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ABSTRACT 
 

This paper proposes a fault (line-to-line) location on Ikeja West – Benin 330kV electric power 
transmission lines using wavelet multi-resolution analysis and neural networks pattern recognition 
abilities. Three-phase line-to-line current and voltage waveforms measured during the occurrence 
of a fault in the power transmission-line were pre-processed first and then decomposed using 
wavelet multi-resolution analysis to obtain the high-frequency details and low-frequency 
approximations. The patterns formed based on high-frequency signal components were arranged 
as inputs of the neural network, whose task is to indicate the occurrence of a fault on the lines. The 
patterns formed using low-frequency approximations were arranged as inputs of the second neural 
network, whose task is to indicate the exact fault type. The new method uses both low and high-
frequency information of the fault signal to achieve an exact location of the fault. The neural 
network was trained to recognize patterns, classify data and forecast future events. Feed forward 
networks have been employed along with back propagation algorithm for each of the three phases 
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in the Fault location process. An analysis of the learning and generalization characteristics of 
elements in power system was carried using Neural Network toolbox in MATLAB/SIMULINK 
environment. Simulation results obtained demonstrate that neural network pattern recognition and 
wavelet multi-resolution analysis approach are efficient in identifying and locating faults on 
transmission lines as the average percentage error in fault location was just 0.1386%. This showed 
that satisfactory performance was achieved especially when compared to the conventional 
methods such as impedance and travelling wave methods.  
 

 
Keywords: Pattern recognition; feed forward back propagation algorithm; neural network; Levenberg-

Marquardt algorithm; power system protection. 
 
1. INTRODUCTION 
 
Transmission lines constitute the major part of 
the electric power system. Transmission and 
distribution lines are vital links between the 
generating unit and consumers to achieve the 
continuity of electric supply. To economically 
transfer large blocks of power between systems 
and from remote generating sites, High Voltage 
(HV) and Extra high voltage (EHV) overhead 
transmission systems are being used. 
Transmission lines also form a link in 
interconnected system operation for bi-
directional flow of power [1]. Transmission lines 
run over hundreds of kilometres to supply 
electrical power to the consumers. They are 
exposed to the atmosphere and environmental 
hazards, hence chances of occurrence of fault in 
a transmission line is very high which when they 
eventually occur has to be immediately detected, 
located and cleared in order to minimize damage 
caused by it [2].  
 
Having an effective automated means of 
identifying and determining the location of the 
fault even right from the control-room will 
significantly improve continuity of power supply. 
It will also facilitate quicker repair, improve 
system availability and performance, reduce 
operating cost and save time and effort of 
maintenance crew searching in, sometimes in 
harsh environmental conditions. It has                
always been an interest for engineers to detect 
and locate the faults in the power system as 
early as possible [3]. Fast clearing and 
restoration is very essential as it not only 
provides reliability but sometimes also stops the 
propagation of disturbances which may lead to 
blackouts. 
 

2. MATERIALS AND METHODS 
 

The Nigerian 330kV Ikeja West - Benin 
transmission line system was adopted and          
used to develop and implement the proposed 

strategy using ANN. Fig. 1 shows a Power  
World Simulator one-line diagram (in run              
mode) of the system that has been used in              
this paper. The system consists of three 
generators of 330kV each located on either end 
of the transmission line. The transmission line 
has been modelled using distributed parameters 
[4] so that it more accurately describes a very 
long transmission line. 
 
This power system was remodelled and 
simulated using the Sim Power Systems             
toolbox in Simulink with the help of Math Works 
(R2016a). A snapshot of the model used for 
obtaining the training and test data sets is   
shown in Fig. 2. In Fig. 2, Z1 and Z2 are the 
source impedance of the generators on either 
side. A three-phase fault simulator used to 
simulate faults at various positions on the 
transmission line. The three-phase V-I 
measurement block is used to measure the 
voltage and current samples at the terminal               
A. The transmission line (line 1 and line 2 
together) is 280 km long and the three-                 
phase fault simulator is used to simulate                 
double line fault at varying locations along               
the transmission line with different fault 
resistances. 
 
2.1 Data Acquisition and Pre-processing  
 
By applying wavelet transformation to the input 
signals, a reduction in the size of the neural 
network can be achieved through feature 
extraction which improves the performance of 
the network. By doing this, all of the important 
and relevant information present in the 
waveforms of the voltage and current signals 
can be used effectively [5]. Double Line fault 
currents and voltages have been generated from 
the model of Fig. 2 after simulation using 
MATLAB as shown in Figs. 3 and 4 respectively. 
Moreover, the sampling time taken for the 
analysis is 100us, which relates to a sampling 
frequency of 10 kHz. The waveforms were 
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measured at 140kM away from source A during 
the occurrence of a fault on the line. The red, 
blue and green curves represent fault conditions 
of phases A, B and C respectively. From the 

graphs, it can be seen that the transient fault 
occurred at 16.7ms and the system regained 
stability after 83.33ms.  

 

 
 

Fig. 1. One-line diagram of the Nigerian 330 kV Ikeja West - Benin transmission line system 
(the studied system) 

 

 
 

Fig. 2. Snapshot of the studied model in Sim power systems 
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Fig. 3. Current waveform of line - line fault on phases A & B at a distance of 140 km from the 

source 
 

 
 
Fig. 4. Voltage waveform of line - line fault on phase A & B at a distance of 140km from the 

source 
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2.2 Discrete Wavelet Transform 
 
The application of wavelet transform in 
engineering areas usually requires a discrete 
wavelet transform (DWT). Here, the discrete 
form of the values r, k, a, �, and �(�) will now be 
j, s, w, n and  �(�)  respectively. The 
representation of DWT can be written as [6]: 
 

�∅(��, �) =
�

√�
∑ �(�)∅��,�� (�)                      (1) 

 
           � ≥ �� 

 

��(�, �) =
�

√�
∑ �(�)��,�� (�)                      (2) 

 
Where, �(�)  is the discrete signal to be 

decomposed, 1
√�
�  is a normalizing factor. (1) 

and (2) are the scaling function and the wavelet 
transform respectively. Normally, if �� is fixed at 
zero (0), M is selected to be 2� ; � = 2�  and 
summation is performed up to j = 0, 1, 2, …, J-1, 
then the discrete form of the wavelet function 
��,� is now; 
 

��,�(�) = 2
�

��(2�� − �)                       (3) 

 
Putting ��,�(�) into (2) gives 

 

��(�, �) =
�

√�
∑ �(�)� ∗2

�

��(2�� − �)         (4) 

 
But we have that the relationship between the 
scaling function and the discrete wavelet 
function is given by, 
 

�(�) = ∑ ℎ�(�)√2 ∗∅(2� − �)�           (5) 

 
Where, � is the shift parameter, n is the scaling 
parameter and ℎ� is a highpass filter. 

 
To get �(2�� − �), (5) can be written as 
 

�(2�� − �) = ∑ ℎ�(�)√2 ∗∅(2(2�� − �) − �)�   

(6) 
 
Let � = � − 2�, then � = � + 2� 
 
Then, 
 

�(2�� − �) = ∑ ℎ�(� − 2�)√2 ∗∅(2���� − �)�   

(7) 
 

Putting (6) into (3) gives; 

��(�, �) =
1

√�
� �(�)

�

∗2
�
�

∗	� ℎ�(� − 2�)√2 ∗∅(2���� − �)

�

 

 
Interchanging the summation order gives; 
 

��(�, �) = ∑ ℎ�(� − 2�) �
�

√�
∑ �(�)� ∗2

���

� √2 ∗�

∅(2�+1�−�)                                    (8) 

 
Relating (5) with (8); 
 

�∅(� + 1,�) =
1

√�
� �(�)

�

∗2
���
� √2 ∗∅(2���� − �) 

 
Therefore,  
 
��(�, �) = ∑ ℎ�(� − 2�)�∅(� + 1,�)�          (9) 

 
In very similar way, can be obtained; 
 
�∅(�, �) = ∑ ℎ∅(� − 2�)�∅(� + 1,�)�        (10) 

 

The implication of (9) and (10) is that a scaling 
function, �∅(� + 1,�) is being convolved with a 
highpass analysis filter ℎ�(� − 2�) to yield the 

detail information and low pass analysis filter 
ℎ∅(� − 2�)  to yield the coarse approximations 
respectively. This decomposition of the signal by 
successive high pass and low pass filtering of 
the time domain signal is called multi-resolution 
analysis (mra). In a block diagram, up to fifth 
level, it is represented as shown in Fig. 5. 

 
The discrete wavelet transform (DWT) 
represents a 1-D signal �(�) in terms of shifted 
versions of a low pass scaling function and 
shifted and dilated versions of a prototype band 
pass wavelet function [7]. 
 
Having converted the continuous signals into 
discrete signals, the sampled signals, �∅(� +
1,�)  are passed through a high pass filter 
ℎ�(� − 2�) and a low pass filter ℎ∅(� − 2�). A 

process called wavelet decomposition using 
multi-resolution analysis. Then the outputs from 
both filters are decimated by 2 to obtain the 
detail coefficients and the approximation 
coefficients at level 1 (D1 and A1) [8]. The 
approximation coefficients are then sent to the 
second stage to repeat the procedure.                 
Finally, the signal is decomposed at the 
expected level.  
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Fig. 5. Fifth
 
level multi-resolution analysis (MRA) representation of  ����	���	���� 

 

2.3 Decomposition of the Signals 
( ����	���	���� ) Using Multi-resolution 
Tool of Wavelet Transform 

 

In order to reduce the computational burden, the 
sampling frequency should not be too high but it 
should be high enough to capture all the 
information concerning the faults. By randomly 
shifting the point of fault on the transmission line, 
number of simulations was carried out [9-10]. 
The generated current signal for each case is 
analyzed using wavelet transform. A sampling 
frequency of 10 kHz is selected. Daubechies 
wavelet Db5 is used as mother wavelet since it 
has good performance results for power system 
fault analysis. Detail coefficients of fault current 
signal in 5th level (d5), gives the frequency 
components corresponding to second and third 

harmonics. On this basis, the summation of 5th 
level detail coefficients of the three-phase 
currents I�, I�	and	I�  are being used for the 
purpose of detection and classification of faults 
in the transmission line. 

 
Let �� , �� , and ��  be the summation of fifth 
level detail coefficients for current and voltage 
signals for a, b, c phases respectively. From the 
results, it is observed that the magnitudes of ��, 
��, and �� increases whenever any fault occurs 
in a transmission line. Based on the sampling 
rate the signal is divided into 12 decomposition 
levels. Among different levels, only 5th level is 
considered for analysis because the frequency 
corresponding to this level is covering 2nd and 
3rd harmonics which are dominant in the fault 
conditions. �� , �� , and ��  are now used as 
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input to the respective neural networks for 
identification, classification and location. 
 
Figs. 6 and 7 show the wavelet decomposition of 
the Simulink extracted faulty waveforms of Figs. 
3 and 4 respectively via multi-resolution analysis. 
The sampling frequency is 10kHz, the signal 
information captured by D1 is between 2.5kHz 
and 5kHz of the frequency band. D2 captures 
the information between 0.125 kHz and 0.25 
kHz. D3 captures the information between 
0.0625kHz and 0.125 kHz, and A3 retains the 
rest of the information of the original signal 
between 0 and 0.0625kHz. By such means, we 
can easily extract useful information from the 
original signal into different frequency bands and 
at the same time the information is matched to 
the related time period. 
 
Fig. 6 depicts the snapshot of the fifth level 
decomposition of the sampled current 
waveforms of LL fault on phase A and B (of Fig. 
3). �� , �� , �� , �� , and ��  represent the detail 
coefficients for levels 1, 2, 3, 4, and 5 
respectively while ��  is the fifth level 
approximation coefficient. As clearly shown, the 

three phases are concatenated together of 
matric data of 9420x3 in all. The first set of data 
of 3140x1 in a column is for phase A, the second 
set of data of 3140x1 is for phase B and the third 
set of data of 3140x1 is for phase C. The 
information of the original signal is clearly 
represented at each frequency band. 
 
The snapshot of the fifth level decomposition of 
the sampled voltage waveforms of LL fault on 
phase A and B (of Fig. 4) is depicted in Fig. 7. 
�� , �� , �� , �� , and ��  represent the detail 
coefficients for levels 1, 2, 3, 4, and 5 
respectively while ��  is the fifth level 
approximation coefficient. As clearly shown, the 
three phases are concatenated together of 
matric data of 9420x3 in all. The first set of data 
of 3140x1 in a column is for phase A, the second 
set of data of 3140x1 is for phase B and the third 
set of data of 3140x1 is for phase C. The 
information of the original signal is clearly 
represented at each frequency band. 
 
The wavelet toolbox in MATLAB was used for 
the above signal decompositions as it provides a 
lot of useful techniques for wavelet analysis. 

  

 
 

Fig. 6. The decomposed signal of current waveform of LL Fault on phase A at a distance of 
140 km from the source 
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Fig. 7. Decomposed waveform of voltage waveform of LL Fault on phase A at a distance of 140 
km from the source 

 
3. RESULTS AND DISCUSSION 
 
The design, development and performance of 
neural networks for the purpose of Line–Line 
fault location are discussed in this section. Once 
we can detect the occurrence of a fault on a 
transmission line and also classify the fault into 
the various fault categories [11-12], the next step 
is to pin-point the location of the fault from either 
end of the transmission line. Three possible line 
– line faults exist (A-B, B-C, C-A), corresponding 
to each of the three phases (A, B or C) being 
faulted. 

 
3.1 Simulation Results of Training the 

Neural Network for Line – Line Fault 
Location 

 
Feedforward back – propagation neural 
networks have been surveyed for the purpose of 
line – line fault location, mainly because of the 
availability of sufficient data to train the network. 
In order to train the neural network, several line 
– line faults have been simulated on the 
transmission line model. For each pair formed by 
the three phases, faults have been simulated at 
every 15 km on a 280 km long transmission line. 

Along with the fault distance, the fault resistance 
has been varied as 0.25, 0.5, 0.75, 1, 5, 10, 20, 
25, 50and 60 ohms respectively. Hence, a total 
of 1900 cases have been simulated (190 for 
each of the three phases with each of the ten 
different fault resistances). In each of these 
cases, the summed-up detail and approximation 
coefficients (��, ��, and ��) of the fault currents 
of the three phases, are given as inputs to the 
neural network. The output of the neural network 
is the distance to the fault from terminal A. 
Hence, each input-output pair consists of three 
inputs and one output. An exhaustive survey on 
various neural networks has been performed by 
varying the number of hidden layers and the 
number of neurons per hidden layer. Of these 
ANNs, the most appropriate ANN is chosen 
based on its Mean Square Error performance 
and the Regression coefficient of the Outputs 
versus Targets. 
 

Fig. 8 shows the performance of the neural 
network (in terms of training, testing and 
validation) with 3 neurons in the input layer, 4 
hidden layers with 12, 5, 15 and 30 neurons in 
them respectively and 1 neuron in the output 
layer (3.12.5 .15.30.1). It can be seen that the 
best Cross-Entropy performance of this neural 
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network is 6.4741e-3 which is below the Cross-
Entropy goal of 1e-2. It was found that the 

correlation coefficient between the outputs and 
the targets was 0.99648 for this neural network. 
  

 
 

Fig. 8. Mean square error performance of the ANN with configuration (3.12.5.15.30.1) 
 

 
 

Fig. 9. Test phase performance of the neural network with configuration (3.12.5.15.30.1) 
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In order to test the performance of this network, 
100 different phase to phase faults have been 
simulated on different phases with the fault 
distance being incremented by 15 kM in each 
case and the percentage error in calculated 
output has been calculated. Fig. 9 shows the 
results of this test conducted on the neural 
network (3.12.5.15.30.1). It can be seen that the 
maximum error is around 1.37% which is very 
satisfactory. The minimum error recorded was 
0.08%.  It is to be noted that the average error in 
the fault location is just 0.97 percent. Hence, this 
neural network has been chosen as the ideal 
network for the purpose of line – line fault 
location on transmission lines.  
 
Fig. 10 provides an overview of the neural 
network and it is a screenshot of the training 
window simulated using the Artificial Neural 
Network Toolbox in Simu link. It is to be noted 
that the training process converged in about 55 
iterations. It can be seen that the mean square 
error in fault detection achieved by the end of the 
training process was 2.57e-3 and that the 
number of validation check fails were zero by the 
end of the training process. 
 
Fig. 11 plots the best linear regression fit 
between the outputs and the targets. The 
correlation coefficient (r) is a measure of how 
well the neural network’s targets can track the 
variations in the outputs (0 being no correlation 
at all and 1 being complete correlation). The 

correlation coefficient, in this case, has been 
found to be 0.99648 which indicates excellent 
correlation (regression fit). The dotted line in the 
figure indicates the ideal regression fit and the 
red solid line indicates the actual fit of the neural 
network. It can be seen that both these lines 
track each other very closely which is an 
indication of very good performance by the 
neural network. 
 

3.2 Simulation Results of Testing the 
Neural Network for Line – Line Fault 
Location 

 
Several factors have been considered while 
testing the performance of the chosen neural 
network. One prime factor that evaluates the 
efficiency of the ANN is the test phase 
performance plot which is already illustrated in 
Fig. 9. As already mentioned, the average and 
the maximum error percentages are intolerable 
ranges and hence the network's performance is 
considered satisfactory. 
 
Fig. 12 provides another means of evaluating the 
ANN, which is the gradient and validation 
performance plot. It can be seen that there is a 
steady decrease in the gradient and also that the 
number of validation fails did not exceed 1 
during the entire process which indicates smooth 
and efficient training because the validation and 
the test phases reached the Cross-Entropy goal 
at the same time approximately. 

 

 
 

Fig. 10. Overview of the chosen ANN for Line-Line Faults (3.12.5.15.30.1) 
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Fig. 11. Regression fit of the outputs versus targets with configuration (3.12.5.15.30.1) 
 

 
 

Fig. 12. Gradient and validation performance plot of the ANN (3.12.5.15.30.1) 
 
The third factor that is considered while 
evaluating the performance of the network is the 
correlation coefficient of each of the various 
phases of training, validation and testing. Fig. 13 
shows the regression plots of the various phases 

such as training, testing and validation. It can be 
seen that the best linear fit very closely matches 
the ideal case with an overall correlation 
coefficient of 0.98648. 
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Fig. 14 shows the structure of the chosen             
ANN for line – line faults with 3neurons in the 
input layer, 4 hidden layers with 12, 5, 15                     
and 30 neurons in them respectively and 1 
neuron in the output layer (3.12.5.15.30.1).                      
It is a pictorial representation of how                          
the neurons in the respective layers are 
connected together through the synaptic 
weights. It shows the interconnections between 
the input layer and the hidden layers, and also 
between the hidden layers and the output                   
layer. It can be seen that any given neuron           
is connected to all the neurons in the layer in 
front. 
 
Table 1 illustrates the percentage errors in Fault 
location as a function of Fault Distance and Fault 
Resistance. Two different cases have been 
considered (shown in adjacent columns), one 
with a fault resistance of 15 ohms and another 
with a fault resistance of 70 ohms.  
 

The measured fault locations are the 
mathematically calculated output of the trained 
chosen neural network after simulation in 
MATLAB environment using feed forward back-
propagation algorithm. 
 
It is to be noted that the resistance of 15 ohms 
was used as a part of the training data set and 
hence the average percentage error in fault 
location, in this case, is just 0.1386%. The 
second case illustrates the same with a different 
fault resistance of 70 ohms which is relatively 
very high and is not a part of the training set. 
Hence, the performance of the neural network, in 
this case, illustrates its ability to generalize and 
react upon new data. It is to be noted that the 
average error, in this case, is just 0.966% which 
is still very satisfactory. Thus, the neural 
networks performance is considered satisfactory 
and can be used for the purpose of line – line 
fault location. 
 

 
 
Fig. 13. Regression plots of the various phases of learning of the chosen ANN (3.12.5.15.30.1) 
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Fig. 14. Structure of the chosen neural network (3.12.5.15.30.1) 
 

Table 1. Percentage errors as a function of fault distance and fault resistance for the ANN 
chosen for line - line fault location 

 

Serial 
no. 

% Error vs. fault distance 
(Fault resistance = 15 Ω) 

% Error vs. fault distance 
(Fault resistance = 70 Ω) 

Fault distance 
(Km) 

Measured fault 
location 

% Error Fault distance 
(Km) 

Measured fault 
location 

% error 

1 5 5.07 1.40 10 10.08 0.80 
2 20 20.17 0.85 25 25.13 0.52 
3 35 35.12 0.34 40 41.28 0.07 
4 50 50.04 0.08 55 55.51 0.93 
5 65 65.18 0.28 70 71.03 1.47 
6 80 80.39 0.49 85 86.16 1.36 
7 95 95.38 0.04 100 100.82 0.82 
8 110 110.17 0.15 115 115.89 0.77 
9 125 125.37 0.30 130 130.88 0.68 
10 140 140.95 0.68 145 146.16 0.80 
11 155 154.84 0.10 160 161.00 0.63 
12 170 170.98 0.56 175 176.96 1.12 
13 185 186.03 0.56 190 191.92 1.01 
14 200 201.32 0.66 205 206.81 0.88 
15 215 213.56 0.67 220 221.19 0.54 
16 230 228.56 0.63 235 236.73 0.74 
17 245 247.43 0.99 250 251.00 0.40 
18 260 262.76 1.06 265 266.82 0.69 
19 275 278.30 1.2 280 282.88 1.03 
 

4. CONCLUSIONS 
 
The paper has been able to successfully develop 
a novel pattern recognition-based line-line                  
fault location in an overhead transmission line 
using the summation of the decomposed               
detail coefficients of the extracted faulty voltage 
and current waveforms for all the three phases 
for ten different faults and also the non-fault 
case. 

In summary, it can be deduced that it is very 
essential to investigate and analyze the 
advantages of a particular neural network 
structure and learning algorithm before choosing 
it for an application because there should be a 
trade-off between the training characteristics and 
the performance factors of any neural network. 
 
The simulation results show that neural networks 
are indeed a reliable and attractive scheme for 
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an ideal transmission line fault location scheme 
especially in view of the increasing complexity of 
the modern power transmission systems. From 
simulation results, it can be also seen that back 
propagation neural networks are very efficient 
when a sufficiently large training data set is 
available and hence Back Propagation networks 
have been chosen for all the three steps in the 
fault location process. 
 

Additionally, the case study network (Nigerian 
330 kV Ikeja West – Benin Power Transmission 
line system) received for the first-time simulation 
results specific to its parameters.  
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