | —              |        |
| N-200          | —      | —                    | —                                                         | —                                     | —              |        |
| N-250          | —      | —                    | —                                                         | —                                     | —              |        |
| N-300          | —      | —                    | —                                                         | —                                     | —              |        |
| N-350          | —      | —                    | —                                                         | —                                     | _              | _      |
| N-400          | —      | —                    | —                                                         | —                                     |                |        |
| W-30           | 1.1275 | 1.1252               | 1.1256                                                    | 1.1134                                | 1.0971         | 1.0614 |
| W-40           | 1.2535 | 1.2463               | 1.2454                                                    | 1.2277                                | 1.1948         |        |
| W-60           | —      | —                    | —                                                         | —                                     | —              |        |
| W-80           | —      | —                    | —                                                         | —                                     |                |        |
| W-110          | —      | —                    | —                                                         | —                                     | —              |        |
| W-150          | —      | —                    | —                                                         | —                                     | —              | _      |
| W-200          | —      | —                    | —                                                         | —                                     | —              | _      |
| W-250<br>W-300 | _      |                      |                                                           |                                       | _              |        |
| H-10           | 0.9412 | 0.9389               | 0.9333                                                    | 0.9153                                | 0.8786         | 0.7656 |
| H-20           | 0.9943 | 0.9933               | 0.9920                                                    | 0.9801                                | 0.9643         | 0.9151 |
| H-30           | 1.0628 | 1.0618               | 1.0617                                                    | 1.0505                                | 1.0373         | 1.0031 |
| H-40           | 1.1473 | 1.1439               | 1.1438                                                    | 1.1303                                | 1.1101         | 1.0696 |
| H-60           | 1.3750 | 1.3665               | 1.3623                                                    | 1.3372                                | 1.2922         | 1.2116 |
| H-80           | 1.5467 | 1.5369               | 1.5273                                                    | 1.4935                                | 1.4327         | 1.3216 |
| H-100          | 1.6344 | 1.6247               | 1.6127                                                    | 1.5759                                | 1.5089         | 1.3866 |
| H-150          | _      | _                    | _                                                         | _                                     |                | _      |
| H-200          | _      | _                    | _                                                         |                                       |                |        |
| H-250          | _      | _                    | _                                                         |                                       |                |        |
| H-280          | —      | _                    | —                                                         | —                                     | —              |        |
| H-300          | —      | —                    | —                                                         | —                                     | —              |        |
| H-350          | —      | —                    | —                                                         | —                                     | —              | _      |
| H-400          | —      | —                    | —                                                         | —                                     |                |        |
| S-Cs           | —      | —                    | —                                                         | —                                     | —              |        |
| S-Co           | —      | —                    | —                                                         | —                                     | —              |        |
| R-C            | —      | —                    | —                                                         | —                                     | —              |        |
| R-F            |        |                      |                                                           |                                       |                |        |

| tion |        |        |        |        |        | $d_{\text{local skin }K}($ | R; $\alpha$ ) <sub>pillar</sub> for $\iota$ | $l_{\rm air} = 2.5 \mathrm{m} [\mathrm{G}$ | $3y Gy^{-1}$ for $\alpha$ |         |               |               |               |
|------|--------|--------|--------|--------|--------|----------------------------|---------------------------------------------|--------------------------------------------|---------------------------|---------|---------------|---------------|---------------|
| y R  | 00     | 15°    | 30°    | 45°    | 60°    | 75°                        | 06°                                         | $105^{\circ}$                              | 120°                      | 135°    | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ |
|      | 0.9603 | 0.9576 | 0.9553 | 0.9416 | 0.9095 | 0.8122                     | 0.2648                                      | <0.0005                                    | <0.0005                   | <0.0005 | <0.0005       | <0.0005       | <0.0005       |
|      |        |        |        |        |        |                            |                                             | 0.1376                                     | 0.0254                    | 0.0059  | 0.0016        | 0.0006        | <0.0005       |
|      |        |        |        |        |        |                            |                                             |                                            | 0.2531                    | 0.1434  | 0.1025        | 0.0811        | 0.0716        |
|      |        |        |        |        |        |                            |                                             |                                            |                           | 0.2291  | 0.1709        | 0.1402        | 0.1286        |
|      |        |        |        |        |        |                            |                                             |                                            |                           |         |               |               |               |
|      |        |        |        |        |        |                            |                                             |                                            |                           |         |               |               |               |
|      |        |        |        |        |        |                            |                                             |                                            |                           |         |               |               |               |
|      |        |        |        |        |        |                            |                                             |                                            |                           |         |               |               |               |
|      |        |        |        |        |        |                            |                                             |                                            |                           |         |               |               |               |
|      |        |        |        |        |        | I                          | I                                           |                                            |                           |         |               |               |               |

| liation |        |        |        |        |        | $d_{\text{local skin }K}$ | R; $\alpha$ ) <sub>pillar</sub> for $\alpha$ | $d_{\rm air} = 2.5 \mathrm{m} [\mathrm{G}$ | by $Gy^{-1}$ ] for $\alpha$ |         |               |               |               |        |
|---------|--------|--------|--------|--------|--------|---------------------------|----------------------------------------------|--------------------------------------------|-----------------------------|---------|---------------|---------------|---------------|--------|
| ılity R | 00     | 15°    | 30°    | 45°    | 60°    | 75°                       | °06                                          | $105^{\circ}$                              | 120°                        | 135°    | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT    |
| 0       | 0.9603 | 0.9576 | 0.9553 | 0.9416 | 0.9095 | 0.8122                    | 0.2648                                       | <0.0005                                    | <0.0005                     | <0.0005 | <0.0005       | <0.0005       | <0.0005       | 0.4433 |
| 0       |        |        |        |        |        |                           |                                              | 0.1376                                     | 0.0254                      | 0.0059  | 0.0016        | 0.0006        | <0.0005       |        |
| 0       |        |        |        |        |        |                           |                                              |                                            | 0.2531                      | 0.1434  | 0.1025        | 0.0811        | 0.0716        |        |
| 5       |        |        |        |        |        |                           |                                              |                                            |                             | 0.2291  | 0.1709        | 0.1402        | 0.1286        |        |
| 5       |        |        |        |        |        |                           |                                              |                                            |                             |         |               |               |               |        |
| 0       |        |        |        |        |        |                           |                                              | I                                          |                             |         |               | I             |               |        |
| 00      |        |        |        |        |        |                           |                                              |                                            |                             |         |               |               |               |        |
| 25      |        |        |        |        |        |                           |                                              |                                            |                             |         |               |               |               |        |
| 70      |        |        |        |        |        |                           |                                              |                                            |                             |         |               |               |               |        |

| Radiation | 0      |        |        |        |        |        | $\frac{1}{(R:n)_{\min}}$ for $c$ | $J_{\text{dis}} = 2.5 \text{ m [G]}$ | $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ |          |               |               |               |            |
|-----------|--------|--------|--------|--------|--------|--------|----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|----------|---------------|---------------|---------------|------------|
| quality R | 0_0    | 15°    | 30°    | 45°    | 60°    | 75°    | 90°                              | 105°                                 | 120°                                                                                | 135°     | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT        |
|           |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| L-10      | 0.9603 | 0.9576 | 0.9553 | 0.9416 | 0.9095 | 0.8122 | 0.2648                           | < 0.0005                             | < 0.0005                                                                            | < 0.0005 | <0.0005       | < 0.0005      | < 0.0005      | 0.4433     |
| L-20      |        |        |        |        |        |        |                                  | 0.1376                               | 0.0254                                                                              | 0.0059   | 0.0016        | 0.0006        | < 0.0005      |            |
| L-30      |        |        |        |        |        |        |                                  |                                      | 0.2531                                                                              | 0.1434   | 0.1025        | 0.0811        | 0.0716        |            |
| L-35      |        |        |        |        |        |        |                                  |                                      |                                                                                     | 0.2291   | 0.1709        | 0.1402        | 0.1286        |            |
| L-55      |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| L-70      |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| L-100     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| L-125     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| L-170     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          | I             |               |               |            |
| L-210     |        |        |        |        |        |        |                                  | ļ                                    |                                                                                     |          |               |               |               |            |
| L-240     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-10      | 0.9521 | 0.9495 | 0.9459 | 0.9306 | 0.8947 | 0.7871 | 0.2398                           | <0.0005                              | <0.0005                                                                             | <0.0005  | <0.0005       | <0.0005       | <0.0005       | 0.4353     |
| N-15      | 1.0021 | 0.9995 | 1.0010 | 0.9905 | 0.9743 | 0.9301 | 0.4786                           | 0.0185                               | < 0.0005                                                                            | < 0.0005 | < 0.0005      | < 0.0005      | < 0.0005      | 0.4909     |
| N-20      | 1.0397 | 1.0423 | 1.0396 | 1.0321 | 1.0213 | 0.9981 | 0.6661                           | 0.1032                               | 0.0166                                                                              | 0.0036   | 0.0009        | < 0.0005      | <0.0005       | 0.5369     |
| N-25      |        |        |        |        |        |        | 0.8165                           | 0.2497                               | 0.0748                                                                              | 0.0293   | 0.0165        | 0.0116        | 0.0096        | 0.5952     |
| N-30      |        |        |        |        |        |        |                                  | 0.4185                               | 0.1817                                                                              | 0.0952   | 0.0654        | 0.0507        | 0.0442        | 0.6704     |
| N-40      |        |        |        |        |        |        |                                  | 0.6993                               | 0.4315                                                                              | 0.2853   | 0.2163        | 0.1817        | 0.1717        |            |
| N-60      |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               | 0.3762        | 0.3867        |            |
| N-80      |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-100     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-120     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-150     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               | I          |
| N-200     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-250     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-300     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-350     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
| N-400     |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               |               |            |
|           |        |        |        |        |        |        |                                  |                                      |                                                                                     |          |               |               | (C            | ontinued.) |

|           |        |              |              |        |        | L                         | t <b>able B5.</b> Contii                | nued                                        |                             |               |               |               |               |        |
|-----------|--------|--------------|--------------|--------|--------|---------------------------|-----------------------------------------|---------------------------------------------|-----------------------------|---------------|---------------|---------------|---------------|--------|
| Radiation |        |              |              |        |        | $d_{\text{local skin }K}$ | R; $\alpha$ ) <sub>pillar</sub> for $6$ | $l_{\rm air} = 2.5 \mathrm{m} \mathrm{[G]}$ | by $Gy^{-1}$ ] for $\alpha$ |               |               |               |               |        |
| quality R | 00     | $15^{\circ}$ | $30^{\circ}$ | 45°    | 60°    | 75°                       | 90°                                     | $105^{\circ}$                               | $120^{\circ}$               | $135^{\circ}$ | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT    |
| W-30      | 1.1236 | 1.1286       | 1.1215       | 1.1187 | 1.1065 | 1.0854                    | 0.8775                                  | 0.3367                                      | 0.1308                      | 0.0640        | 0.0424        | 0.0323        | 0.0280        | 0.6341 |
| W-40      | 1.2239 | 1.2210       | 1.2162       | 1.2112 | 1.1931 | 1.1732                    | 1.0243                                  | 0.5612                                      | 0.3069                      | 0.1892        | 0.1398        | 0.1147        | 0.1059        | 0.7502 |
| W-60      |        |              |              |        |        |                           |                                         |                                             | 0.6225                      | 0.4659        | 0.3682        | 0.3278        | 0.3328        |        |
| W-80      |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| W-110     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               | I      |
| W-150     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| W-200     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| W-250     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               | I      |
| W-300     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-10      | 0.9448 | 0.9421       | 0.9374       | 0.9205 | 0.8812 | 0.7648                    | 0.2207                                  | <0.0005                                     | < 0.0005                    | <0.0005       | < 0.0005      | <0.0005       | < 0.0005      | 0.4283 |
| H-20      | 1.0028 | 1.0017       | 1.0010       | 0.9906 | 0.9722 | 0.9215                    | 0.4837                                  | 0.0386                                      | 0.0048                      | 0.0010        | <0.0005       | <0.0005       | <0.0005       | 0.4929 |
| H-30      | 1.0661 | 1.0693       | 1.0651       | 1.0593 | 1.0467 | 1.0196                    | 0.7176                                  | 0.1840                                      | 0.0587                      | 0.0260        | 0.0163        | 0.0122        | 0.0104        | 0.5673 |
| H-40      | 1.1375 | 1.1396       | 1.1341       | 1.1297 | 1.1160 | 1.0949                    | 0.8796                                  | 0.3581                                      | 0.1620                      | 0.0907        | 0.0643        | 0.0515        | 0.0467        | 0.6503 |
| H-60      | 1.2926 | 1.2926       | 1.2807       | 1.2828 | 1.2603 | 1.2454                    | 1.1133                                  | 0.6999                                      | 0.4388                      | 0.3037        | 0.2339        | 0.2022        | 0.1986        | 0.8406 |
| H-80      | 1.3784 | 1.3797       | 1.3619       | 1.3683 | 1.3458 | 1.3394                    | 1.2295                                  | 0.8772                                      | 0.6105                      | 0.4602        | 0.3699        | 0.3283        | 0.3309        | 0.9605 |
| H-100     |        |              |              |        |        |                           | 1.2797                                  | 0.9593                                      | 0.6980                      | 0.5459        | 0.4521        | 0.4040        | 0.4082        | 1.0192 |
| H-150     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-200     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-250     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-280     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-300     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-350     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| H-400     |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| S-Cs      |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| S-Co      |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
| R-C       |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               | I      |
| R-F       |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |
|           |        |              |              |        |        |                           |                                         |                                             |                             |               |               |               |               |        |

| Radiation |        |              |              |              |        | $d_{ m local  skin  K}( m R$ | $(\alpha)_{\rm rod}$ for $d_{\rm air}$ | = 2.5 m [Gy   | $Gy^{-1}$ ] for $\alpha =$ |               |               |               |               |             |
|-----------|--------|--------------|--------------|--------------|--------|------------------------------|----------------------------------------|---------------|----------------------------|---------------|---------------|---------------|---------------|-------------|
| quality R | 00     | $15^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | 60°    | 75°                          | °06                                    | $105^{\circ}$ | $120^{\circ}$              | $135^{\circ}$ | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT         |
| L-10      | 0.9572 | 0.9574       | 0.9479       | 0.9280       | 0.8619 | 0.6769                       | 0.4368                                 | 0.2048        | 0.0447                     | 0.0020        | <0.0005       | <0.0005       | <0.0005       | 0.4619      |
| L-20      |        |              |              |              |        |                              |                                        |               | 0.4078                     | 0.2665        | 0.1916        | 0.1561        | 0.1454        |             |
| L-30      |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-35      |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-55      |        |              |              |              |        | I                            |                                        |               |                            |               |               |               |               |             |
| L-70      |        | ļ            |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-100     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-125     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-170     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-210     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| L-240     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-10      | 0.9487 | 0.9490       | 0.9381       | 0.9157       | 0.8439 | 0.6541                       | 0.4154                                 | 0.1891        | 0.0379                     | 0.0013        | <0.0005       | <0.0005       | <0.0005       | 0.4517      |
| N-15      | 1.0020 | 1.0008       | 0.9928       | 0.9864       | 0.9501 | 0.8207                       | 0.6082                                 | 0.3688        | 0.1649                     | 0.0628        | 0.0292        | 0.0175        | 0.0142        | 0.5420      |
| N-20      | 1.0359 | 1.0359       | 1.0284       | 1.0251       | 1.0042 | 0.9202                       | 0.7589                                 | 0.5524        | 0.3502                     | 0.2137        | 0.1462        | 0.1155        | 0.1064        | 0.6421      |
| N-25      |        |              |              |              |        | 0.9898                       | 0.8734                                 | 0.7116        | 0.5379                     | 0.4022        | 0.3230        | 0.2817        | 0.2688        | 0.7514      |
| N-30      |        |              |              |              |        |                              |                                        | 0.8306        | 0.6903                     | 0.5714        | 0.4944        | 0.4508        | 0.4369        |             |
| N-40      |        |              |              |              |        |                              |                                        |               |                            |               |               | 0.6723        | 0.6609        |             |
| N-60      |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-80      |        |              |              |              |        | I                            |                                        |               |                            |               |               |               |               |             |
| N-100     |        | ļ            |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-120     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-150     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-200     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-250     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-300     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-350     |        | ļ            |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
| N-400     |        |              |              |              |        |                              |                                        |               |                            |               |               |               |               |             |
|           |        |              |              |              |        |                              |                                        |               |                            |               |               |               | 0)            | Continued.) |

R Behrens and T Otto

|           |        |              |              |        |              | Table                                 | e B6. (Continue                        | ed.)          |                            |               |               |               |               |        |
|-----------|--------|--------------|--------------|--------|--------------|---------------------------------------|----------------------------------------|---------------|----------------------------|---------------|---------------|---------------|---------------|--------|
| Radiation |        |              |              |        |              | $d_{\text{local skin }K}(\mathbf{R})$ | $(\alpha)_{\rm rod}$ for $d_{\rm air}$ | = 2.5 m [Gy   | $Gy^{-1}$ ] for $\alpha =$ |               |               |               |               |        |
| quality R | 0°     | $15^{\circ}$ | $30^{\circ}$ | 45°    | $60^{\circ}$ | 75°                                   | 90°                                    | $105^{\circ}$ | $120^{\circ}$              | $135^{\circ}$ | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT    |
| W-30      |        |              |              |        |              | 1.0148                                | 0.9144                                 | 0.7717        | 0.6152                     | 0.4884        | 0.4106        | 0.3683        | 0.3549        | 0.7996 |
| W-40      |        |              |              |        |              |                                       | 1.0015                                 | 0.8969        | 0.7785                     | 0.6756        | 0.6058        | 0.5657        | 0.5530        | 0.9057 |
| W-60      |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| W-80      |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| W-110     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| W-150     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| W-200     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| W-250     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| W-300     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-10      | 0.9411 | 0.9415       | 0.9292       | 0.9046 | 0.8280       | 0.6350                                | 0.3982                                 | 0.1772        | 0.0332                     | 0.0009        | < 0.0005      | <0.0005       | <0.0005       | 0.4433 |
| H-20      | 1.0010 | 1.0004       | 0.9922       | 0.9835 | 0.9446       | 0.8159                                | 0.6120                                 | 0.3840        | 0.1907                     | 0.0923        | 0.0561        | 0.0417        | 0.0375        | 0.5521 |
| H-30      | 1.0479 | 1.0476       | 1.0433       | 1.0361 | 1.0164       | 0.9397                                | 0.7947                                 | 0.6095        | 0.4268                     | 0.3011        | 0.2353        | 0.2031        | 0.1932        | 0.6889 |
| H-40      | 1.0831 | 1.0831       | 1.0818       | 1.0730 | 1.0607       | 1.0131                                | 0.9094                                 | 0.7652        | 0.6109                     | 0.4895        | 0.4162        | 0.3770        | 0.3648        | 0.7999 |
| H-60      | 1.1350 | 1.1382       | 1.1379       | 1.1308 | 1.1231       | 1.1000                                | 1.0372                                 | 0.9471        | 0.8437                     | 0.7541        | 0.6923        | 0.6571        | 0.6458        | 0.9533 |
| H-80      |        |              |              |        |              | 1.1348                                | 1.0840                                 | 1.0134        | 0.9288                     | 0.8546        | 0.8018        | 0.7713        | 0.7617        | 1.0143 |
| H-100     |        |              |              |        |              |                                       | 1.1055                                 | 1.0431        | 0.9672                     | 0.8992        | 0.8503        | 0.8218        | 0.8131        | 1.0415 |
| H-150     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-200     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-250     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-280     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-300     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-350     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| H-400     |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| S-Cs      |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| S-Co      |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| R-C       |        |              |              |        |              |                                       |                                        |               |                            |               |               |               |               |        |
| R-F       |        |              |              |        |              |                                       |                                        |               |                            |               |               | I             |               |        |

**Table B7.** Alternative conversion coefficients for the maximum absorbed dose in the sensitive cells of the lens for left and right irradiations for different irradiation geometries,  $d_{\text{lens,sensk}}(R;\alpha)$ , for photon reference radiation qualities, R, in Gy/Gy. The values are valid for a distance of 2.5 m between the radiation source and the point of test. The standard uncertainties (k = 1) are in the order of  $5 \cdot 10^{-4}$  or  $\pm 2$  %, whatever is larger. Data are only given in case the deviation from the data for  $d_{air} = 1.0$  m is larger than 0.2 %.

| Radiation      |        |              | d <sub>lens,sensK</sub> (R | ; $\alpha$ ) for $d_{air} =$ | 2.5 m [Gy Gy | $[1]$ for $\alpha =$ |        |        |
|----------------|--------|--------------|----------------------------|------------------------------|--------------|----------------------|--------|--------|
| quality R      | 0°     | $15^{\circ}$ | $30^{\circ}$               | $45^{\circ}$                 | $60^{\circ}$ | 75°                  | 90°    | ROT    |
| L-10           | 0.1101 | 0.1069       | 0.0976                     | 0.0837                       | 0.0654       | 0.0414               | 0.0169 | 0.0352 |
| L-20           | 0.7366 | _            |                            | _                            |              |                      | 0.4543 |        |
| L-30           |        | _            |                            | _                            |              |                      | _      |        |
| L-35           |        |              |                            |                              |              |                      |        |        |
| L-55           |        |              |                            |                              |              |                      |        |        |
| L-70           |        |              |                            |                              |              |                      |        |        |
| L-100          | —      |              | —                          | —                            | —            |                      | —      |        |
| L-125          | —      |              | —                          | —                            | —            |                      | —      |        |
| L-170          |        |              | —                          |                              | —            |                      | —      | _      |
| L-210          |        | —            | —                          | —                            | —            |                      |        | —      |
| L-240          | —      |              |                            |                              | —            |                      | —      | —      |
| N-10           | 0.0875 | 0.0849       | 0.0776                     | 0.0664                       | 0.0513       | 0.0319               | 0.0126 | 0.0278 |
| N-15           | 0.4068 | 0.4001       | 0.3790                     | 0.3461                       | 0.3028       | 0.2444               | 0.1526 | 0.1509 |
| N-20           | 0.6700 | 0.6633       | 0.6436                     | 0.6126                       | 0.5643       | 0.5011               | 0.3836 | 0.2804 |
| N-25           | 0.8582 | 0.8564       | 0.8415                     | 0.8169                       | 0.7746       | 0.7191               | 0.6044 | 0.3944 |
| N-30           | 1.0026 | 1.0073       | 0.9927                     | 0.9801                       | 0.9458       | 0.8969               | 0.7915 | 0.4989 |
| N-40           | —      |              |                            |                              | —            |                      | —      | 0.6759 |
| N-60           |        | —            | —                          | —                            | —            |                      | —      | —      |
| N-80           | —      |              |                            | —                            |              |                      |        |        |
| N-100          | _      | _            | —                          | —                            | —            |                      | —      |        |
| N-120          | _      | _            | —                          | —                            | —            |                      | —      |        |
| N-150          | _      | _            | —                          | —                            | —            |                      | —      |        |
| N-200          |        |              |                            |                              |              |                      |        | —      |
| N-250          |        |              |                            |                              |              |                      |        | —      |
| N-300          |        | —            |                            | —                            | —            |                      |        |        |
| N-350          | —      | —            | —                          | —                            | —            | —                    | —      | —      |
| N-400          | —      | —            | —                          | —                            | —            | —                    | —      | —      |
| W-30           | 0.9313 | 0.9329       | 0.9180                     | 0.8998                       | 0.8616       | 0.8094               | 0.6996 | 0.4478 |
| W-40           | 1.1169 | 1.1220       | 1.1150                     | 1.1073                       | 1.0735       | 1.0308               | 0.9329 | 0.5884 |
| W-60           | —      | —            | —                          | —                            | —            | —                    | —      | —      |
| W-80           | —      | —            | —                          | —                            | —            | —                    | —      | —      |
| W-110          | —      |              |                            |                              | —            |                      |        |        |
| W-150          | —      | —            | —                          | —                            | —            | —                    | —      | —      |
| W-200          | —      | —            | —                          | —                            | —            | —                    | —      | —      |
| W-250          | _      | —            | —                          | —                            | —            |                      |        | —      |
| W-300          |        |              |                            |                              |              |                      |        |        |
| H-10           | 0.0728 | 0.0706       | 0.0646                     | 0.0552                       | 0.0424       | 0.0260               | 0.0101 | 0.0230 |
| H-20           | 0.4151 | 0.4091       | 0.3909                     | 0.3628                       | 0.3238       | 0.2716               | 0.1880 | 0.1618 |
| H-30           | 0.7275 | 0.7242       | 0.7068                     | 0.6808                       | 0.6382       | 0.5812               | 0.4727 | 0.3249 |
| H-40           | 0.9355 | 0.9362       | 0.9232                     | 0.9054                       | 0.8661       | 0.8147               | 0.7072 | 0.4571 |
| H-60           | 1.2342 | 1.2402       | 1.2394                     | 1.2355                       | 1.2097       | 1.1689               | 1.0706 | 0.6870 |
| H-80           | 1.3923 | 1.4002       | 1.4077                     | 1.4084                       | 1.3906       | 1.3486               | 1.2601 | 0.8250 |
| H-100          | 1.4643 | 1.4745       | 1.4833                     | 1.4860                       | 1.4686       | 1.4297               | 1.3523 | 0.8970 |
| H-150          |        |              |                            |                              |              |                      |        |        |
| H-200          | —      |              |                            |                              |              |                      |        |        |
| H-250          | —      |              |                            |                              |              |                      |        | —      |
| H-280          |        |              |                            |                              | _            |                      |        |        |
| п-300<br>Ц 250 | _      |              |                            |                              |              | —                    |        |        |
| H 400          | _      |              |                            |                              | _            | _                    | _      | _      |
| S Cc           | —      |              |                            |                              |              | _                    | _      | _      |
| 5-Co           |        |              | _                          | _                            | _            | _                    | _      | _      |
| 8-C            | _      |              |                            |                              |              | _                    | _      | _      |
| R-F            |        |              |                            |                              |              |                      |        |        |
|                |        |              |                            |                              |              |                      |        |        |

**Table C1a.** Parameter m(1.0 m) for the simple approximation of  $m(d_{air})$  given in equation (2) for air densities from  $\rho = 0.96 \text{ kg m}^{-3}$  to  $\rho = 1.32 \text{ kg m}^{-3}$  (see exceptions in the notes) for  $K_a$  and  $k_{\phi}$ . The uncertainty of the linear approximations compared with the directly calculated values using equation (2) for m(1.0 m) and  $m_d$  is less or equal to 1 % in the regions mentioned below for the air density  $\rho$ . Inclusion of the uncertainties of the calculations themselves, leads to an overall uncertainty for the corrections,  $|k(\rho)-1|$ , of about 5 %, this in turn resulting in an overall uncertainty for the correction factors,  $k(\rho)$ , of about 2 %.

|                     | <i>m</i> (1.0 m | ) $(m^3 kg^{-1})$ for the quantity |
|---------------------|-----------------|------------------------------------|
| Radiation quality R | Ka              | $k_{\varPhi}$                      |
| L-10                | -0.758          | -0.0314                            |
| L-20                | -0.124          | -0.00714                           |
| L-30                | -0.0468         | -0.00137                           |
| L-35                | -0.0375         | -0.00120                           |
| N-10                | $-0.975^{a}$    | -0.0834                            |
| N-15                | -0.345          | -0.0380                            |
| N-20                | -0.164          | -0.0201                            |
| N-25                | -0.0927         | -0.00959                           |
| N-30                | -0.0587         | -0.0042                            |
| N-40                | -0.0337         | -0.00145                           |
| W-30                | -0.0758         | -0.00996                           |
| W-40                | -0.0458         | -0.00542                           |
| H-10                | $-1.26^{a}$     | -0.168                             |
| H-20                | -0.455          | -0.124                             |
| H-30                | -0.187          | -0.0672                            |
| H-40                | -0.0887         | -0.0259                            |
| H-60                | -0.0368         | -0.00606                           |

<sup>a</sup> These values are only valid in the range from  $\rho = 1.07$  kg m<sup>-3</sup> to  $\rho = 1.32$  kg m<sup>-3</sup>.

**Table C1b.** Parameter  $m_d$  for the simple approximation of  $m(d_{air})$  given in equation (2) for air densities from  $\rho = 0.96$  kg m<sup>-3</sup> to  $\rho = 1.32$  kg m<sup>-3</sup> (see exceptions in the notes) for  $K_a$  and  $k_{\Phi}$ . The uncertainty of the linear approximations compared with the directly calculated values using equation (2) for m(1.0 m) and  $m_d$  is less or equal to 1 % in the regions mentioned below for the air density  $\rho$ . Inclusion of the uncertainties of the calculations themselves, leads to an overall uncertainty for the corrections,  $|k(\rho)-1|$ , of about 5 %, this in turn resulting in an overall uncertainty for the correction factors,  $k(\rho)$ , of about 2 %.

|                     | $m_d (m^2 k_s)$     | $g^{-1}$ ) for the quantity |
|---------------------|---------------------|-----------------------------|
| Radiation quality R | Ka                  | $k_{\Phi}$                  |
| L-10                | $-0.659^{a}$        | -0.0134                     |
| L-20                | -0.128              | -0.0119                     |
| L-30                | -0.0465             | -0.00133                    |
| L-35                | -0.0373             | -0.00117                    |
| N-10                | $-0.687^{a}$        | -0.0117                     |
| N-15                | -0.287 <sup>b</sup> | -0.0219                     |
| N-20                | -0.148              | -0.0147                     |
| N-25                | -0.0876             | -0.00752                    |
| N-30                | -0.0580             | -0.00415                    |
| N-40                | -0.0335             | -0.00140                    |
| W-30                | -0.0727             | -0.00883                    |
| W-40                | -0.0444             | -0.00473                    |
| H-10                | $-0.660^{\circ}$    | 0.00542                     |
| H-20                | -0.273 <sup>b</sup> | -0.0650                     |
| H-30                | -0.125              | -0.0314                     |
| H-40                | -0.0752             | -0.0178                     |
| H-60                | -0.0359             | -0.00562                    |

<sup>a</sup> These values are only valid in the range from  $\rho = 1.12$  kg m<sup>-3</sup> to  $\rho = 1.27$  kg m<sup>-3</sup>.

<sup>b</sup> These values are only valid in the range from  $\rho = 1.04$  kg m<sup>-3</sup> to  $\rho = 1.32$  kg m<sup>-3</sup>.

<sup>c</sup> These values are only valid in the range from  $\rho = 1.16$  kg m<sup>-3</sup> to  $\rho = 1.23$  kg m<sup>-3</sup>.

| Table C2a. Para:compared with 1an overall uncer | neter $m(1.0 \text{ m})$ for the simple he directly calculated values ainty for the corrections, $ k $ | le approximation (: using equation (: $(\rho)-1$ ], of about : | of $m(d_{air})$ given<br>2) for $m(1.0 \text{ m})$ ;<br>5 %, this in turn | in equation (2) and $m_d$ is less or resulting in an $\alpha$ | for air densities<br>equal to 1 % in<br>overall uncertair | s from $\rho = 0.96$<br>1 the regions me<br>nty for the corre | kg m <sup><math>-3</math></sup> to $\rho =$<br>intioned below f | 1.32 kg m <sup><math>-3</math></sup> fo<br>for the air densi<br>$(\rho)$ , of about 2 % | or $h^*_K(\mathbb{R})$ and $h_p$<br>ty $\rho$ . Inclusion o | $\kappa({\rm R}; \alpha).$ The un<br>of the uncertaint | certainty of the<br>ies of the calcula | linear approxim<br>ations themselve | ations<br>s, leads to |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|-------------------------------------|-----------------------|
| Radiation                                       | m(1.0  m) for the                                                                                      |                                                                |                                                                           |                                                               | u                                                         | <i>n</i> (1.0 m) for th                                       | he quantity h <sub>p</sub>                                      | $_{K}(\mathbf{R};\alpha) \ [\mathbf{m}^{3} \ \mathbf{k}_{8}$                            | $g^{-1}$ ] for $\alpha =$                                   |                                                        |                                        |                                     |                       |
| quality R                                       | quantity <i>n_K</i> (K)<br>[m <sup>3</sup> kg <sup>-1</sup> ]                                          | 00                                                             | 15°                                                                       | 30°                                                           | 45°                                                       | 60°                                                           | 75°                                                             | °06                                                                                     | $180^{\circ}$                                               | ROT                                                    | ISO                                    | OSI-SS                              | IS-ISO                |
| L-10                                            | 0.0692                                                                                                 | 0.0692                                                         | 0.0667                                                                    | 0.0642                                                        | 0.0617                                                    | 0.0591                                                        | 0.057                                                           | 0.0544                                                                                  | 0.0307                                                      | 0.0551                                                 | 0.0539                                 | 0.0535                              | 0.0532                |
| L-20                                            | 0.0109                                                                                                 | 0.0109                                                         | 0.0109                                                                    | 0.011                                                         | 0.0113                                                    | 0.0114                                                        | 0.0112                                                          | 0.0113                                                                                  | 0.011                                                       | 0.0112                                                 | 0.0110                                 | 0.0106                              | 0.0108                |
| L-30                                            | 0.00181                                                                                                | 0.00181                                                        | 0.00182                                                                   | 0.00182                                                       | 0.00182                                                   | 0.00188                                                       | 0.00196                                                         | 0.00201                                                                                 | 0.00292                                                     | 0.00199                                                | 0.00196                                | 0.00200                             | 0.00198               |
| L-35                                            | 0.00151                                                                                                | 0.00151                                                        | 0.00152                                                                   | 0.00152                                                       | 0.00152                                                   | 0.00156                                                       | 0.00167                                                         | 0.00173                                                                                 | 0.00237                                                     | 0.00170                                                | 0.00169                                | 0.00171                             | 0.00168               |
| N-10                                            | 0.174                                                                                                  | 0.174                                                          | 0.168                                                                     | 0.162                                                         | 0.156                                                     | 0.150                                                         | 0.145                                                           | 0.136                                                                                   | 0.089                                                       | 0.141                                                  | 0.136                                  | 0.137                               | 0.135                 |
| N-15                                            | 0.0672                                                                                                 | 0.0672                                                         | 0.0668                                                                    | 0.0668                                                        | 0.0667                                                    | 0.0655                                                        | 0.0641                                                          | 0.0646                                                                                  | 0.0306                                                      | 0.0623                                                 | 0.0607                                 | 0.0613                              | 0.0617                |
| N-20                                            | 0.0306                                                                                                 | 0.0306                                                         | 0.0305                                                                    | 0.0309                                                        | 0.0314                                                    | 0.0314                                                        | 0.0309                                                          | 0.0311                                                                                  | 0.0248                                                      | 0.0308                                                 | 0.0301                                 | 0.0295                              | 0.0297                |
| N-25                                            | 0.0137                                                                                                 | 0.0137                                                         | 0.0137                                                                    | 0.0138                                                        | 0.0140                                                    | 0.0142                                                        | 0.0143                                                          | 0.0144                                                                                  | 0.0184                                                      | 0.0143                                                 | 0.0140                                 | 0.0139                              | 0.0140                |
| N-30                                            | 0.00572                                                                                                | 0.00572                                                        | 0.00574                                                                   | 0.00575                                                       | 0.00578                                                   | 0.00594                                                       | 0.00612                                                         | 0.00622                                                                                 | 0.00891                                                     | 0.00617                                                | 0.00606                                | 0.00615                             | 0.00614               |
| N-40                                            | 0.00177                                                                                                | 0.00177                                                        | 0.00178                                                                   | 0.00179                                                       | 0.00179                                                   | 0.00184                                                       | 0.00196                                                         | 0.00205                                                                                 | 0.0027                                                      | 0.00201                                                | 0.00202                                | 0.00203                             | 0.00198               |
| W-30                                            | 0.0138                                                                                                 | 0.0138                                                         | 0.0138                                                                    | 0.0138                                                        | 0.014                                                     | 0.0143                                                        | 0.0145                                                          | 0.0147                                                                                  | 0.0198                                                      | 0.0146                                                 | 0.0143                                 | 0.0144                              | 0.0144                |
| W-40                                            | 0.00686                                                                                                | 0.00686                                                        | 0.0069                                                                    | 0.00691                                                       | 0.00692                                                   | 0.0071                                                        | 0.00744                                                         | 0.00765                                                                                 | 0.0101                                                      | 0.00754                                                | 0.0075                                 | 0.00758                             | 0.00748               |
| H-10                                            | 0.334                                                                                                  | 0.334                                                          | 0.324                                                                     | 0.313                                                         | 0.303                                                     | 0.292                                                         | 0.283                                                           | 0.264                                                                                   | 0.191                                                       | 0.274                                                  | 0.267                                  | 0.269                               | 0.264                 |
| H-20                                            | 0.215                                                                                                  | 0.215                                                          | 0.213                                                                     | 0.214                                                         | 0.214                                                     | 0.211                                                         | 0.207                                                           | 0.208                                                                                   | 0.117                                                       | 0.203                                                  | 0.198                                  | 0.197                               | 0.199                 |
| H-30                                            | 0.0929                                                                                                 | 0.0929                                                         | 0.0928                                                                    | 0.0932                                                        | 0.094                                                     | 0.0945                                                        | 0.0944                                                          | 0.0949                                                                                  | 0.0997                                                      | 0.0942                                                 | 0.0927                                 | 0.0922                              | 0.0928                |
| H-40                                            | 0.0337                                                                                                 | 0.0337                                                         | 0.0338                                                                    | 0.0339                                                        | 0.0341                                                    | 0.0347                                                        | 0.0353                                                          | 0.0358                                                                                  | 0.0438                                                      | 0.0356                                                 | 0.0352                                 | 0.0353                              | 0.0352                |
| H-60                                            | 0.00722                                                                                                | 0.00722                                                        | 0.00724                                                                   | 0.00728                                                       | 0.00732                                                   | 0.00749                                                       | 0.00784                                                         | 0.0082                                                                                  | 0.00997                                                     | 0.00801                                                | 0.00805                                | 0.00809                             | 0.00800               |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ladiation | $m_d$ for the                                                                                                                                                                    |         |         |         |         | $m_d$    | for the quantity | $h_{\mathrm{pK}}(\mathrm{R};\alpha)  [\mathrm{m}^2]$ | $kg^{-1}$ ] for $\alpha$ = |            |           |          |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|----------|------------------|------------------------------------------------------|----------------------------|------------|-----------|----------|-----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | luality R | ${\displaystyle \begin{array}{c} {\displaystyle \operatorname{h}}^{*}{}_{K}\left( \mathrm{R} ight) \\ {\displaystyle \left[ \mathrm{m}^{2}\mathrm{kg}^{-1} ight] } \end{array}}$ | 00      | 15°     | 30°     | 45°     | 60°      | 75°              | °06                                                  | $180^{\circ}$              | ROT        | OSI       | OSI-SS   | IS-ISO    |
| -20 $0.0169$ $0.0169$ $0.0169$ $0.0176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.00176$ $0.001170$ $0.001109$ $0.001109$ $0.001109$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ $0.001170$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,-10      | 0.0307                                                                                                                                                                           | 0.0307  | 0.0295  | 0.0286  | 0.0275  | 0.0262   | 0.0253           | 0.0246                                               | 0.0119                     | 0.0241     | 0.0242    | 0.0234   | 0.0239    |
| -30         0.00175         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00176         0.00177         0.00177         0.00177         0.00177         0.00177         0.00177         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0027         0.0023         0.00217         0.00217         0.002110         0.001110         0.001110         0.001110         0.001110         0.001110         0.001110         0.001110         0.0011110         0.00112         0.001173         0.001173         0.001173         0.001173         0.001173         0.00112         0.0012         0.0012         0.0012         0.0012 <th< td=""><td>-20</td><td>0.0169</td><td>0.0169</td><td>0.0168</td><td>0.0169</td><td>0.0172</td><td>0.0172</td><td>0.0171</td><td>0.0171</td><td>0.0157</td><td>0.0170</td><td>0.0167</td><td>0.0164</td><td>0.0166</td></th<> | -20       | 0.0169                                                                                                                                                                           | 0.0169  | 0.0168  | 0.0169  | 0.0172  | 0.0172   | 0.0171           | 0.0171                                               | 0.0157                     | 0.0170     | 0.0167    | 0.0164   | 0.0166    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30       | 0.00175                                                                                                                                                                          | 0.00175 | 0.00176 | 0.00176 | 0.00176 | 0.00182  | 0.0019           | 0.00195                                              | 0.00282                    | 0.00192    | 0.00190   | 0.00194  | 0.00192   |
| $\sqrt{-10}$ $0.0315$ $0.0315$ $0.0378$ $0.0287$ $0.027$ $\sqrt{-15}$ $0.0378$ $0.0378$ $0.0378$ $0.0387$ $0.0234$ $\sqrt{-20}$ $0.0378$ $0.0378$ $0.0380$ $0.038$ $0.0384$ $\sqrt{-20}$ $0.0223$ $0.0223$ $0.0225$ $0.0234$ $\sqrt{-25}$ $0.0109$ $0.0110$ $0.011$ $0.011$ $\sqrt{-30}$ $0.00561$ $0.00563$ $0.00565$ $0.005$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00173$ $0.00173$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00173$ $0.00173$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00173$ $0.00172$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00173$ $0.00172$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00172$ $0.00172$ $0.00172$ $\sqrt{-40}$ $0.00122$ $0.00172$ $0.00172$ $0.00172$ $0.00122$ <td>-35</td> <td>0.00147</td> <td>0.00147</td> <td>0.00149</td> <td>0.00149</td> <td>0.00149</td> <td>0.00153</td> <td>0.00163</td> <td>0.00169</td> <td>0.00232</td> <td>0.00166</td> <td>0.00166</td> <td>0.00168</td> <td>0.00164</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -35       | 0.00147                                                                                                                                                                          | 0.00147 | 0.00149 | 0.00149 | 0.00149 | 0.00153  | 0.00163          | 0.00169                                              | 0.00232                    | 0.00166    | 0.00166   | 0.00168  | 0.00164   |
| $\sqrt{-15}$ $0.0378$ $0.0378$ $0.03380$ $0.0380$ $0.0381$ $\sqrt{-20}$ $0.0223$ $0.0223$ $0.0225$ $0.0231$ $\sqrt{-25}$ $0.0109$ $0.01109$ $0.0110$ $0.011$ $\sqrt{-30}$ $0.00561$ $0.00563$ $0.00565$ $0.005$ $\sqrt{-40}$ $0.00172$ $0.00173$ $0.00173$ $0.00173$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00173$ $0.00173$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00172$ $0.00173$ $0.00173$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00173$ $0.00173$ $0.00173$ $0.0017$ $\sqrt{-40}$ $0.00172$ $0.00173$ $0.00173$ $0.00172$ $0.0012$ $\sqrt{-40}$ $0.00122$ $0.00172$ $0.00173$ $0.0012$ $0.0012$ $\sqrt{-40}$ $0.00122$ $0.00173$ $0.00172$ $0.00122$ $0.0012$ $\sqrt{-40}$ $0.00505$ $0.00603$ $0.00248$ $0.0012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V-10      | 0.0315                                                                                                                                                                           | 0.0315  | 0.0300  | 0.0287  | 0.0274  | 0.0259   | 0.0248           | 0.0244                                               | 0.00779                    | 0.0238     | 0.0236    | 0.0227   | 0.0232    |
| $\sqrt{-20}$ $0.0223$ $0.0223$ $0.0225$ $0.023$ $0.0225$ $0.023$ $0.0225$ $0.023$ $0.023$ $0.0225$ $0.023$ $0.023$ $0.023$ $0.023$ $0.023$ $0.023$ $0.0110$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.011$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$ $0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V-15      | 0.0378                                                                                                                                                                           | 0.0378  | 0.0378  | 0.0380  | 0.0381  | 0.0376   | 0.0368           | 0.0372                                               | 0.0176                     | 0.0359     | 0.0347    | 0.0352   | 0.0354    |
| $\sqrt{-25}$ 0.0109         0.0109         0.0110         0.0110         0.011 $\sqrt{-30}$ 0.00561         0.00563         0.00565         0.00565         0.00563 $\sqrt{-40}$ 0.00172         0.00173         0.00173         0.00173         0.0012 $\sqrt{-40}$ 0.00172         0.00173         0.00173         0.0012         0.0012 $\sqrt{-40}$ 0.00122         0.0122         0.0122         0.0122         0.0122 $\sqrt{-40}$ 0.00505         0.00609         0.00503         0.00205         0.006 $\sqrt{-40}$ 0.00505         0.00638         0.00248         0.001 $7-10$ 0.00505         0.00348         0.00248         0.001 $1-10$ 0.00505         0.00388         0.00248         0.001 $1-20$ 0.0989         0.09388         0.00240         0.004 $1-30$ 0.0234         0.0235         0.023         0.023 $0.0234$ 0.0235         0.0235         0.023         0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V-20      | 0.0223                                                                                                                                                                           | 0.0223  | 0.0223  | 0.0225  | 0.0230  | 0.0230   | 0.0227           | 0.0228                                               | 0.0195                     | 0.0226     | 0.0221    | 0.0216   | 0.0218    |
| $\sqrt{-30}$ 0.00561         0.00563         0.00565         0.00565         0.00563         0.00565         0.00563         0.00565         0.00565         0.00173         0.00173         0.00173         0.00173         0.00173         0.00173         0.00122         0.00122         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00248         0.00123         0.00248         0.00123         0.00124         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00123         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235         0.00235                                                                                                                                                                                                                        | N-25      | 0.0109                                                                                                                                                                           | 0.0109  | 0.0109  | 0.0110  | 0.0111  | 0.0113   | 0.0114           | 0.0115                                               | 0.0154                     | 0.0114     | 0.0112    | 0.0111   | 0.0112    |
| $\sqrt{-40}$ $0.00172$ $0.00173$ $0.00173$ $0.00173$ $0.00173$ $0.00173$ $0.00123$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.00122$ $0.001248$ $0.002148$ $0.001101$ $1-200$ $0.00505$ $0.00505$ $0.00248$ $0.00248$ $0.001101$ $1-200$ $0.00348$ $0.00238$ $0.00248$ $0.002410$ $0.00121$ $1-200$ $0.00234$ $0.00235$ $0.00235$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$ $0.00236$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V-30      | 0.00561                                                                                                                                                                          | 0.00561 | 0.00563 | 0.00565 | 0.00567 | 0.00583  | 0.00601          | 0.0061                                               | 0.00867                    | 0.00605    | 0.00594   | 0.00603  | 0.00603   |
| N-30 $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.0122$ $0.00505$ $0.00605$ $0.00605$ $0.00605$ $0.00605$ $0.00605$ $0.00612$ $0.00605$ $0.00612$ $0.00612$ $0.00605$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ $0.00612$ </td <td>V-40</td> <td>0.00172</td> <td>0.00172</td> <td>0.00173</td> <td>0.00173</td> <td>0.00174</td> <td>0.00178</td> <td>0.0019</td> <td>0.00199</td> <td>0.00262</td> <td>0.00195</td> <td>0.00196</td> <td>0.00197</td> <td>0.00192</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V-40      | 0.00172                                                                                                                                                                          | 0.00172 | 0.00173 | 0.00173 | 0.00174 | 0.00178  | 0.0019           | 0.00199                                              | 0.00262                    | 0.00195    | 0.00196   | 0.00197  | 0.00192   |
| W-40         0.00600         0.00600         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0.00605         0                                                                                                                                                                                                              | V-30      | 0.0122                                                                                                                                                                           | 0.0122  | 0.0122  | 0.0122  | 0.0123  | 0.0126   | 0.0128           | 0.0130                                               | 0.0177                     | 0.0129     | 0.0127    | 0.0128   | 0.0128    |
| H-10         0.00505         0.00505         0.00248         0.0014         0.0011           H-20         0.0989         0.0989         0.0988         0.0995         0.101           H-30         0.0437         0.0437         0.0437         0.0440         0.044           H-40         0.0234         0.0235         0.0236         0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V-40      | 0.00600                                                                                                                                                                          | 0.00600 | 0.00603 | 0.00605 | 0.00605 | 0.00622  | 0.00654          | 0.00674                                              | 00600.0                    | 0.00664    | 0.0066    | 0.00668  | 0.00659   |
| H-20         0.0989         0.0988         0.0995         0.101           H-30         0.0437         0.0437         0.0440         0.044           H-40         0.0234         0.0234         0.0236         0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H-10      | 0.00505                                                                                                                                                                          | 0.00505 | 0.00348 | 0.00248 | 0.00139 | 0.000201 | -0.000227        | 0.00159                                              | -0.0164                    | -0.0000629 | -0.000552 | -0.00155 | -0.000719 |
| 1-30         0.0437         0.0437         0.0437         0.0440         0.044           1-40         0.0234         0.0234         0.0235         0.0236         0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H-20      | 0.0989                                                                                                                                                                           | 0.0989  | 0.0988  | 0.0995  | 0.101   | 0.100    | 0.0988           | 0.0997                                               | 0.0659                     | 0.0978     | 0.0957    | 0.0949   | 0.0956    |
| 1-40         0.0234         0.0234         0.0235         0.0236         0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H-30      | 0.0437                                                                                                                                                                           | 0.0437  | 0.0437  | 0.0440  | 0.0445  | 0.0451   | 0.0452           | 0.0456                                               | 0.0543                     | 0.0453     | 0.0445    | 0.0442   | 0.0445    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I-40      | 0.0234                                                                                                                                                                           | 0.0234  | 0.0235  | 0.0236  | 0.0237  | 0.0242   | 0.0249           | 0.0253                                               | 0.0324                     | 0.0251     | 0.0248    | 0.0249   | 0.0248    |
| 1-60 0.00669 0.00669 0.00671 0.00672 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I-60      | 0.00669                                                                                                                                                                          | 0.00669 | 0.00671 | 0.00675 | 0.00679 | 0.00695  | 0.00728          | 0.00763                                              | 0.00928                    | 0.00744    | 0.00748   | 0.00751  | 0.00743   |

| Radiation |          |          | <i>m</i> (1) | 0 m) for the quantity $d_{\rm le}$ | $_{{ m ms}K}({ m R};lpha)~[{ m m}^3~{ m kg}^{-1}]$ for $\epsilon$ | = χ      |          |          |
|-----------|----------|----------|--------------|------------------------------------|-------------------------------------------------------------------|----------|----------|----------|
| quality R | 00       | 15°      | $30^{\circ}$ | $45^{\circ}$                       | 60°                                                               | 75°      | °06      | ROT      |
| L-10      | 0.103    | 0.102    | 0.102        | 0.103                              | 0.107                                                             | 0.114    | 0.124    | 0.104    |
| L-20      | 0.00607  | 0.00614  | 0.00631      | 0.00661                            | 0.00715                                                           | 0.00809  | 0.00981  | 0.00738  |
| L-30      | 0.000563 | 0.000582 | 0.000605     | 0.000631                           | 0.00064                                                           | 0.00072  | 0.000845 | 0.000809 |
| L-35      | 0.000475 | 0.000491 | 0.000499     | 0.000517                           | 0.000532                                                          | 0.000581 | 0.000662 | 0.000676 |
| N-10      | 0.263    | 0.262    | 0.260        | 0.262                              | 0.268                                                             | 0.282    | 0.301    | 0.265    |
| N-15      | 0.0671   | 0.0673   | 0.0682       | 0.0702                             | 0.0740                                                            | 0.0806   | 0.0906   | 0.0719   |
| N-20      | 0.0215   | 0.0216   | 0.0221       | 0.0230                             | 0.0244                                                            | 0.0270   | 0.0312   | 0.0245   |
| N-25      | 0.00671  | 0.00682  | 0.00702      | 0.00730                            | 0.00784                                                           | 0.00873  | 0.0103   | 0.00834  |
| N-30      | 0.00196  | 0.00203  | 0.00211      | 0.00221                            | 0.00231                                                           | 0.00259  | 0.00308  | 0.00274  |
| N-40      | 0.000563 | 0.000582 | 0.000587     | 0.000611                           | 0.000643                                                          | 0.000679 | 0.000762 | 0.000804 |
| W-30      | 0.00573  | 0.00587  | 0.00607      | 0.00633                            | 0.00673                                                           | 0.00752  | 0.00893  | 0.00750  |
| W-40      | 0.00239  | 0.00246  | 0.00253      | 0.00263                            | 0.00274                                                           | 0.00300  | 0.00346  | 0.00333  |
| H-10      | 0.513    | 0.511    | 0.508        | 0.509                              | 0.519                                                             | 0.539    | 0.565    | 0.514    |
| H-20      | 0.205    | 0.206    | 0.208        | 0.213                              | 0.223                                                             | 0.238    | 0.261    | 0.219    |
| H-30      | 0.0672   | 0.0677   | 0.0688       | 0.0707                             | 0.0739                                                            | 0.0792   | 0.0873   | 0.0749   |
| H-40      | 0.0172   | 0.0175   | 0.0179       | 0.0186                             | 0.0195                                                            | 0.0213   | 0.0243   | 0.0211   |
| H-60      | 0.00257  | 0.00262  | 0.0027       | 0.0028                             | 0.00293                                                           | 0.00310  | 0.00348  | 0.00362  |

| pared with<br>srall<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| tions com<br>s to an ove<br>r which th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ıpproxima<br>elves, lead<br>es only, fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| the linear a loop thems thems ion qualities the second sec |  |
| rtainty of 1<br>ne calculat<br>10se radiat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| . The unce<br>inties of tl<br>given for th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $l_{	ext{lensK}}(	ext{R}; lpha)$ the uncertancertaneters are $\mathfrak{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| g m <sup>-3</sup> for 6<br>clusion of 1<br>The paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| g m <sup><math>-3</math></sup> to $\rho$<br>r the air de<br>s, $k(\rho)$ , of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $o = 0.96  \mathrm{kg}$ d below foi<br>tion factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ities from ,<br>mentione<br>the correc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| or air dens<br>he regions<br>rtainty for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| lation (2) f<br>to 1 % in 1<br>verall unce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| iven in equ<br>ss or equal<br>ng in an o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| f $m(d_{\rm air})$ g<br>nd $m_d$ is leader nurn resulti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| cimation o<br>1(1.0 m) ar<br>%, this in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| the approximation $n$ (2) for $n$ of about 5 (005 Sv/Gy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| for the similar equation $ k(\rho)-1 $ , clease $ k(\rho)-1 $ , clease $< 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| m(1.0  m)<br>  values usi<br>rrections,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Parameter<br>calculated<br>for the co<br>coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <b>Fable C3a.</b><br>he directly<br>incertainty<br>onversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

| Table C3b. Parameti           directly calculated v.           uncertainty for the c           conversion coefficient | er $m_d$ for the simple approx<br>alues using equation (2) for<br>corrections, $ k(\rho) - 1 $ , of abc<br>at itself is at least < 0.0005 S | imation of $m(d_{\text{air}})$ given in<br>$m(1.0 \text{ m})$ and $m_d$ is less or<br>out 5 %, this in turn resultir<br>iv/Gy. | equation (2) for air densitie<br>equal to 1 % in the regions<br>ag in an overall uncertainty | s from $\rho = 0.96$ kg m <sup>-3</sup> to<br>mentioned below for the aii<br>for the correction factors, $k_{\rm i}$ | $\rho = 1.32 \text{ kg m}^{-3}$ for $d_{\text{ensk}}($<br>c density $\rho$ . Inclusion of the $(\rho)$ , of about 2 %. The parau | R;o.). The uncertainty of th<br>uncertainties of the calcula<br>meters are given for those r | he linear approximations cc<br>ations themselves, leads to a<br>adiation qualities only, for <sup>-</sup> | unpared with the<br>n overall<br>which the |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Kadiation                                                                                                             |                                                                                                                                             |                                                                                                                                | 1.                                                                                           | $n_d$ for the quantity $a_{\text{lensk}}$                                                                            | $(\mathbf{K};\alpha)$ [m <sup>2</sup> kg <sup>2</sup> ] for $\alpha =$                                                           |                                                                                              |                                                                                                           |                                            |
| quality R                                                                                                             | 00                                                                                                                                          | 15°                                                                                                                            | $30^{\circ}$                                                                                 | $45^{\circ}$                                                                                                         | $60^{\circ}$                                                                                                                     | 75°                                                                                          | 90°                                                                                                       | ROT                                        |
| L-10                                                                                                                  | 0.0443                                                                                                                                      | 0.0438                                                                                                                         | 0.0439                                                                                       | 0.0447                                                                                                               | 0.0468                                                                                                                           | 0.0511                                                                                       | 0.0572                                                                                                    | 0.0453                                     |
| L-20                                                                                                                  | 0.0121                                                                                                                                      | 0.0122                                                                                                                         | 0.0124                                                                                       | 0.0128                                                                                                               | 0.0134                                                                                                                           | 0.0145                                                                                       | 0.0162                                                                                                    | 0.0136                                     |
| L-30                                                                                                                  | 0.000548                                                                                                                                    | 0.000566                                                                                                                       | 0.000588                                                                                     | 0.000613                                                                                                             | 0.000622                                                                                                                         | 0.000699                                                                                     | 0.00082                                                                                                   | 0.000786                                   |
| L-35                                                                                                                  | 0.000465                                                                                                                                    | 0.000480                                                                                                                       | 0.000488                                                                                     | 0.000506                                                                                                             | 0.00052                                                                                                                          | 0.000568                                                                                     | 0.000646                                                                                                  | 0.000662                                   |
| N-10                                                                                                                  | 0.0452                                                                                                                                      | 0.0446                                                                                                                         | 0.0446                                                                                       | 0.0457                                                                                                               | 0.0486                                                                                                                           | 0.0545                                                                                       | 0.0627                                                                                                    | 0.0466                                     |
| N-15                                                                                                                  | 0.0351                                                                                                                                      | 0.0352                                                                                                                         | 0.0358                                                                                       | 0.0371                                                                                                               | 0.0395                                                                                                                           | 0.0437                                                                                       | 0.0501                                                                                                    | 0.0383                                     |
| N-20                                                                                                                  | 0.0146                                                                                                                                      | 0.0147                                                                                                                         | 0.0150                                                                                       | 0.0157                                                                                                               | 0.0168                                                                                                                           | 0.0186                                                                                       | 0.0219                                                                                                    | 0.0170                                     |
| N-25                                                                                                                  | 0.00473                                                                                                                                     | 0.00483                                                                                                                        | 0.00499                                                                                      | 0.00521                                                                                                              | 0.00564                                                                                                                          | 0.00635                                                                                      | 0.00767                                                                                                   | 0.00611                                    |
| N-30                                                                                                                  | 0.00196                                                                                                                                     | 0.00202                                                                                                                        | 0.00211                                                                                      | 0.00220                                                                                                              | 0.00230                                                                                                                          | 0.00257                                                                                      | 0.00306                                                                                                   | 0.00273                                    |
| N-40                                                                                                                  | 0.000545                                                                                                                                    | 0.000564                                                                                                                       | 0.000568                                                                                     | 0.000591                                                                                                             | 0.000623                                                                                                                         | 0.000657                                                                                     | 0.000737                                                                                                  | 0.000778                                   |
| W-30                                                                                                                  | 0.00492                                                                                                                                     | 0.00504                                                                                                                        | 0.00522                                                                                      | 0.00545                                                                                                              | 0.00579                                                                                                                          | 0.00646                                                                                      | 0.00768                                                                                                   | 0.00650                                    |
| W-40                                                                                                                  | 0.00197                                                                                                                                     | 0.00204                                                                                                                        | 0.00209                                                                                      | 0.00218                                                                                                              | 0.00226                                                                                                                          | 0.00248                                                                                      | 0.00286                                                                                                   | 0.00280                                    |
| H-10                                                                                                                  | 0.00184                                                                                                                                     | 0.00121                                                                                                                        | 0.00145                                                                                      | 0.00278                                                                                                              | 0.00615                                                                                                                          | 0.0132                                                                                       | 0.0227                                                                                                    | 0.00380                                    |
| H-20                                                                                                                  | 0.0817                                                                                                                                      | 0.0822                                                                                                                         | 0.0834                                                                                       | 0.0861                                                                                                               | 0.0905                                                                                                                           | 0.0979                                                                                       | 0.109                                                                                                     | 0.0895                                     |
| H-30                                                                                                                  | 0.0243                                                                                                                                      | 0.0247                                                                                                                         | 0.0253                                                                                       | 0.0264                                                                                                               | 0.0281                                                                                                                           | 0.0310                                                                                       | 0.0360                                                                                                    | 0.0293                                     |
| H-40                                                                                                                  | 0.00968                                                                                                                                     | 0.00992                                                                                                                        | 0.0102                                                                                       | 0.0107                                                                                                               | 0.0113                                                                                                                           | 0.0126                                                                                       | 0.0148                                                                                                    | 0.0128                                     |
| H-60                                                                                                                  | 0.00234                                                                                                                                     | 0.00239                                                                                                                        | 0.00246                                                                                      | 0.00255                                                                                                              | 0.00267                                                                                                                          | 0.00282                                                                                      | 0.00316                                                                                                   | 0.00332                                    |

| compared with the directly cal an overall uncertainty for the c | ) for the surplic approximation (2) culated values using equation (2): corrections, $ k(\rho)-1 $ , of about 5 <sup>6</sup> | I $m(a_{air})$ given in equation (2) for $m(1.0 \text{ m})$ and $m_{d}$ is less or equation this in turn resulting in an over %, this in turn resulting in an over | all definition $\rho = 0.50$ kg m ual to 1 % in the regions mentioned rall uncertainty for the correction fi | to $\rho = 1.2 \text{ kg m}$ to $u_{\text{oct}} = 1.2 \text{ kg m}$ to $u_{\text{local skin } (1)}$<br>I below for the air density $\rho$ . Incluside to the size $k(\rho)$ , of about 2 %. | $x_5\alpha_{\rm stab}$ . The uncertainties of the calculation of the uncertainties of the calculation of the tail of | at approximations themselves, leads to |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Radiation                                                       |                                                                                                                             |                                                                                                                                                                    | $m(1.0 \text{ m})$ for the quantity $d_{\text{loca}}$                                                        | $[{}^{1}{}_{\rm skin}K({f R};\!lpha)_{ m slab}[{f m}^3{f kg}^{-1}]{f for}lpha$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |
| quality R                                                       | 00                                                                                                                          | 15°                                                                                                                                                                | $30^{\circ}$                                                                                                 | 45°                                                                                                                                                                                         | 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75°                                    |
| L-10                                                            | 0.00307                                                                                                                     | 0.00311                                                                                                                                                            | 0.00355                                                                                                      | 0.00426                                                                                                                                                                                     | 0.00638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0128                                 |
| L-20                                                            | 0.000736                                                                                                                    | 0.000747                                                                                                                                                           | 0.000746                                                                                                     | 0.00076                                                                                                                                                                                     | 0.000778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000804                               |
| L-30                                                            | 0.000304                                                                                                                    | 0.000290                                                                                                                                                           | 0.00029                                                                                                      | 0.000277                                                                                                                                                                                    | 0.000232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000194                               |
| L-35                                                            | 0.00032                                                                                                                     | 0.000308                                                                                                                                                           | 0.000302                                                                                                     | 0.000292                                                                                                                                                                                    | 0.000251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                |
| N-10                                                            | 0.0116                                                                                                                      | 0.0118                                                                                                                                                             | 0.0134                                                                                                       | 0.0164                                                                                                                                                                                      | 0.0236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0451                                 |
| N-15                                                            | 0.00252                                                                                                                     | 0.00259                                                                                                                                                            | 0.00277                                                                                                      | 0.00303                                                                                                                                                                                     | 0.00396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00749                                |
| N-20                                                            | 0.00183                                                                                                                     | 0.00188                                                                                                                                                            | 0.00190                                                                                                      | 0.00196                                                                                                                                                                                     | 0.00209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00269                                |
| N-25                                                            | 0.00132                                                                                                                     | 0.00130                                                                                                                                                            | 0.00131                                                                                                      | 0.00130                                                                                                                                                                                     | 0.00127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00121                                |
| N-30                                                            | 0.000814                                                                                                                    | 0.000778                                                                                                                                                           | 0.000782                                                                                                     | 0.000754                                                                                                                                                                                    | 0.000659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000561                               |
| N-40                                                            | 0.000423                                                                                                                    | 0.000417                                                                                                                                                           | 0.000404                                                                                                     | 0.000392                                                                                                                                                                                    | 0.000349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000275                               |
| W-30                                                            | 0.00167                                                                                                                     | 0.00161                                                                                                                                                            | 0.00162                                                                                                      | 0.00158                                                                                                                                                                                     | 0.00145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00129                                |
| W-40                                                            | 0.00133                                                                                                                     | 0.00129                                                                                                                                                            | 0.00127                                                                                                      | 0.00123                                                                                                                                                                                     | 0.00108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000880                               |
| H-10                                                            | 0.0313                                                                                                                      | 0.0322                                                                                                                                                             | 0.0363                                                                                                       | 0.0441                                                                                                                                                                                      | 0.0617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.112                                  |
| H-20                                                            | 0.00913                                                                                                                     | 0.00937                                                                                                                                                            | 0.0101                                                                                                       | 0.0112                                                                                                                                                                                      | 0.0147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0267                                 |
| H-30                                                            | 0.00761                                                                                                                     | 0.00763                                                                                                                                                            | 0.00776                                                                                                      | 0.00793                                                                                                                                                                                     | 0.00836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0107                                 |
| H-40                                                            | 0.00458                                                                                                                     | 0.00447                                                                                                                                                            | 0.00447                                                                                                      | 0.00440                                                                                                                                                                                     | 0.00409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00386                                |
| H-60                                                            | 0.00185                                                                                                                     | 0.00182                                                                                                                                                            | 0.00179                                                                                                      | 0.00171                                                                                                                                                                                     | 0.00156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00126                                |

| proximations                                       | s themselves, leads               |                              |
|----------------------------------------------------|-----------------------------------|------------------------------|
| inty of the linear a                               | es of the calculation             |                              |
| $(\alpha)_{ m slab}$ . The uncerta                 | n of the uncertainti              |                              |
| $n^{-3}$ for $d_{\text{local skin }K}(\mathbf{F})$ | c density $\rho$ . Inclusio       | out 2 %.                     |
| $1^{-3}$ to $\rho = 1.32$ kg r                     | ned below for the air             | ו factors, $k(\rho)$ , of ab |
| from $\rho = 0.96 \text{ kg n}$                    | the regions mention               | aty for the correction       |
| (2) for air densities                              | ss or equal to 1 % in             | an overall uncertain         |
| r) given in equation                               | $(1.0 \text{ m})$ and $m_d$ is le | in turn resulting in         |
| roximation of $m(d_{\rm a}$                        | equation $(2)$ for $m$            | , of about 5 %, this         |
| ) for the simple app                               | culated values using              | orrections, $ k(\rho)-1 $    |
| arameter $m(1.0 \text{ m})$                        | ith the directly calc             | ncertainty for the c         |
| ble C4a. F                                         | mpared w                          | overall u                    |

| Radiation |           |           | $m_d$ for the quantity $d_{ m local \ skin \ K}($ | R; $\alpha$ ) <sub>slab</sub> [m <sup>2</sup> kg <sup>-1</sup> ] for $\alpha$ = |          |           |
|-----------|-----------|-----------|---------------------------------------------------|---------------------------------------------------------------------------------|----------|-----------|
| quality R | 00        | 15°       | 30°                                               | 45°                                                                             | 60°      | 75°       |
| L-10      | 0.000911  | 0.000910  | 0.00104                                           | 0.00121                                                                         | 0.00190  | 0.00403   |
| L-20      | 0.00128   | 0.00131   | 0.00132                                           | 0.00137                                                                         | 0.00149  | 0.00191   |
| L-30      | 0.000297  | 0.000282  | 0.000282                                          | 0.000270                                                                        | 0.000227 | 0.000189  |
| L-35      | 0.000313  | 0.000303  | 0.000297                                          | 0.000287                                                                        | 0.000247 | 0.000198  |
| N-10      | -0.000705 | -0.000780 | -0.000844                                         | -0.00112                                                                        | -0.00114 | -0.000956 |
| N-15      | 0.00142   | 0.00147   | 0.00153                                           | 0.00164                                                                         | 0.00197  | 0.00350   |
| N-20      | 0.00140   | 0.00143   | 0.00144                                           | 0.00148                                                                         | 0.00155  | 0.00184   |
| N-25      | 0.00107   | 0.00105   | 0.00105                                           | 0.00104                                                                         | 0.00098  | 0.000896  |
| N-30      | 0.000812  | 0.000776  | 0.00078                                           | 0.000752                                                                        | 0.000657 | 0.000560  |
| N-40      | 0.000412  | 0.000406  | 0.000393                                          | 0.000382                                                                        | 0.000341 | 0.000268  |
| W-30      | 0.00151   | 0.00146   | 0.00147                                           | 0.00143                                                                         | 0.00131  | 0.00115   |
| W-40      | 0.00118   | 0.00114   | 0.00113                                           | 0.00109                                                                         | 0.000944 | 0.000766  |
| H-10      | -0.00776  | -0.00810  | -0.00896                                          | -0.0109                                                                         | -0.0141  | -0.0221   |
| H-20      | 0.00465   | 0.00480   | 0.00490                                           | 0.00507                                                                         | 0.00575  | 0.00901   |
| H-30      | 0.00417   | 0.00414   | 0.00414                                           | 0.00413                                                                         | 0.00396  | 0.00389   |
| H-40      | 0.00335   | 0.00325   | 0.00324                                           | 0.00315                                                                         | 0.00283  | 0.00241   |
| H-60      | 0.00173   | 0.00171   | 0.00167                                           | 0.00161                                                                         | 0.00146  | 0.00118   |
|           |           |           |                                                   |                                                                                 |          |           |

| compared wit<br>an overall unc<br>conversion cov | h the directly ca<br>ertainty for the<br>efficient itself is | In for the simple characteristic the second | Le approximation (<br>using equation (<br>p)-1, of about<br>5 Sv/Gy. | 1 01 <i>m</i> ( <i>u</i> <sub>air</sub> ) given<br>(2) for <i>m</i> (1.0 m) :<br>5 %, this in turn | and $m_d$ is less or<br>resulting in an ( | ror air densities<br>t equal to 1 % in<br>yverall uncertain | the regions mer<br>ty for the correc | $\lim_{t \to \infty} u \rho = 1.$ | ), of about 2 %. | $a_{\text{local skin} K(Ls, \alpha)}$<br>$\gamma \rho$ . Inclusion of .<br>The parameter. | pillar. 1 ne unce.<br>the uncertaint<br>s are given for t | trainty of the calculation those radiation | dear approxum<br>lations themsel<br>qualities only, 1 | uons<br>ves, leads to<br>or which the |
|--------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------|------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|---------------------------------------|
| quality R                                        | 00                                                           | $15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $30^{\circ}$                                                         | 45°                                                                                                | 09 <sub>0</sub>                           | 75°                                                         | 90°                                  | K(N, C) pillar (III<br>105°       | 120° 101 0       | —<br>135°                                                                                 | $150^{\circ}$                                             | $165^{\circ}$                              | $180^{\circ}$                                         | ROT                                   |
| L-10                                             | 0.00347                                                      | 0.00346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00400                                                              | 0.00481                                                                                            | 0.00669                                   | 0.0128                                                      | 0.0398                               |                                   |                  |                                                                                           |                                                           |                                            |                                                       | 0.00742                               |
| L-20                                             | 0.000635                                                     | 0.000747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000641                                                             | 0.000740                                                                                           | 0.000773                                  | 0.000892                                                    | 0.00373                              | 0.0151                            | 0.0226           | 0.0268                                                                                    | 0.0325                                                    | 0.0320                                     | 0.0297                                                | 0.00147                               |
| L-30                                             | 0.000264                                                     | 0.000228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000249                                                             | 0.000229                                                                                           | 0.000216                                  | 0.000222                                                    | 0.000409                             | 0.00132                           | 0.00225          | 0.00282                                                                                   | 0.00309                                                   | 0.00324                                    | 0.00334                                               | 0.000495                              |
| L-35                                             | 0.000247                                                     | 0.000221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000232                                                             | 0.000222                                                                                           | 0.000208                                  | 0.000222                                                    | 0.000339                             | 0.000976                          | 0.00159          | 0.00195                                                                                   | 0.00209                                                   | 0.00221                                    | 0.00233                                               | 0.000460                              |
| N-10                                             | 0.0124                                                       | 0.0126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0144                                                               | 0.0175                                                                                             | 0.0242                                    | 0.0449                                                      | 0.116                                |                                   |                  |                                                                                           |                                                           |                                            |                                                       | 0.0248                                |
| N-15                                             | 0.00276                                                      | 0.00281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00299                                                              | 0.00315                                                                                            | 0.00421                                   | 0.00807                                                     | 0.0324                               | 0.112                             |                  |                                                                                           |                                                           |                                            |                                                       | 0.00659                               |
| N-20                                             | 0.00167                                                      | 0.00190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00171                                                              | 0.00188                                                                                            | 0.00212                                   | 0.00304                                                     | 0.0127                               | 0.0423                            | 0.0578           | 0.0636                                                                                    | 0.0633                                                    |                                            |                                                       | 0.00396                               |
| N-25                                             | 0.00116                                                      | 0.00125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00114                                                              | 0.00126                                                                                            | 0.00126                                   | 0.00132                                                     | 0.00452                              | 0.0154                            | 0.0216           | 0.0255                                                                                    | 0.0285                                                    | 0.0297                                     | 0.0301                                                | 0.00250                               |
| N-30                                             | 0.000719                                                     | 0.000658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000685                                                             | 0.000666                                                                                           | 0.000636                                  | 0.000631                                                    | 0.00144                              | 0.00488                           | 0.00775          | 0.00952                                                                                   | 0.0105                                                    | 0.0109                                     | 0.0112                                                | 0.00140                               |
| N-40                                             | 0.000297                                                     | 0.000284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00028                                                              | 0.000286                                                                                           | 0.000268                                  | 0.000289                                                    | 0.000414                             | 0.00108                           | 0.00168          | 0.00206                                                                                   | 0.00219                                                   | 0.00233                                    | 0.00249                                               | 0.000563                              |
| W-30                                             | 0.00147                                                      | 0.00144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00142                                                              | 0.00146                                                                                            | 0.00143                                   | 0.00143                                                     | 0.00403                              | 0.0135                            | 0.0194           | 0.0229                                                                                    | 0.0248                                                    | 0.0256                                     | 0.0259                                                | 0.00299                               |
| W-40                                             | 0.00107                                                      | 0.000978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00101                                                              | 0.000986                                                                                           | 0.000933                                  | 0.000967                                                    | 0.00175                              | 0.0051                            | 0.00770          | 0.00912                                                                                   | 0.00970                                                   | 0.0101                                     | 0.0104                                                | 0.00202                               |
| H-10                                             | 0.0324                                                       | 0.0332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0376                                                               | 0.0458                                                                                             | 0.0626                                    | 0.112                                                       | 0.255                                |                                   |                  |                                                                                           |                                                           |                                            |                                                       | 0.0604                                |
| H-20                                             | 0.00972                                                      | 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0106                                                               | 0.0118                                                                                             | 0.0154                                    | 0.0281                                                      | 0.105                                | 0.304                             | 0.328            | 0.335                                                                                     |                                                           |                                            |                                                       | 0.0225                                |
| H-30                                             | 0.00704                                                      | 0.00750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00714                                                              | 0.00765                                                                                            | 0.00848                                   | 0.0118                                                      | 0.0423                               | 0.105                             | 0.122            | 0.129                                                                                     | 0.132                                                     | 0.133                                      | 0.133                                                 | 0.0158                                |
| H-40                                             | 0.00392                                                      | 0.00389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00380                                                              | 0.00392                                                                                            | 0.00389                                   | 0.00427                                                     | 0.0119                               | 0.0326                            | 0.0419           | 0.0461                                                                                    | 0.0479                                                    | 0.0487                                     | 0.0493                                                | 0.00803                               |
| H-60                                             | 0.00124                                                      | 0.00123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00118                                                              | 0.00124                                                                                            | 0.00119                                   | 0.00127                                                     | 0.00194                              | 0.00479                           | 0.00685          | 0.00809                                                                                   | 0.00852                                                   | 0.00892                                    | 0.00935                                               | 0.00240                               |

| uncertainty fo<br>conversion cot<br>Radiation | r the corrections<br>efficient itself is a | $ k(\rho)-1 $ , of about the set $< 0.0005$ Sv | ut 5 %, this in tur<br>//Gy. | 'n resulting in an c | overall uncertaint<br> | y for the correction | on factors, $k(\rho)$ ,<br>$\frac{k(R;\alpha)_{\text{nillar}}}{k(R;\alpha)_{\text{nillar}}}$ | , of about 2 %.<br>, [m <sup>2</sup> kg <sup>-1</sup> ] fi | The paramete:<br>or $\alpha =$ | rs are given fo. | r those radiati | on qualities o | aly, for which | the       |
|-----------------------------------------------|--------------------------------------------|------------------------------------------------|------------------------------|----------------------|------------------------|----------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|------------------|-----------------|----------------|----------------|-----------|
| quality R                                     | 00                                         | $15^{\circ}$                                   | 30°                          | $45^{\circ}$         |                        | 75°                  | 90°                                                                                          | 105°                                                       | $120^{\circ}$                  | $135^{\circ}$    | $150^{\circ}$   | $165^{\circ}$  | $180^{\circ}$  | ROT       |
| L-10                                          | 0.00111                                    | 0.00108                                        | 0.00126                      | 0.00147              | 0.00205                | 0.00403              | 0.0154                                                                                       |                                                            |                                |                  |                 |                |                | 0.00253   |
| L-20                                          | 0.00118                                    | 0.00133                                        | 0.00121                      | 0.00135              | 0.00151                | 0.0021               | 0.00778                                                                                      | 0.0212                                                     | 0.0279                         | 0.0318           | 0.0377          | 0.0385         | 0.0372         | 0.00271   |
| L-30                                          | 0.000257                                   | 0.000222                                       | 0.000242                     | 0.000223             | 0.00021                | 0.000217             | 0.000397                                                                                     | 0.00128                                                    | 0.00218                        | 0.00271          | 0.00297         | 0.00312        | 0.00322        | 0.000482  |
| L-35                                          | 0.000242                                   | 0.000217                                       | 0.000227                     | 0.000218             | 0.000204               | 0.000218             | 0.000332                                                                                     | 0.000952                                                   | 0.00155                        | 0.0019           | 0.00204         | 0.00215        | 0.00227        | 0.000451  |
| N-10                                          | -0.000423                                  | -0.000533                                      | -0.000527                    | -0.000739            | -0.000925              | -0.000969            | 0.00969                                                                                      |                                                            |                                |                  |                 |                |                | 0.0000753 |
| N-15                                          | 0.00149                                    | 0.00155                                        | 0.00158                      | 0.0016               | 0.00208                | 0.00393              | 0.0171                                                                                       | 0.0644                                                     |                                |                  |                 |                |                | 0.00363   |
| N-20                                          | 0.00125                                    | 0.00144                                        | 0.00127                      | 0.00142              | 0.00155                | 0.00208              | 0.00872                                                                                      | 0.0309                                                     | 0.0436                         | 0.049            | 0.0521          |                |                | 0.00294   |
| N-25                                          | 0.000932                                   | 0.00099                                        | 0.000914                     | 0.001                | 0.000989               | 0.000973             | 0.00323                                                                                      | 0.012                                                      | 0.0176                         | 0.0212           | 0.0239          | 0.0251         | 0.0255         | 0.00198   |
| N-30                                          | 0.000716                                   | 0.000656                                       | 0.000683                     | 0.000663             | 0.000634               | 0.000631             | 0.00144                                                                                      | 0.00479                                                    | 0.00754                        | 0.00922          | 0.0101          | 0.0105         | 0.0108         | 0.00139   |
| N-40                                          | 0.000287                                   | 0.000276                                       | 0.000271                     | 0.000278             | 0.000261               | 0.000281             | 0.000401                                                                                     | 0.00104                                                    | 0.00162                        | 0.00199          | 0.00211         | 0.00224        | 0.0024         | 0.000546  |
| W-30                                          | 0.00133                                    | 0.0013                                         | 0.00129                      | 0.00132              | 0.00128                | 0.00127              | 0.00349                                                                                      | 0.0117                                                     | 0.0171                         | 0.0202           | 0.022           | 0.0227         | 0.0231         | 0.00269   |
| W-40                                          | 0.000933                                   | 0.00085                                        | 0.000881                     | 0.000857             | 0.000808               | 0.000841             | 0.00145                                                                                      | 0.00428                                                    | 0.00667                        | 0.008            | 0.00853         | 0.00891        | 0.00925        | 0.00177   |
| H-10                                          | -0.00737                                   | -0.00776                                       | -0.00852                     | -0.0104              | -0.0138                | -0.0222              | -0.0248                                                                                      |                                                            |                                |                  |                 |                |                | -0.0110   |
| H-20                                          | 0.00461                                    | 0.00502                                        | 0.00478                      | 0.00497              | 0.00601                | 0.0102               | 0.046                                                                                        | 0.133                                                      | 0.164                          | 0.172            |                 |                |                | 0.0114    |
| H-30                                          | 0.00366                                    | 0.0039                                         | 0.00361                      | 0.00385              | 0.00392                | 0.00441              | 0.0158                                                                                       | 0.0488                                                     | 0.0623                         | 0.0683           | 0.0715          | 0.0724         | 0.0728         | 0.00800   |
| H-40                                          | 0.00281                                    | 0.00273                                        | 0.0027                       | 0.00275              | 0.00264                | 0.00266              | 0.00679                                                                                      | 0.0215                                                     | 0.0296                         | 0.0333           | 0.035           | 0.0358         | 0.0363         | 0.00565   |
| 09-H                                          | 0.00115                                    | 0.00115                                        | 0.00109                      | 0.00116              | 0.0011                 | 0.00118              | 0.00177                                                                                      | 0.00436                                                    | 0.00628                        | 0.00745          | 0.00785         | 0.00824        | 0.00865        | 0.00223   |

IOP Publishing

| Radiation |           |              |              |           | $m(1.0~{ m m})$ | 1) for the quar | itity $d_{\mathrm{local skin }k}$ | $((R;\alpha)_{rod} [m^3)$ | kg <sup>-1</sup> for $\alpha$ = |               |               |               |               |          |
|-----------|-----------|--------------|--------------|-----------|-----------------|-----------------|-----------------------------------|---------------------------|---------------------------------|---------------|---------------|---------------|---------------|----------|
| quality R | 0°        | $15^{\circ}$ | $30^{\circ}$ | 45°       | 60°             | 75°             | °06                               | $105^{\circ}$             | $120^{\circ}$                   | $135^{\circ}$ | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ | ROT      |
| L-10      | 0.00363   | 0.00354      | 0.00421      | 0.00541   | 0.00855         | 0.0139          | 0.0202                            | 0.0318                    | 0.0655                          | 0.180         |               |               |               | 0.00891  |
| L-20      | 0.000484  | 0.000495     | 0.000574     | 0.000512  | 0.000697        | 0.00136         | 0.00265                           | 0.00472                   | 0.00790                         | 0.0114        | 0.0141        | 0.0158        | 0.0163        | 0.00267  |
| L-30      | 0.0000967 | 0.0000968    | 0.0000927    | 0.000078  | 0.0000959       | 0.000146        | 0.000238                          | 0.000385                  | 0.000600                        | 0.000824      | 0.000987      | 0.00109       | 0.00113       | 0.000339 |
| L-35      | 0.0000815 | 0.0000865    | 0.0000766    | 0.0000901 | 0.0000869       | 0.00012         | 0.000174                          | 0.000268                  | 0.000408                        | 0.000557      | 0.000668      | 0.000742      | 0.000769      | 0.00025  |
| N-10      | 0.0128    | 0.0130       | 0.0153       | 0.0196    | 0.0296          | 0.0434          | 0.0604                            | 0.0907                    | 0.174                           | 0.364         |               |               |               | 0.0278   |
| N-15      | 0.00295   | 0.00292      | 0.00292      | 0.00384   | 0.00598         | 0.0118          | 0.0202                            | 0.0341                    | 0.0624                          | 0.0968        | 0.113         | 0.119         | 0.123         | 0.0107   |
| N-20      | 0.00147   | 0.00151      | 0.00159      | 0.00168   | 0.00239         | 0.00478         | 0.00887                           | 0.0151                    | 0.0248                          | 0.0345        | 0.0406        | 0.0441        | 0.0454        | 0.00722  |
| N-25      | 0.000710  | 0.000708     | 0.000848     | 0.000722  | 0.000923        | 0.00169         | 0.00318                           | 0.00551                   | 0.00875                         | 0.0120        | 0.0141        | 0.0153        | 0.0157        | 0.00363  |
| N-30      | 0.000304  | 0.000299     | 0.000327     | 0.000299  | 0.000321        | 0.000521        | 0.000921                          | 0.00156                   | 0.00245                         | 0.00337       | 0.00401       | 0.00439       | 0.00453       | 0.00127  |
| N-40      | 0.0000941 | 0.000105     | 0.0000941    | 0.000112  | 0.000112        | 0.000144        | 0.000199                          | 0.000299                  | 0.000444                        | 0.000599      | 0.000715      | 0.000796      | 0.000822      | 0.000282 |
| W-30      | 0.000734  | 0.000726     | 0.000842     | 0.000729  | 0.000858        | 0.00149         | 0.00274                           | 0.00472                   | 0.00742                         | 0.0101        | 0.0119        | 0.0129        | 0.0133        | 0.00344  |
| W-40      | 0.000394  | 0.000407     | 0.000401     | 0.000418  | 0.000428        | 0.000633        | 0.00101                           | 0.00163                   | 0.00248                         | 0.00333       | 0.00392       | 0.00429       | 0.00441       | 0.00140  |
| H-10      | 0.0333    | 0.0346       | 0.0400       | 0.0507    | 0.0736          | 0.101           | 0.135                             | 0.196                     | 0.354                           |               |               |               |               | 0.0653   |
| H-20      | 0.00996   | 0.00988      | 0.0105       | 0.0132    | 0.0204          | 0.038           | 0.0639                            | 0.108                     | 0.194                           | 0.276         | 0.302         | 0.311         | 0.315         | 0.0357   |
| H-30      | 0.00541   | 0.00545      | 0.00586      | 0.00617   | 0.00867         | 0.0166          | 0.0294                            | 0.0481                    | 0.0736                          | 0.0931        | 0.102         | 0.106         | 0.107         | 0.0245   |
| H-40      | 0.00206   | 0.00207      | 0.00227      | 0.00216   | 0.00263         | 0.00462         | 0.00819                           | 0.0134                    | 0.0202                          | 0.0260        | 0.0295        | 0.0313        | 0.0319        | 0.00908  |
| H-60      | 0.000414  | 0.000452     | 0.00044      | 0.000488  | 0.000518        | 0.000672        | 0.000982                          | 0.00153                   | 0.00223                         | 0.00295       | 0.00345       | 0.00377       | 0.00388       | 0.00137  |



| Table C6b. Pa<br>the directly ca<br>uncertainty fo<br>conversion co | rameter $m_d$ for the local and local and $r$ the corrections efficient itself is a | ne simple approxi<br>sing equation (2)<br>, $ k(\rho)-1 $ , of abo<br>tt least < 0.0005 S | mation of $m(d_{air})$<br>for $m(1.0 \text{ m})$ and<br>out 5 %, this in tu<br>v/Gy. | ) given in equatior<br>1 m <sub>a</sub> is less or equi<br>rn resulting in an | 1 (2) for air densit<br>al to 1 % in the re<br>overall uncertain | ties from $\rho = 0$<br>gions mention<br>ty for the corre | ).96 kg m <sup>-3</sup> to<br>ted below for th<br>ection factors, <i>k</i> | $\rho = 1.32 \text{ kg m}$<br>he air density $\rho$<br>$f(\rho)$ , of about 2 | <ul> <li><sup>-3</sup> for d<sub>local skin</sub></li> <li>Inclusion of tl</li> <li>%. The param</li> </ul> | $_{K}(\mathbf{R};\alpha)_{\mathrm{rod}}$ . The<br>he uncertaintie<br>leters are given | : uncertainty of<br>s of the calcula<br>for those radia | the linear app<br>tions themselv<br>tion qualities c | oximations cor<br>s, leads to an o<br>nly, for which t | npared with<br>verall<br>he |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| Radiation                                                           |                                                                                     |                                                                                           |                                                                                      |                                                                               | $m_d$ for tl                                                     | ne quantity d                                             | $\log_{10} R(R;\alpha)$                                                    | ) <sub>rod</sub> [m <sup>2</sup> kg <sup>-1</sup>                             | ] for $\alpha =$                                                                                            |                                                                                       |                                                         |                                                      |                                                        |                             |
| quality R                                                           | 00                                                                                  | 15°                                                                                       | 30°                                                                                  | 45°                                                                           | $60^{\circ}$                                                     | 75°                                                       | °06                                                                        | $105^{\circ}$                                                                 | $120^{\circ}$                                                                                               | $135^{\circ}$                                                                         | $150^{\circ}$                                           | $165^{\circ}$                                        | $180^{\circ}$                                          | ROT                         |
| L-10                                                                | 0.00119                                                                             | 0.00109                                                                                   | 0.00130                                                                              | 0.00167                                                                       | 0.00275                                                          | 0.00504                                                   | 0.00775                                                                    | 0.0128                                                                        | 0.0280                                                                                                      | 0.0923                                                                                |                                                         |                                                      |                                                        | 0.00331                     |
| L-20                                                                | 0.00101                                                                             | 0.00102                                                                                   | 0.00111                                                                              | 0.00115                                                                       | 0.00163                                                          | 0.00314                                                   | 0.00556                                                                    | 0.00903                                                                       | 0.0137                                                                                                      | 0.0179                                                                                | 0.0204                                                  | 0.0218                                               | 0.0223                                                 | 0.00470                     |
| L-30                                                                | 0.0000941                                                                           | 0.0000943                                                                                 | 0.0000902                                                                            | 0.0000953                                                                     | 0.000034                                                         | 0.000142                                                  | 0.000231                                                                   | 0.000374                                                                      | 0.000582                                                                                                    | 0.000799                                                                              | 0.000956                                                | 0.00106                                              | 0.00109                                                | 0.000329                    |
| L-35                                                                | 0.0000797                                                                           | 0.0000848                                                                                 | 0.0000749                                                                            | 0.0000883                                                                     | 0.0000852                                                        | 0.000117                                                  | 0.00017                                                                    | 0.000261                                                                      | 0.000397                                                                                                    | 0.000542                                                                              | 0.000650                                                | 0.000723                                             | 0.000749                                               | 0.000244                    |
| N-10                                                                | -0.000350                                                                           | -0.000631                                                                                 | -0.000637                                                                            | -0.000765                                                                     | -0.000475                                                        | 0.00169                                                   | 0.00399                                                                    | 0.00864                                                                       | 0.0250                                                                                                      | 0.126                                                                                 |                                                         |                                                      |                                                        | 0.00105                     |
| N-15                                                                | 0.00157                                                                             | 0.00160                                                                                   | 0.00150                                                                              | 0.00198                                                                       | 0.00302                                                          | 0.00622                                                   | 0.0111                                                                     | 0.0191                                                                        | 0.0346                                                                                                      | 0.0534                                                                                | 0.0640                                                  | 0.0693                                               | 0.0721                                                 | 0.00637                     |
| N-20                                                                | 0.00105                                                                             | 0.00108                                                                                   | 0.00117                                                                              | 0.00117                                                                       | 0.00164                                                          | 0.00327                                                   | 0.00617                                                                    | 0.0106                                                                        | 0.0175                                                                                                      | 0.0246                                                                                | 0.0294                                                  | 0.0323                                               | 0.0333                                                 | 0.00538                     |
| N-25                                                                | 0.000531                                                                            | 0.000525                                                                                  | 0.000647                                                                             | 0.000525                                                                      | 0.000652                                                         | 0.00117                                                   | 0.00225                                                                    | 0.00399                                                                       | 0.00647                                                                                                     | 0.00906                                                                               | 0.0109                                                  | 0.0119                                               | 0.0123                                                 | 0.00277                     |
| N-30                                                                | 0.000304                                                                            | 0.000299                                                                                  | 0.000326                                                                             | 0.000300                                                                      | 0.000322                                                         | 0.000524                                                  | 0.000923                                                                   | 0.00156                                                                       | 0.00244                                                                                                     | 0.00333                                                                               | 0.00395                                                 | 0.00432                                              | 0.00445                                                | 0.00126                     |
| N-40                                                                | 0.0000909                                                                           | 0.000102                                                                                  | 0.0000912                                                                            | 0.000109                                                                      | 0.000109                                                         | 0.000139                                                  | 0.000191                                                                   | 0.000288                                                                      | 0.000427                                                                                                    | 0.000575                                                                              | 0.000687                                                | 0.000765                                             | 0.000791                                               | 0.000272                    |
| W-30                                                                | 0.000651                                                                            | 0.000642                                                                                  | 0.000743                                                                             | 0.000644                                                                      | 0.000748                                                         | 0.00128                                                   | 0.00236                                                                    | 0.00405                                                                       | 0.00637                                                                                                     | 0.00868                                                                               | 0.0102                                                  | 0.0111                                               | 0.0114                                                 | 0.00301                     |
| W-40                                                                | 0.000332                                                                            | 0.000345                                                                                  | 0.000332                                                                             | 0.000355                                                                      | 0.000357                                                         | 0.000516                                                  | 0.000808                                                                   | 0.00129                                                                       | 0.00198                                                                                                     | 0.00268                                                                               | 0.00319                                                 | 0.00351                                              | 0.00362                                                | 0.00114                     |
| H-10                                                                | -0.00744                                                                            | -0.00825                                                                                  | -0.00912                                                                             | -0.0112                                                                       | -0.0143                                                          | -0.0146                                                   | -0.0161                                                                    | -0.0177                                                                       | -0.0132                                                                                                     |                                                                                       |                                                         |                                                      |                                                        | -0.0100                     |
| H-20                                                                | 0.00451                                                                             | 0.00455                                                                                   | 0.00446                                                                              | 0.00532                                                                       | 0.00803                                                          | 0.0171                                                    | 0.0312                                                                     | 0.0529                                                                        | 0.0867                                                                                                      | 0.116                                                                                 | 0.131                                                   | 0.138                                                | 0.140                                                  | 0.0209                      |
| H-30                                                                | 0.00234                                                                             | 0.00238                                                                                   | 0.00265                                                                              | 0.00244                                                                       | 0.00315                                                          | 0.00599                                                   | 0.0113                                                                     | 0.0192                                                                        | 0.0299                                                                                                      | 0.0398                                                                                | 0.0458                                                  | 0.0489                                               | 0.0499                                                 | 0.0117                      |
| H-40                                                                | 0.00128                                                                             | 0.00129                                                                                   | 0.00143                                                                              | 0.00130                                                                       | 0.00147                                                          | 0.00246                                                   | 0.00447                                                                    | 0.00762                                                                       | 0.0119                                                                                                      | 0.0161                                                                                | 0.0188                                                  | 0.0203                                               | 0.0208                                                 | 0.00571                     |
| H-60                                                                | 0.000377                                                                            | 0.000414                                                                                  | 0.000401                                                                             | 0.000449                                                                      | 0.000475                                                         | 0.000608                                                  | 0.000876                                                                   | 0.00136                                                                       | 0.00199                                                                                                     | 0.00263                                                                               | 0.00309                                                 | 0.00339                                              | 0.00348                                                | 0.00123                     |

| Table C7a. Parameter <i>m</i> (1.0 1 with the directly calculated <i>v</i> :<br>uncertainty for the correction<br>conversion coefficient itself is | m) for the simple approxim<br>alues using equation (2) for<br>us, $ k(\rho) - 1 $ , of about 5 %,<br>at least < 0.0005 Sv/Gy. | nation of $m(d_{air})$ given in $\epsilon$<br>r $m(1.0 \text{ m})$ and $m_d$ is less c<br>this in turn resulting in an | squation (2) for air densiti<br>or equal to 1 % in the regic<br>t overall uncertainty for th | es from $\rho = 0.96$ kg m <sup>-3</sup><br>ans mentioned below for the correction factors, $k(\rho)$ , | $c_0 \rho = 1.32 \text{ kg m}^{-3} \text{ for } d_{le}$<br>ne air density $\rho$ . Inclusion<br>of about 2 %. The parame | $_{n_{s}sensk}(R;\alpha)$ . The uncertain<br>of the uncertainties of the<br>ters are given for those rad | nty of the linear approxim<br>calculations themselves, le<br>liation qualities only, for w | ations compared<br>ads to an overall<br>hich the |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|
| u                                                                                                                                                  |                                                                                                                               |                                                                                                                        | 10.1)                                                                                        | iii) ior uie quaitury a <sub>len</sub>                                                                  | sensk(n;a) [III ng ] I                                                                                                   | $\alpha = \alpha$                                                                                        |                                                                                            |                                                  |
| kadiation quality K                                                                                                                                | 00                                                                                                                            | $15^{\circ}$                                                                                                           | $30^{\circ}$                                                                                 | $45^{\circ}$                                                                                            | $60^{\circ}$                                                                                                             | 75°                                                                                                      | $^{\circ}06$                                                                               | ROT                                              |
| L-10                                                                                                                                               | 0.0912                                                                                                                        | 0.0913                                                                                                                 | 0.0912                                                                                       | 0.0917                                                                                                  | 0.0954                                                                                                                   | 0.103                                                                                                    | 0.115                                                                                      | 0.0937                                           |
| L-20                                                                                                                                               | 0.00479                                                                                                                       | 0.00485                                                                                                                | 0.00515                                                                                      | 0.00553                                                                                                 | 0.00591                                                                                                                  | 0.00681                                                                                                  | 0.00862                                                                                    | 0.00622                                          |
| L-30                                                                                                                                               | 0.000492                                                                                                                      | 0.000483                                                                                                               | 0.000515                                                                                     | 0.000566                                                                                                | 0.000573                                                                                                                 | 0.000624                                                                                                 | 0.000747                                                                                   | 0.000739                                         |
| L-35                                                                                                                                               | 0.000422                                                                                                                      | 0.000410                                                                                                               | 0.000456                                                                                     | 0.000467                                                                                                | 0.000468                                                                                                                 | 0.000513                                                                                                 | 0.000597                                                                                   | 0.000618                                         |
| N-10                                                                                                                                               | 0.243                                                                                                                         | 0.242                                                                                                                  | 0.241                                                                                        | 0.241                                                                                                   | 0.248                                                                                                                    | 0.263                                                                                                    | 0.286                                                                                      | 0.246                                            |
| N-15                                                                                                                                               | 0.0565                                                                                                                        | 0.0570                                                                                                                 | 0.0585                                                                                       | 0.0608                                                                                                  | 0.0646                                                                                                                   | 0.0714                                                                                                   | 0.082                                                                                      | 0.0623                                           |
| N-20                                                                                                                                               | 0.0176                                                                                                                        | 0.0178                                                                                                                 | 0.0185                                                                                       | 0.0197                                                                                                  | 0.0210                                                                                                                   | 0.0234                                                                                                   | 0.0282                                                                                     | 0.0211                                           |
| N-25                                                                                                                                               | 0.00535                                                                                                                       | 0.00553                                                                                                                | 0.00575                                                                                      | 0.00615                                                                                                 | 0.00672                                                                                                                  | 0.00753                                                                                                  | 0.00915                                                                                    | 0.00722                                          |
| N-30                                                                                                                                               | 0.00161                                                                                                                       | 0.00168                                                                                                                | 0.00170                                                                                      | 0.00188                                                                                                 | 0.00204                                                                                                                  | 0.00223                                                                                                  | 0.00269                                                                                    | 0.00244                                          |
| N-40                                                                                                                                               | 0.000492                                                                                                                      | 0.000502                                                                                                               | 0.000537                                                                                     | 0.000534                                                                                                | 0.000565                                                                                                                 | 0.000615                                                                                                 | 0.000689                                                                                   | 0.000727                                         |
| W-30                                                                                                                                               | 0.00461                                                                                                                       | 0.00479                                                                                                                | 0.00493                                                                                      | 0.00535                                                                                                 | 0.00584                                                                                                                  | 0.00649                                                                                                  | 0.00786                                                                                    | 0.00658                                          |
| W-40                                                                                                                                               | 0.00205                                                                                                                       | 0.00207                                                                                                                | 0.00218                                                                                      | 0.00231                                                                                                 | 0.00243                                                                                                                  | 0.00265                                                                                                  | 0.00309                                                                                    | 0.00301                                          |
| H-10                                                                                                                                               | 0.484                                                                                                                         | 0.483                                                                                                                  | 0.480                                                                                        | 0.479                                                                                                   | 0.489                                                                                                                    | 0.512                                                                                                    | 0.546                                                                                      | 0.487                                            |
| H-20                                                                                                                                               | 0.178                                                                                                                         | 0.179                                                                                                                  | 0.183                                                                                        | 0.189                                                                                                   | 0.199                                                                                                                    | 0.216                                                                                                    | 0.243                                                                                      | 0.194                                            |
| H-30                                                                                                                                               | 0.0577                                                                                                                        | 0.0584                                                                                                                 | 0.0600                                                                                       | 0.0628                                                                                                  | 0.0663                                                                                                                   | 0.0718                                                                                                   | 0.0813                                                                                     | 0.0672                                           |
| H-40                                                                                                                                               | 0.0144                                                                                                                        | 0.0147                                                                                                                 | 0.0152                                                                                       | 0.0162                                                                                                  | 0.0173                                                                                                                   | 0.0189                                                                                                   | 0.022                                                                                      | 0.0189                                           |
| H-60                                                                                                                                               | 0.00227                                                                                                                       | 0.00228                                                                                                                | 0.0024                                                                                       | 0.00250                                                                                                 | 0.00267                                                                                                                  | 0.00283                                                                                                  | 0.00315                                                                                    | 0.00331                                          |

|                     | at 1000 000 000 000 000 |          | m <sub>d</sub> fu | or the quantity d <sub>lens,sens</sub> | $_{K}(\mathrm{R};\alpha)$ [m <sup>2</sup> kg <sup>-1</sup> ] for $\alpha$ |          |          |          |
|---------------------|-------------------------|----------|-------------------|----------------------------------------|---------------------------------------------------------------------------|----------|----------|----------|
| Radiation quality R | 00                      | 15°      | 30°               | 45°                                    | 60°                                                                       | 75°      | °06      | ROT      |
| L-10                | 0.0375                  | 0.0377   | 0.0379            | 0.0385                                 | 0.0406                                                                    | 0.0447   | 0.0514   | 0.0392   |
| L-20                | 0.0104                  | 0.0105   | 0.0108            | 0.0113                                 | 0.0119                                                                    | 0.0130   | 0.0150   | 0.0121   |
| L-30                | 0.000479                | 0.000470 | 0.000502          | 0.000551                               | 0.000557                                                                  | 0.000606 | 0.000726 | 0.000718 |
| L-35                | 0.000413                | 0.000401 | 0.000446          | 0.000457                               | 0.000458                                                                  | 0.000502 | 0.000583 | 0.000604 |
| N-10                | 0.0358                  | 0.0361   | 0.0365            | 0.0372                                 | 0.0401                                                                    | 0.0458   | 0.0549   | 0.0383   |
| N-15                | 0.0286                  | 0.0290   | 0.0300            | 0.0315                                 | 0.0339                                                                    | 0.0379   | 0.0447   | 0.0326   |
| N-20                | 0.0118                  | 0.0119   | 0.0125            | 0.0133                                 | 0.0142                                                                    | 0.0160   | 0.0196   | 0.0145   |
| N-25                | 0.00368                 | 0.00384  | 0.00400           | 0.00431                                | 0.00478                                                                   | 0.00540  | 0.00669  | 0.00524  |
| N-30                | 0.00162                 | 0.00168  | 0.00171           | 0.00189                                | 0.00204                                                                   | 0.00223  | 0.00268  | 0.00243  |
| N-40                | 0.000476                | 0.000486 | 0.000519          | 0.000516                               | 0.000547                                                                  | 0.000596 | 0.000665 | 0.000704 |
| W-30                | 0.00396                 | 0.00412  | 0.00423           | 0.0046                                 | 0.00503                                                                   | 0.00558  | 0.00675  | 0.00571  |
| W-40                | 0.00170                 | 0.00172  | 0.00182           | 0.00191                                | 0.00201                                                                   | 0.00219  | 0.00255  | 0.00254  |
| H-10                | -0.00937                | -0.00891 | -0.00818          | -0.00732                               | -0.00403                                                                  | 0.00266  | 0.0134   | -0.00606 |
| H-20                | 0.0690                  | 0.0696   | 0.0718            | 0.0753                                 | 0.0798                                                                    | 0.0875   | 0.101    | 0.0785   |
| H-30                | 0.0196                  | 0.0201   | 0.0209            | 0.0224                                 | 0.0242                                                                    | 0.0270   | 0.0324   | 0.0254   |
| H-40                | 0.00785                 | 0.00807  | 0.00843           | 0.00908                                | 0.00981                                                                   | 0.0109   | 0.0131   | 0.0113   |
| H-60                | 0.00208                 | 0.00208  | 0.00219           | 0.00229                                | 0.00244                                                                   | 0.00258  | 0.00287  | 0.00304  |

# **ORCID iD**

Rolf Behrens Dhttps://orcid.org/0000-0002-4905-7791

# References

- International Commission on Radiation Units and Measurements (ICRU 1998) Conversion coefficients for use in radiological protection against external radiation J. ICRU os29 ICRU Report 57
- [2] International Commission on Radiation Units and Measurements (ICRU) Report Committee 26 on Operational Radiation Protection Quantities for External Radiation (available at: https://icru.org/home/uncategorised/report-committee-26)
- [3] International Commission on Radiation Units and Measurements (ICRU) and International Commission on Radiological Protection (ICRP) Draft for consultation on Operational Quantities for External Radiation Exposure (available at: www.icrp.org/page.asp?id=355)
- [4] Otto T, Hertel N E, Bartlett D T, Behrens R, Bordy J M, Dietze G, Endo A, Gualdrini G and Pelliccioni M 2018 The ICRU proposal for new operational quantities for external radiation *Radiat. Prot. Dosim.* 180 10
- [5] International Commission on Radiation Units and Measurements (ICRU 2020) Operational Quantities for External Radiation Exposure J. ICRU 20(1) ICRU Report 95 (Sage Publishing, Thousand Oaks, CA)
- [6] International Organization for Standardization (ISO) 2019 X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. Part 1: radiation characteristics and production method ISO 4037–1 (Geneva)
- [7] International Organization for Standardization (ISO) 2019 X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. Part 2: dosimetry for radiation protection over the energy ranges 8 keV to 1.3 MeV and 4 MeV to 9 MeV ISO 4037–2 (Geneva)
- [8] International Organization for Standardization (ISO) 2019 X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. Part 3: calibration of area and personal dosemeters and the measurement of their response as a function of energy and angle of incidence ISO 4037–3 (Geneva)
- [9] International Organization for Standardization (ISO) 2019 X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy—part 4: calibration of area and personal dosemeters in low energy x reference radiation fields ISO 4037–4 (Geneva)
- [10] International Electrotechnical Commission (IEC) 2005 Medical diagnostic X-ray equipment—radiation conditions for use in the determination of characteristics IEC 61267 (Geneva)
- [11] Behrens R 2017 Conversion coefficients for H'(3; Ω) for photons J. Radiol. Prot. 37 354–78
- [12] Behrens R 1999 The influence of the air density on the spectral properties of X-ray radiation qualities with mean energies from 6 keV to 90 keV Rad. Prot. Dosim. 86 123–8
- [13] International Commission on Radiation Units and Measurements (ICRU) 2016 Key Data for Ionizing Radiation Dosimetry: Measurement Standards and Applications J. ICRU 14 ICRU Report 90
- [14] Seltzer S M 1993 Calculation of photon mass energy-transfer and mass energy-absorption coefficients Radiat. Res. 136 147-70
- [15] Hubbel J H and Seltzer S M 1995 Tables of x-ray mass attenuation coefficients and mass energy absorption coefficients 1 keV to 20 MeV for elements Z = 1-92 and 48 additional substances of dosimetric interest Report NISTIR 5632
- [16] Seltzer S M Private communication (2017)
- [17] Ankerhold U Catalogue of x-ray spectra and their characteristic data-ISO and DIN radiation qualities, therapy and diagnostic radiation qualities, unfiltered x-ray spectra Report PTB-Dos-34 ISBN 3-89701-513-7 (2000) Download of the spectra at (www.ptb.de/en/org/6/63/f\_u\_e/dos34spc.zip)
- [18] Ankerhold U 2006 X reference radiation qualities produced with tube voltages above 300 kV for the calibration and testing of dosemeters *Rad. Prot. Dos.* 123 137–42 The spectra were obtained from the author
- [19] Kawrakow I and Rogers D W O The EGSnrc code system: Monte Carlo simulation of electron and photon transport NRCC Report PIRS-701 (2006) Available at (https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf)
- [20] Behrens R and Röttger S 2008 Characterization of three high-energy photon and fast neutron reference radiation fields *Rad. Prot. Dosim.* The spectra were obtained from the author 132 283–96
- [21] List of radiation qualities used at PTB available at PTB's website (www.ptb.de/cms/en/ptb/fachabteilungen/ abt6/fb-62/625-dosimetry-for-diagnostic-radiology/radiation-qualities.html) The spectra were supplied by L. Büermann, PTB, private communication
- [22] Otto T 2019 Conversion coefficients from kerma to ambient dose and personal dose for X-ray spectra J. Instrum. 14 P11011
- [23] International Electrotechnical Commission (IEC) 2020 Radiation protection instrumentation—dosimetry systems with integrating passive detectors for individual, workplace and environmental monitoring of photon and beta radiation IEC 62387 (Geneva)
- [24] International Electrotechnical Commission (IEC) 2010 Radiation protection instrumentation—measurement of personal dose equivalents  $H_p(10)$  and  $H_p(0,07)$  for X, gamma, neutron and beta radiations—direct reading personal dose equivalent meters IEC 61526 (Geneva)