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Objective: The occurrence and development of oesophageal neoplasia (ON) is

closely related to hormone changes. The aim of this study was to investigate the

causal relationships between age at menarche (AAMA) or age at menopause

(AAMO) and benign oesophageal neoplasia (BON) or malignant oesophageal

neoplasia (MON) from a genetic perspective.

Methods: Genome-wide association study (GWAS) summary data of exposures

(AAMA and AAMO) and outcomes (BON and MON) were obtained from the IEU

OpenGWAS database. We performed a two-sample Mendelian randomization

(MR) study between them. The inverse variance weighted (IVW) was used as the

main analysis method, while the MR Egger, weighted median, simple mode, and

weighted mode were supplementary methods. The maximum likelihood,

penalized weighted median, and IVW (fixed effects) were validation methods.

We used Cochran’s Q statistic and Rucker’s Q statistic to detect heterogeneity.

The intercept test of the MR Egger and global test of MR pleiotropy residual sum

and outlier (MR-PRESSO) were used to detect horizontal pleiotropy, and the

distortion test of the MR-PRESSO analysis was used to detect outliers. The leave-

one-out analysis was used to detect whether the MR analysis was affected by

single nucleotide polymorphisms (SNPs). In addition, the MR robust adjusted

profile score (MR-RAPS) method was used to assess the robustness of

MR analysis.

Results: The random-effects IVW results showed that AAMA had a negative

genetic causal relationship with BON (odds ratio [OR] = 0.285 [95% confidence

interval [CI]: 0.130-0.623], P = 0.002). The weighted median, maximum

likelihood, penalized weighted median, and IVW (fixed effects) were

consistent with random-effects IVW (P < 0.05). The MR Egger, simple mode

and weighted mode results showed that AAMA had no genetic causal

relationship with BON (P > 0.05). However, there were no causal genetic

relationships between AAMA and MON (OR = 1.132 [95%CI: 0.621-2.063], P =
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0.685), AAMO and BON (OR = 0.989 [95%CI: 0.755-1.296], P = 0.935), or AAMO

and MON (OR = 1.129 [95%CI: 0.938-1.359], P = 0.200). The MR Egger,

weighted median, simple mode, weighted mode, maximum likelihood,

penalized weighted median, and IVW (fixed effects) were consistent with a

random-effects IVW (P > 0.05). MR analysis results showed no heterogeneity,

the horizontal pleiotropy and outliers (P > 0.05). They were not driven by a

single SNP, and were normally distributed (P > 0.05).

Conclusion:Only AAMA has a negative genetic causal relationship with BON, and

no genetic causal relationships exist between AAMA and MON, AAMO and BON,

or AAMO andMON. However, it cannot be ruled out that they are related at other

levels besides genetics.
KEYWORDS
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1 Introduction

Oesophageal neoplasia (ON) is a major health problem

worldwide, and its incidence rate is rising rapidly (1, 2). ON can

be divided into benign oesophageal neoplasia (BON) and malignant

oesophageal neoplasia (MON). About 80% of ON is malignant (3).

MON is a common cause of cancer mortality, especially squamous

cell carcinoma and adenocarcinoma (3). BON, while uncommon,

can cause sudden death with difficulty swallowing (4). Surgery,

chemotherapy, radiotherapy, molecular targeted therapy, and their

combinations are currently available treatment options for ON (2,

5). However, the prognosis of MON is still quite dismal, despite

therapeutic advances (6), and it continues to pose a severe threat to

human health (7, 8).

According to their location on the esophageal wall, BONs can

be divided into intramural neoplasms and luminal neoplasms.

Luminal neoplasms account for nearly one third of BONs (9).

Esophageal leiomyoma is one of the most common BONs,

accounting for more than 50%. Compared with cancer, most

patients with fibroids have no symptoms, and the most common

form imaged is an intramural submucosal mass located in the

middle and lower part of the esophagus, with smooth muscle

arrangement in part of the esophagus (10). A variety of BONs

may require esophagectomy, including esophageal leiomyomas,

gastrointestinal stromal tumors, schwannomas, granular cell

tumors, inflammatory pseudotumors, hemangioma, adenoma,

fibrovascular polyp, and extraesophageal tumors that invade or

constrict the esophagus. Among them, leiomyoma is the most

common BON requiring esophagectomy, and occurs in about

10% of cases (9).

MON is one of the most common cancers in the world, ranking

seventh in incidence (11, 12). Risk factors include smoking, alcohol

consumption, low fruit intake and high body mass index, and it is

becoming a major disease burden worldwide (12). MONs are

mainly divided into esophageal squamous cell carcinoma (ESCC)
02
and esophageal adenocarcinoma (EAC) (6). Barrett’s esophagus is a

precancerous lesion that can progress to EAC (13). EAC is most

commonly found in developed countries (such as Europe and the

United States), whereas ESCC mainly occurs in developing

countries, including Africa and East Asia, especially in China

(14). In recent decades, due to advances in multidisciplinary

diagnosis and treatment, the overall survival rate of MON has

been greatly improved, but the effect is still unsatisfactory (11, 15).

Therefore, it is imperative to continue to search for risk factors

of MON.

Age at menarche (AAMA) and age at menopause (AAMO)

have been shown to be risk factors for a variety of diseases. A

younger AAMA and later AAMO are strongly associated with

increased risk of breast cancer and endometrial cancer,

respectively (16, 17). Studies found that later AAMA is linked

with reduced risk of coronary artery disease and higher risk of

chronic kidney disease (18, 19). Moreover, later AAMO is

associated with an increased risk of cardiovascular disease (18,

20), as well as an increased risk of lung cancer (21). More

importantly, hormone therapy during menopause has been

shown to reduce the risk of EAC in women (22). A prior study

found that reproductive factors are associated with ON risk (23). A

clinical reproductive prognosis model with AAMO has good

prognostic value in predicting the overall survival of female

Chinese ESCC patients (24), and AAMO and hormone

replacement therapy have been shown to be risk factors for ESCC

(25). However, the correlation between AAMA, AAMO and ON is

not clear. Thus, there is a strong need to investigate the correlation

between AAMA, AAMO and ON.

According to Mendelian laws of heredity, germline genetic

information is randomly fixed at conception, and Mendelian

randomization (MR) methods use genetic variations, such as

single nucleotide polymorphisms (SNPs), as instrumental

variables to assess genetic causality between traits and diseases or

between diseases (26). MR analysis is not affected by confounding
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factors and reverse causality of traditional epidemiological methods,

such as retrospective studies, and has been widely used (27). MR

analysis has previously been used to find a genetic causal

relationship between AAMA and osteoporosis (28), and a meta-

analysis and MR study has found a causal association between

AAMA and epithelial ovarian cancer risk (29). In addition, another

MR study found a causal association between AAMA, AAMO and

risk of colorectal cancer (30). Here, we examine the genetic causal

relationship between AAMA and AAMO, and outcome (BON and

MON) at the genetic level through the MR analysis.
2 Materials and methods

2.1 Study design

This study was based on a genome-wide association study

(GWAS) summary data of exposures (AAMA and AAMO) and

outcomes (BON and MON), and selected eligible SNPs as

instrumental variables for MR analysis to investigate the genetic

causal relationship between them. This study strictly followed the

three assumptions of MR analysis: 1) the selected instrumental

variables were strongly correlated with exposures (P < 5×10-8 and F

statistic > 10); 2) The selected instrumental variables were not

associated with any confounders that affected the association

between exposures and outcomes; 3) the selected instrumental

variables affected the outcome only through exposure, but not

through other pathways. All datasets used in this study are

publicly available. Ethical permission and written informed

consent had been provided in the initial studies. Details of the

data used in this study are shown in Supplementary Table 1.
2.2 GWAS summary data of AAMA
and AAMO

GWAS summary data of AAMA and AAMO were obtained

from the IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/).

GWAS summary data of AAMA comprised 182,416 female samples

and 2,441,816 SNPs, while data of AAMO comprised 69,360 female

samples and 2,418,696 SNPs. All samples were of European descent

and informed consent was provided (31, 32). In short, the studies

were asked to use the full imputed set of HapMap Phase 2

autosomal SNPs, and to run an additive model including top

principal components and study specific covariates. In some

cases, studies submitted data using 1000 genomes–based

imputation. Cases without SNPs in the HapMap 2 set were

removed. Once data was submitted, each study was quality

controlled centrally according to standard quality control

protocols independently by two analysts. SNPs were filtered out if

the minor allele frequency (MAF) was less than 1%, or if the

imputation quality metrics were low (imputation quality < 0.4).

Studies and SNPs passing quality control were combined using an

inverse-variance weighted meta-analysis, implemented using

METAL (33). The PLINK clumping commands were used to
Frontiers in Endocrinology 03
identify the most significant SNPs in associated regions, using

only those SNPs that had data from more than 50% of the studies

(34). SNPs were considered as having genome-wide significance

only if P < 5×10−8. Detailed information of the data can be found in

a previous study (31, 32).
2.3 GWAS summary data of BON and MON

GWAS summary data for BON and MON was obtained from

the IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/). GWAS

summary data for BON was comprised of 144 cases and 218,648

controls (males and females) and contained 16,380,466 SNPs,

whereas data for MON was comprised of 232 cases and 218,560

controls (males and females) and contained 16,380,466 SNPs. All

participants were of European descent and provided informed

consent. GWAS summary data for BON and MON were

produced by the FinnGen consortium. The FinnGen research

project is a public-private partnership that integrates disease

endpoint genetic data provided by the Finnish Biobank and the

Finnish Health Registry (35). The FinnGen research project aims to

identify genotype-phenotype correlations in the Finnish

population. All cases were defined using the M13 code in the

International Classification of Diseases-Tenth Revision (ICD-10).

These individuals were genotyped using Illumina (Illumina Inc, San

Diego) and Affymetrix chip arrays (Thermo Fisher Scientific, Santa

Clara, CA, USA). Detailed information on the participants,

genotyping, imputation, and quality control can be found on the

FinnGen website (https://finngen.gitbook.io/documentation/).
2.4 Selection of instrumental variables

In order to ensure the robustness of MR analysis results, we

screened qualified SNPs as instrumental variables through a series of

strict quality controls, and performed MR analysis of exposures and

outcomes. First, we obtained SNPs associated with exposures (P <

5×10-8). Second, since strong linkage disequilibrium among the

selected SNPs could lead to biased results, the clumping process (r2

< 0.001, clumping distance = 10,000 kb) was carried out to eliminate

the linkage disequilibrium between the included instrumental

variables (35). Third, those SNPs associated with outcomes (P <

5×10-8) were not included in the instrumental variables.

Fourth, we applied the PhenoScanner database (http://

www.phenoscanner.medschl.cam.ac.uk/phenoscanner) to delete

SNPs that were associated with confounding factors (36). From

previous literature and studies, we found that the main risk factors

for outcomes were smoking, alcohol and obesity (37, 38). Fifth, to

satisfy the strong association with exposure, we selected SNPs with an

F statistic > 10 as instrumental variables. F statistics were calculated

using the formula: F=R2(N-K-1)/K(1-R2). R2 was calculated using the

formula: R2 = 2×MAF×(1-MAF) Beta2 (39). Sixth, palindromic SNPs

with intermediate allele frequencies were excluded to guarantee that

the impact of SNPs on exposures corresponded to the same allele as

that providing the effect on outcomes (40).
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2.5 Statistical analysis

The TwoSampleMR and MRPRESSO packages of R (version

4.1.2) were used to perform two-sample MR analyses of exposures

(AAMA and AAMO) and outcomes (BON and MON). The

random-effects inverse variance weighted (IVW) was used as the

main analytical method, while MR Egger, weighted median, simple

mode, and weighted mode were used as supplementary methods.

Our MR analysis results followed the results of the random-effects

IVW (40–42). The random-effects IVW allowed for each SNP to

have different mean effects (43). The IVW method uses a meta-

analysis approach to combine the Wald ratio estimates of the causal

effect obtained from different SNPs, and provides a consistent

estimate of the causal effect of the exposures on the outcomes

when each genetic variant satisfies the assumptions of an

instrumental variable (44). The MR Egger method is able to

assess whether genetic variants have pleiotropic effects on the

outcomes (45). Weighted median analysis serves as an important

method of estimating the causal effect if over 50% of SNPs meet the

“no horizontal pleiotropy” assumption (46). The simple mode is a

model-based estimation method that provides the robustness for

pleiotropy (47). The weighted mode is sensitive to the difficult

bandwidth selection for mode estimation (48).

The Cochran’s Q statistic of the MR-IVW method, and

Rucker’s Q statistic of the MR Egger method were used to

determine the heterogeneity of MR analysis, where P > 0.05

indicates no heterogeneity (49). The intercept test of MR Egger

and global test of MR pleiotropy residual sum and outlier (MR-

PRESSO) were used to detect horizontal pleiotropy, where P > 0.05

indicates no horizontal pleiotropy (36). The distortion test of MR-

PRESSO analysis was used to detect whether the MR analysis results

were affected by outliers (50). If there were outliers, a second round

of MR analysis was performed after the outliers were removed.

Leave-one-out analysis was used to investigate whether the genetic

causal relationship between exposures and outcomes was influenced

by a single SNP (44). If the MR analysis results were affected by a

single SNP, in order to prevent the occurrence of false positives or

false negatives to the greatest extent, we carried out a second round

of genetic assessment after deleting the single SNP that affected the

MR analysis results. Moreover, the MR robust adjusted profile score

(MR-RAPS) method was used to validate the robustness of the MR

analysis (26). A P > 0.05 indicated that it conformed to the normal

distribution and the evaluation results had strong robustness.

Finally, the maximum likelihood, penalized weighted median, and

IVW (fixed effects) were used as validation methods for the genetic

causal relationship between exposures and outcomes.
3 Results

3.1 Selection of instrumental variables

Through screening for SNPs associated with exposures (P <

5×10-8) and removing the linkage disequilibrium, AAMA and

AAMO yielded 68 and 42 SNPs, respectively. We further identified

68 SNPs shared by AAMA and BON, and found that there were no
Frontiers in Endocrinology 04
SNPs associated with BON. After excluding seven SNPs associated

with confounding factors, we used the remaining 61 SNPs as

instrumental variables (F statistic >10), in which there were seven

palindromic SNPs: rs9373571, rs4801589, rs4242496, rs2836950,

rs1874984, rs1518080 and rs11756454 (Supplementary Table 2).

Similarly, we identified 68 SNPs shared by AAMA and MON, and

found that there were no SNPs associated with MON, except for

seven SNPs associated with confounding factors, 61 SNPs were used

as instrumental variables (F statistic >10), and there were seven

palindromic SNPs: rs9373571, rs4801589, rs4242496, rs2836950,

rs1874984, rs1518080 and rs11756454 (Supplementary Table 3).

We also analyzed 41 SNPs shared by AAMO and BON, and

found that there were no SNPs associated with BON. Except for two

SNPs associated with confounding factors, the remaining 39 SNPs

were used as instrumental variables (F statistic >10), and there were

three palindromic SNPs: rs1054875, rs12599106 and rs2236918

(Supplementary Table 4). We further identified 41 SNPs shared

by AAMO and MON, and found that there were no SNPs

associated with MON. After excluding two SNPs associated with

confounding factors, we used the remaining 39 SNPs as

instrumental variables (F statistic >10), and there were three

palindromic SNPs: rs1054875, rs12599106 and rs2236918

(Supplementary Table 5).

Because the effect of palindromic SNPs on exposure may not

correspond to the alleles that influence outcomes, the palindromic

SNPs were excluded from the MR analysis. Ultimately, 54 SNPs

were used in the AAMA MR analysis and 36 SNPs in the AAMO

MR analysis.
3.2 MR analysis of AAMA, AAMO and BON

The random-effects IVW results showed that AAMA had no

genetic causal relationship with BON (odds ratio [OR] = 0.457 [95%

confidence interval [CI]: 0.195-1.071], P = 0.072) (Supplementary

Figures 1A, B). The Cochran’s Q statistic of the MR-IVW method

(P = 0.090), and Rucker’s Q statistic of the MR Egger method (P =

0.081) showed that the MR analysis of AAMA and BON had no

heterogeneity. The intercept test of MR Egger (P = 0.538) and global

test of MR-PRESSO (P = 0.090) showed that the MR analysis of

AAMA and BON had no horizontal pleiotropy. The distortion test

of MR-PRESSO analysis showed that the MR analysis of AAMA

and BON had no outliers. However, “leave-one-out” analysis

indicated that the MR analysis of AAMA and BON was driven by

a single SNP (five SNPs) (Supplementary Figure 1B). We performed

a preliminary MR analysis of AAMA and BON using 54 SNPs. As a

result of the leave-one-out analysis, a second round of MR analysis

was performed after five SNPs were removed. A follow-up analysis

was conducted for the remaining 49 SNPs. The second round of

random-effects IVW results showed that AAMA had a negative

genetic causal relationship with BON (OR = 0.285 [95%CI: 0.130-

0.623], P = 0.002) (Figures 1, 2A). The analysis results of weighted

median were consistent with random-effects IVW, and MR Egger,

simple mode, and weighted mode showed that AAMA had no

genetic causal relationship with BON (Figure 1). There was no

heterogeneity and horizontal pleiotropy (P > 0.05), and there were
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FIGURE 2

MR analysis scatter plot. Different colored lines in the figure represent the results of the different MR analysis methods. Oblique upward indicates positive
causality, oblique downward indicates negative causality. (A) age at menarche and benign oesophageal neoplasia; (B) age at menopause and benign
oesophageal neoplasia; (C) age at menarche and malignant oesophageal neoplasia; (D) age at menopause and malignant oesophageal neoplasia.
FIGURE 1

MR analysis of exposures (age at menarche and age at menopause) and outcomes (benign oesophageal neoplasia and malignant oesophageal
neoplasia). Five methods: random-effects IVW, MR Egger, weighted median, simple mode, and weighted mode. Our MR analysis follows the results
of random-effects IVW. The blue vertical line represents OR = 1. The green square is the OR value of the MR analysis result. The black line segment
is the OR 95% confidence interval.
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no outliers (Table 1). The leave-one-out analysis indicated that the

MR analysis of AAMA and BON was not driven by a single SNP

(Figure 3A), and the MR-RAPS analysis showed that the MR

analysis between AAMA and BON was normally distributed (P >

0.05) (Table 1; Figure 4A).

The random-effects IVW results showed that AAMO had no

genetic causal relationship with BON (OR = 0.989 [95%CI: 0.755-

1.296], P = 0.935) (Figures 1, 2B). The MR analysis results of the MR

Egger, weighted median, simple mode and weighted mode were

consistent with random-effects IVW (Figure 1). The Cochran’s Q

statistic of the MR-IVW method and Rucker’s Q statistic of the MR

Egger method showed that the MR analysis of AAMO and BON

had no heterogeneity (P > 0.05). The intercept test of MR Egger and

global test of MR-PRESSO showed that the MR analysis of AAMO

and BON had no horizontal pleiotropy (P > 0.05). The distortion

test of MR-PRESSO analysis showed that the MR analysis of

AAMO and BON had no outliers (Table 1). The leave-one-out

analysis indicated that the MR analysis of AAMO and BON were

not driven by a single SNP (Figure 3B), and the MR-RAPS analysis

showed that the MR analysis between AAMO and BON was

normally distributed (P > 0.05) (Table 1; Figure 4B). At the

validation stage, maximum likelihood, penalized weighted

median, and IVW (fixed effects) results showed that AAMA had

a negative genetic causal relationship with BON (P < 0.05), while

AAMO had no genetic causal relationship with BON (P >

0.05) (Figure 5).
3.3 MR analysis of AAMA, AAMO and MON

The random-effects IVW results showed that both AAMA

(OR = 1.132 [95%CI: 0.621-2.063], P = 0.685) and AAMO

(OR = 1.129 [95%CI: 0.938-1.359], P = 0.200) had no genetic

causal relationship with MON. The results of MR Egger, weighted

median, simple mode, and weighted mode were consistent with

random-effects IVW (Figures 1, 2C, D). The Cochran’s Q statistic

of the MR-IVW method, and Rucker’s Q statistic of the MR Egger

method, showed that the MR analysis of AAMA, AAMO and

MON had no heterogeneity (P > 0.05). The intercept test of MR

Egger and the global test of MR-PRESSO showed that the MR

analysis of AAMA, AAMO and MON had no horizontal

pleiotropy (P > 0.05). The distortion test of MR-PRESSO
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analysis showed that the MR analysis of AAMA, AAMO and

MON had no outliers (Table 1). Leave-one-out analysis indicated

that the MR analysis of AAMA, AAMO and MON were not driven

by a single SNP (Figures 3C, D). MR-RAPS analysis showed that

the MR analysis of AAMA, AAMO and MON were normally

distributed (P > 0.05) (Table 1; Figures 4C, D). At the validation

stage, maximum likelihood, penalized weighted median, and IVW

(fixed effects) results showed that AAMA and AAMO had no

genetic causal relationship with MON (P > 0.05) (Figure 5).
4 Discussion

We explored the genetic causality between exposures (AAMA

and AAMO) and outcomes (BON and MON) by MR analysis based

on GWAS summary data. We show that AAMA has a negative

genetic causal relationship with BON, and that there is no genetic

causal relationship between AAMA and MON, AAMO and BON, or

AAMO and MON. However, this does not rule out correlations

between them at other, non-genetic levels. Earlier AAMA has been

reported to be associated with increased levels of several sex

hormones, such as estrogen (51, 52). One study found that women

with higher levels of free testosterone have a lower risk of ESCC and

colorectal cancer (53). There have also been studies that link higher

luteinizing hormone to a lower risk of ON in women (54). In a large

number of previous studies, when discussing the relationship between

AAMA and ON, it is basically because AAMA is closely related to sex

hormones, and thus impacts ON through hormones.

Studies have found that estrogen can participate in the

regulation of adipose tissue metabolism (55), and visceral fat is

associated with imbalances in certain metabolic compounds and

fat-related hormones (56, 57). Leptin is an adipokine closely related

to body mass index, which can regulate food intake and energy

consumption, and obese people often show hyperleptinemia due to

leptin resistance (58). Moreover, obesity is an important part of the

pathogenesis of ON (59, 60). We considered that the close

correlation between AAMA and ON in previous studies may

occur through AAMA-triggered changes related to sex hormones

to affect the regulation of human obesity, ultimately impacting ON.

A case-control study found that elevated blood leptin levels are

strongly associated with an increased risk of Barrett’s esophagus

(61). Moreover, studies have shown that leptin can directly induce
TABLE 1 Sensitivity analysis of the MR analysis results of exposures and outcomes.

Exposure Outcome Heterogeneity Test Pleiotropy test MR-PRESSO MR-RAPS

Cochran’s Q Test
(P value)

Rucker’s Q Test
(P value)

Egger Intercept
(P value)

Distortion
Test

Global
Test

Normal Distribution

IVW MR-Egger MR-Egger Outliers P value P value

AAMA
BON

0.571 0.530 0.998 NA 0.543 0.679

AAMO 0.090 0.073 0.882 NA 0.109 0.768

AAMA
MON

0.626 0.651 0.213 NA 0.518 0.416

AAMO 0.642 0.626 0.435 NA 0.521 0.273
MR, mendelian randomization; AAMA, age at menarche; AAMO, age at menopause; BON, benign oesophageal neoplasia; MON, malignant oesophageal neoplasia.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1113765
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Su et al. 10.3389/fendo.2023.1113765
the proliferation of a variety of human cells, including EC cells (62).

In contrast, another study has indicated that ON has no clear

association with most of the sex hormones, including sex hormone-

binding globulin, dehydroepiandrosterone sulfate, testosterone,

dihydrotestosterone, estradiol, progesterone, or free androgen

(54). Therefore, still remains concerning the relationship between

AAMA-related hormone changes and ON, our results might

provide new evidence and ideas for these debates. Our results

show that AAMA has a causal relationship with BON at the

genetic level, but no causal relationship with MON. This

conclusion does not conflict with the results of previous studies.

It has been reported that earlier AAMO is a risk factor for ESCC

(25). In addition, a large data survey study also found that the risk of

ON and gastric cancer could be related to the status of AAMO. In

this study, it is noted that postmenopausal women have a higher

risk of esophageal and stomach cancer than pre-or peri-menopausal

women, and that among postmenopausal women, the younger the

AAMO, the higher the risk of cancer (63). It was found that AAMO

is associated with decreased levels of various sex hormones (64).

Hormone therapy can effectively reduce the risk of EAC (22, 65).

Based on the above discussion, it was not difficult to find that the
Frontiers in Endocrinology 07
relationship between AAMO and ON seems to be similar to that

between AAMA and ON. Our results suggest that the association

between AAMO and ON in previous studies may also be realized

through hormonal pathways.

There are some limitations in this study. First, our study

population involved only European women, so we need to be

careful when generalizing our findings to other populations. In

addition, the outcome data we used in our study contained both

females and males. We expect that using a dataset that includes both

males and females would have reduced the association strengths in

this study, thus rendering our results conservative (28). Therefore,

future MR studies may be warranted to verify our results in female-

only samples.
5 Conclusion

AAMA and BON are causally related at the genetic level, but

AAMA and MON are not. There is no genetic causal relationship

between AAMO and BON or MON. Using MR, our study clarified

the causal relationship between exposures (AAMA and AAMO)
D

A B

C

FIGURE 3

Leave-one-out analysis of the results from MR analysis. Each black line in the figure refers to the result of MR analysis with the remaining SNPs after
deleting one SNP on the left. (A) age at menarche and benign oesophageal neoplasia; (B) age at menopause and benign oesophageal neoplasia;
(C) age at menarche and malignant oesophageal neoplasia; (D) age at menopause and malignant oesophageal neoplasia.
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D
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C

FIGURE 4

Normal distribution plots of the MR analysis. Circles in the figure represent SNPs for MR Analysis. (A) age at menarche and benign oesophageal
neoplasia; (B) age at menopause and benign oesophageal neoplasia; (C) age at menarche and malignant oesophageal neoplasia; (D) age at
menopause and malignant oesophageal neoplasia.
FIGURE 5

MR analysis between exposures (age at menarche and age at menopause) and outcomes (benign oesophageal neoplasia and malignant oesophageal
neoplasia). Three methods used: maximum likelihood, penalized weighted median, and IVW (fixed effects). The blue vertical line represents OR = 1.
The green square is the OR value of MR analysis result. The black line segment is the OR 95% confidence interval.
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and outcomes (BON and MON), providing help for the future

prevention, treatment and prognosis of ON. However, diseases are

complex and changing, and we need to explore them further in the

future, as well as explore their relationships in more detail.
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