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Exercise intervention improves
mitochondrial quality in
non-alcoholic fatty liver
disease zebrafish

Yun-Yi Zou †, Xiang-bin Tang †, Zhang-Lin Chen, Bin Liu,
Lan Zheng, Ming-Yang Song, Qin Xiao, Zuo-Qiong Zhou*,
Xi-Yang Peng* and Chang-Fa Tang*

State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness
and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal
University, Changsha, China
Introduction: Recent reports indicate that mitochondrial quality decreases

during non-alcoholic fatty liver disease (NAFLD) progression, and targeting the

mitochondria may be a possible treatment for NAFLD. Exercise can effectively

slow NAFLD progression or treat NAFLD. However, the effect of exercise on

mitochondrial quality in NAFLD has not yet been established.

Methods: In the present study, we fed zebrafish a high-fat diet to model NAFLD,

and subjected the zebrafish to swimming exercise.

Results: After 12 weeks, swimming exercise significantly reduced high-fat diet-

induced liver injury, and reduced inflammation and fibrosis markers. Swimming

exercise improved mitochondrial morphology and dynamics, inducing

upregulation of optic atrophy 1(OPA1), dynamin related protein 1 (DRP1), and

mitofusin 2 (MFN2) protein expression. Swimming exercise also activated

mitochondrial biogenesis via the sirtuin 1 (SIRT1)/ AMP-activated protein kinase

(AMPK)/ PPARgamma coactivator 1 alpha (PGC1a) pathway, and improved the

mRNA expression of genes related to mitochondrial fatty acid oxidation and

oxidative phosphorylation. Furthermore, we find that mitophagy was suppressed

in NAFLD zebrafish liver with the decreased numbers of mitophagosomes, the

inhibition of PTEN-induced kinase 1 (PINK1) – parkin RBR E3 ubiquitin protein

ligase (PARKIN) pathway and upregulation of sequestosome 1 (P62) expression.

Notably, swimming exercise partially recovered number of mitophagosomes,

which was associated with upregulated PARKIN expression and decreased p62

expression.

Discussion: These results demonstrate that swimming exercise could alleviate

the effects of NAFLD on the mitochondria, suggesting that exercise may be

beneficial for treating NAFLD.

KEYWORDS

exercise, non-alcoholic fatty liver disease, mitochondria quality control, zebrafish,
mitochondrial dysfunction
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1 Introduction

Poor dietary habits are an emerging health problem, and are

linked to the development of metabolic syndromes, including non-

alcoholic fatty liver disease (NAFLD) (1). NAFLD is characterized

by excessive fat deposition in hepatic cells. Surplus hepatocellular

lipids contribute to lipotoxicity, oxidative stress, inflammation, and

fibrosis in the liver, and are closely linked to the development of

hepatocellular carcinoma (HCC) (2). NAFLD is often accompanied

by various extrahepatic complications, such as type 2 diabetes and

cardiovascular events (3). The prevalence of NAFLD is increasing,

and it is now one of the major financial and medical burdens

globally, with adverse consequences for society and for individual

quality of life. Finding preventive measures and effective therapeutic

strategies for slowing down or treating NAFLD could alleviate the

global burden of this disease.

The liver is the major organ where regulation of carbon

metabolism (glucose, l ipids, and protein) occurs, and

mitochondria are vital organelles in hepatic metabolic pathways

and signaling networks (4). Lipid catabolism mainly depends on

mitochondrial fatty acid b-oxidation. In NAFLD, mitochondrial

biogenesis, which is regulated by PGC1a, is strongly suppressed,

resulting in reduced mitochondrial oxidative phosphorylation

(OXPHOS), mitochondrial respiration, and b-oxidation (5, 6),

thus enhancing fat accumulation and driving disease progression.

Mitochondria are dynamic organelles, and regular fission and

fusion are necessary to maintain their size and morphology.

However, under pathological NAFLD conditions, fission-related

factor DRP1 and fusion-related factors MFN2 and OPA1 are

dysregulated (7–9). Significantly smaller mitochondria with

increased mass have been found in fatty liver tissue (5). In

addition to morphological changes, NAFLD may affect the

process of mitophagy, which is the classical process for

removing damaged mitochondria by autophagy. The expression

of genes related to autophagy is reduced in NAFLD patients, and

the activation of mitophagy could therefore protect against the

progression of NAFLD (8, 10). In addition, mitochondria are

the major cellular source of reactive oxygen species (ROS) (11).

High levels of ROS are associated with apoptosis (12), and have an

important role in the development of NAFLD (13). Since a

decrease in mitochondrial quality is associated with NAFLD,

targeting mitochondria could ameliorate the progression

of NAFLD.

Regular exercise is an effective measure for treating or delaying

the progression of NAFLD (14, 15) by reducing intrahepatic fat

deposition, increasing b-oxidation, suppressing ROS production,

and attenuating hepatocyte apoptosis (16). Exercise could also

regulate anti-inflammatory factors to improve the inflammatory

response in NAFLD (14). Moreover, exercise may have an

ameliorative effect on liver fibrosis in NAFLD patients (17).

However, the effect of exercise on the mitochondria in NAFLD

remains unknown. In the present study, we used a high-fat diet to

model NAFLD in zebrafish, and exerted swimming exercise on

NAFLD model zebrafish to explore the role of exercise in fatty

liver disease and investigate associated improvements in

mitochondrial quality.
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2 Materials and methods

2.1 Animal models

Zebrafish were fed a high-fat diet to induce NAFLD as previously

described (16). Six month-old AB strain zebrafish were raised under

14 h of light at 28°C under standard husbandry conditions. Zebrafish

were randomly divided into three groups (n = 21 zebrafish/group):

normal diet (N), high-fat diet (H), and high-fat diet plus exercise (HE).

The N group zebrafish were fed a low-fat diet containing 6% fat

(TP1FM21051, Trophic Animal Feed High-Tech Co., Ltd., Nantong,

Jiangsu Province, China) for 12weeks. TheH group zebrafish received

a high-fat diet containing 24% fat (TP1FM21050, Trophic Animal

Feed High-Tech Co., Ltd., Nantong, Jiangsu Province, China) for 12

weeks. TheHEgroup zebrafish received the samehigh-fat diet as theH

group, but were also subjected to swimming exercise. After 12 weeks,

zebrafish were anesthetized with tricaine for the collection of tissue

samples. This research was conducted in accordance with the Chinese

guidelines for animal welfare and experimental protocols. Approval

was obtained from the Animal Experiment Administration

Committee of Hunan Normal University (Changsha, China)

(approval number: 2018/046).
2.2 Exercise protocol

Swimming exercise was performed as previously described (16).

Briefly, for the first month, HE group zebrafish were placed in a

tank with a water current causing them to swim at a 6× body length

(BL)/s swimming speed (16 cm/s, approximately 40% Ucrit). For

the next 2 months, the HE group zebrafish were placed in a tank

with a water current causing them to swim at 8× BL/s (22 cm/s,

~55% Ucrit). During periods of exercise, zebrafish in the HE group

were moved to a swimming tunnel, acclimated for 30 min, and

exercised for 4 h per day. Zebrafish were exercised for 5 days per

week for the duration of the experiment.
2.3 Histological analysis

Three biological replicates were used for H&E staining, MASSON

staining and DHE staining. Hematoxylin and eosin (H&E) staining

was conducted on formalin-fixed paraffin embedded (FFPE) liver

tissue sections for the evaluation of pathological changes. The

NAFLD activity score (NAS) was calculated according to the

guidelines provided by the Pathology Committee of the NASH

Clinical Research Network (18). MASSON staining was conducted

on FFPE liver tissue sections for the evaluation offibrosis progression.

DHE staining was conducted on frozen liver tissue sections for the

evaluation of ROS accumulation.
2.4 Transmission electron microscopy

To characterize the mitochondrial ultrastructure, liver tissue

was analyzed by transmission electron microscopy (TEM), as
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described previously (16), two biological replicates were used for

TEM. Quantification of mitochondrial parameters (number,

diameter, length, and size) in hepatocytes was performed using

ImageJ (19). The morphology of mitophagosomes was

characterized according to previous studies (20, 21).
2.5 Quantitative real time-PCR

Six biological replicates were used for real-time qPCR. Total

RNA was extracted from liver tissue samples using TRIzol reagent

(Thermo Fisher Scientific, Waltham, MA, USA) according to the

manufacturer’s instructions. RNA was reverse-transcribed into

cDNA using the PrimeScript™ RT reagent Kit with gDNA Eraser

(Takara, Tokyo, Japan). qPCR was conducted using SYBR Green

Master Mix (Thermo Fisher Scientific). The relative mRNA

expression of target genes was determined using a Bio-Rad real-

time PCR system (CFX96; Bio-Rad Laboratories, Hercules, CA,

USA). The 2−DDCT method was used to calculate the relative mRNA

expression, with gapdh used as the reference gene. Primers were

synthesized by Sangon Biotech. Primer sequences are shown in

Supplementary Table 1.
2.6 Western blotting

Total protein was extracted in lysis buffer supplemented with

protease and phosphatase inhibitors (Solarbio, Wuhan, China).

Western blotting was carried out according to our previous

publication (22), six zebrafish liver samples in each group were

performed forWestern bloting. The antibodies used were as follows:

rabbit anti-GAPDH antibody (1:2000; servicebio), rabbit anti-

COL1A1 antibody (1:1000; Wanleibio), rabbit anti-ACTA2

antibody (1:1000; Proteintech), rabbit anti-IL-1b antibody

(1:2000; Wanleibio), mouse anti-IL10 antibody (1:1500;

Proteintech), rabbit anti-DRP1 antibody (1:1500; Proteintech),

rabbit anti-OPA1 antibody (1:1500; Proteintech), rabbit anti-

MFN2 antibody (1:1500; Proteintech), rabbit anti-P-AMPK

antibody (1:2000; Cell Signaling Technology), rabbit anti-AMPK

antibody (1:1500; Proteintech), rabbit anti-PGC1a antibody

(1:1000; Bioss), rabbit anti-NRF1 antibody (1:1000; Proteintech),

rabbit anti-NRF2 antibody (1:2000; Proteintech), rabbit anti-TFAM

antibody (1:2000; Proteintech), rabbit anti-PINK1antibody (1:2000;

Proteintech), rabbit anti-PARKIN antibody (1:2000; Bioss) and

rabbit anti-P62 antibody (1:2000; Proteintech). Protein expression

level was normalized to that of GAPDH.
2.7 Statistical analysis

All statistical analyses were performed using GraphPad Prism

9.0 (San Diego, CA, USA). Differences between groups were

assessed using one-way analysis of variance (ANOVA) and a

Tukey post hoc test. Differences were considered significant at

p ≤ 0.05. Values are expressed as the mean ± standard error.
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3 Results

3.1 Swimming exercise prevents
the progression of diet-induced
NAFLD in zebrafish

The therapeutic effect of swimming exercise on the pathological

progression of NAFLD in zebrafish fed a high-fat diet was

investigated (Figure 1A). Although zebrafish body length did not

change between the three groups (Figure 1B), a high-fat diet

significantly increased zebrafish body weight and body mass

index, while exercise reduced this increase (Figures 1C, D).

Notably, swimming exercise dramatically attenuated the

pathological features of NAFLD (Figure 1E), including the NAS

score (Figure 1F), fibrosis progression (Figure 1G), and ROS

accumulation (Figure 1H). These data suggest that swimming

exercise has a protective effect against the progression of diet-

induced NAFLD.
3.2 Swimming exercise inhibits
the expression of inflammation and
fibrosis markers in diet-induced NAFLD
zebrafish livers

To confirm that swimming exercise has a beneficial effect on

NAFLD progression, we measured the expression of fibrosis

(COL1A1 and ACTA2) and inflammation markers (IL-b) in

high-fat diet-induced NAFLD zebrafish livers. As show in

Figure 2, hepatic fibrosis markers (COL1A1 and ACTA2) and

inflammation markers (IL-b) were markedly decreased and the

anti-inflammatory cytokine (IL-10) was increased in the HE group

compared to in the H group. Swimming exercise can therefore

attenuate inflammation and slow the progress of fibrosis in diet-

induced NAFLD zebrafish livers.
3.3 Swimming exercise improves
mitochondrial morphology and dynamics
in diet-induced NAFLD zebrafish

Mitochondrial morphology and dynamics are important to

maintain normal function (23). We evaluated mitochondrial

damage by examining hepatic mitochondrial morphology and

integrity in high-fat diet induced NAFLD zebrafish. As shown in

Figure 3A, liver mitochondria in the H group displayed severe

fragmentation, with increased numbers of mitochondria observed

(Figure 3B) with a smaller average diameter (Figure 3C), length

(Figure 3D), and area(Figure 3E). Lipid droplets were clearly visible

under TEM in the livers of the fish in group H. Swimming exercise

significantly decreased mitochondrial numbers in the HE group

compared to that in the H group. Since mitochondrial morphology

is dependent on the dynamic balance between fusion and fission,

the expression of fusion and fission markers was also examined

(Figure 3F). A high-fat diet significantly disrupted mitochondrial
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dynamics in zebrafish, resulting in the downregulation of DRP1

(Figure 3G), OPA1 (Figure 3H), and MFN2 (Figure 3I), whereas

swimming exercise inhibited this downregulation and alleviated the

effect of a high-fat diet on mitochondrial dynamics. These data

suggest that swimming exercise could maintain the dynamic

balance of mitochondria in diet-induced NAFLD model zebrafish

liver tissue.
3.4 Swimming exercise alleviates
mitochondrial dysfunction in diet-induced
NAFLD zebrafish

We next determined if swimming exercise can alleviate

mitochondrial dysfunction in high-fat diet zebrafish livers.

Mitochondrial biogenesis maintains the homeostasis of

mitochondrial mass and function (24). We therefore quantified

the expression of P-AMPK/AMPK, SIRT1, and PGC1a and

downstream targets (NRF1, NRF2, and TFAM) to evaluate the

effect of exercise on diet-induced NAFLD in zebrafish. The

expression of these biogenesis markers was significantly

downregulated in the H group compared to in the N group

(Figures 4A–G). Similarly, mtnd1 and mtnd6 mRNA expression

were reduced in the H group compared to in the N group
Frontiers in Endocrinology 04
(Figure 4H). In contrast, swimming exercise activated the AMPK/

SIRT1/PGC1a pathway and thus facilitated mitochondrial

biogenesis in the HE group. We assessed the expression of genes

related to fatty acid oxidation and OXPHOS. Oxidative genes

(acadm, cpt1a, and pparab) and mitochondrial respiratory

complex subunits genes (ndufa9a, sdha, uqcrc2b, cox4i1, and

atp5f1b) were significantly reduced in the H group compared to

in the N group, while swimming exercise remarkably alleviated this

reduction in the HE group (Figures 4I, J). These data suggest that

swimming exercise can facilitate mitochondrial biogenesis and

function in NAFLD zebrafish livers.
3.5 Swimming exercise restores mitophagy
in diet-induced NAFLD model zebrafish

Mitophagy is vital for maintaining mitochondrial quality, and

impaired mitophagy could lead to the accumulation of damaged

mitochondria. As shown in Figure 5A, electron microscopy analysis

revealed that zebrafish fed a high-fat diet lack mitophagosomes,

while swimming exercise restores them. The levels of PINK1 and

PARKIN were reduced, while the level of p62 was increased, in H

group zebrafish livers compared to in the N group, but this effect on

PARKIN and P62 was reversed in zebrafish in the HE group
A B D

E F

G

H

C

FIGURE 1

Protective effect of swimming exercise against diet-induced NAFLD in zebrafish. (A) Schematic of the swimming exercise strategy to study diet-induced
NAFLD in zebrafish. (B) Body length, (C) body weight, and (D) body mass index of zebrafish during the experimental period. (E) HE staining, MASSON
staining, and DHE visualization of zebrafish liver tissue in response to a high-fat diet and a high-fat diet combined with exercise (n=3). (F) NAS score,
(G) fibrosis score, and (H) DHE integrated density in zebrafish livers. *, p < 0.05, **, p < 0.01, ***, p < 0.001. Data represent the mean, and error bars
represent the SEM. Scale bar, 20 mm. NAFLD, non-alcoholic fatty liver disease; N, normal diet; H, high fat diet; HE, high-fat diet plus exercise.
ns, not significant.
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(Figures 5B–E). These results indicate that swimming exercise could

activate mitophagy during NAFLD-induced liver injury.
4 Discussion

The present study demonstrated that swimming exercise could

improve pathological changes in high-fat diet-induced NAFLD

model zebrafish livers. Swimming exercise decreased the NAS

score, inflammation, fibrosis content, and ROS in the livers of

high-fat-diet zebrafish, and could therefore be a critical mediator of

mitochondrial quality, including morphology, dynamics, and

function. The protective effects of swimming exercise on

mitochondrial quality in NAFLD are linked to the amelioration of

liver pathology, which is supported by the observed decrease in

NAS score and ROS, and increase in fatty acid oxidation

and OXPHOS.

Our previous study reported that swimming exercise alleviated

hepatic steatosis by inhibiting the expression of lipogenic genes and

increasing the expression of fatty acid oxidation genes (16). In the

present study, we confirmed the protective role of swimming

exercise in a zebrafish model of NAFLD. NASH is regarded as a

severer stage of NAFLD, and its progression is closely related to

inflammation and oxidative stress (25, 26). The liver inflammatory

response is an important driver of disease progression, which

contributes to the development of NASH and liver fibrosis in
Frontiers in Endocrinology 05
NAFLD and eventually leading to cirrhosis (27). Consequences of

increased ROS production during NAFLD include reprogramming

of lipid metabolism in the liver, changes in insulin sensitivity, and

accumulation of inflammation through interaction with innate

immune signals (14). These effects suggest that oxidative stress

plays an essential role in the development and progression of

NAFLD. Swimming exercise suppressed inflammation (IL-1b)
and fibrosis markers (COL1A1, ACTA2), and activated the

expression of a key anti-inflammatory mediator, IL-10.

Swimming exercise also protects the liver from inflammation and

fibrosis development, and alleviates oxidative stress in diet-induced

NAFLD model zebrafish livers.

Continuous mitochondrial fission and fusion occur in the liver

(28). Under pathological conditions, unbalanced or disrupted

mitochondrial dynamics could cause abnormal mitochondrial

morphology (4). In NAFLD, the liver mitochondria often have a

damaged ultrastructure with a lack of cristae and abnormal

morphology, typically appearing to be smaller and fragmented

(23). Previous studies have shown that impaired fusion and

excessive fission are responsible for this abnormal morphology (8,

29, 30). DRP1 plays an important role in the process of

mitochondrial division. In animal models of NAFLD, DRP1

protein expression is increased, indicating mitochondrial

disruption (8, 31). Inhibition of mitochondrial division has a

protective effect on hepatic steatosis, while alleviating HFD-

induced oxidative stress and liver damage (32). During
A

B D EC

FIGURE 2

Swimming exercise protects against inflammation and fibrosis in diet-induced NAFLD zebrafish livers. (A) Western-blot of CLO1A1, ACTA2, IL-1b, and
IL-10. Protein expression levels of (B) COL1A1, (C) ACTA2, (D) IL-1b, and (E) IL-10. (n=6) *, p < 0.05, **, p < 0.01, ***, p < 0.001. Data represent the mean,
and error bars represent SEM. Scale bar, 20 mm. NAFLD, non-alcoholic fatty liver disease; N, normal diet; H, high fat diet; HE, high-fat diet plus exercise.
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mitochondrial fusion, MFN1/2 and OPA1 integrate the outer

membrane (OMM) and inner membrane (IMM) of mitochondria,

respectively. Mitochondrial fusion is triggered by energy demand

and stress, which can up-regulate metabolic capacity and repair

damaged mitochondria (33). Mitochondrial disruption due to

hepatocellular specific loss of MFN2 exacerbated NAFLD

progression, inflammation, and hyperglycemia in mice fed with a

high fat diet (34). These suggests that intervention of mitochondrial

fusion and mitochondrial division may be an important way to

improve NAFLD. In the present study, in response to a high-fat

diet, NAFLD zebrafish liver mitochondria also exhibited obvious

fragmentation with decreased OPA1, DRP1 and MFN2 protein

expression. And swimming exercise alleviated this downregulation

of the proteins with larger mitochondria. These results suggested

that swimming exercise could prevent the impaired mitochondrial

dynamics induced by high-fat diet in NAFLD zebrafish liver.

Mitochondrial biogenesis maintains mitochondrial mass to

preserve energy homeostasis and function (35), and AMPK/

SIRT1 signaling is an upstream regulator of mitochondrial

biogenesis (36). Peroxisome proliferator–activated receptor

gamma coactivator 1a (PPARGC1A or PGC1a) and nuclear

respiratory factor 1/2 (NRF1/2) also regulate mitochondrial

biogenesis (37). TFAM is a downstream target of NRF1/2, and is

one of the most abundant mitochondrial DNA-binding proteins,
Frontiers in Endocrinology 06
where it controls mtDNA replication, transcription, and packaging

(38). In the present study, the AMPK/SIRT1/PGC-1a axis was

inhibited in NAFLD model zebrafish livers. In contrast,

swimming exercise activated AMPK/SIRT1/PGC1a and

ameliorated mitochondrial biogenesis by upregulating NRF1/

NRF2 at the protein level, and mtDNA and mitochondrial

respiratory complex subunits at the mRNA level, in NAFLD

model zebrafish livers. Mitochondria are also the main site of

fatty acid b-oxidation, and upregulated PGC1a could increase the

expression of b-oxidation genes. NRF2 also plays a vital antioxidant

role, and its activation may alleviate the oxidative stress induced by

a high-fat diet (39). Swimming exercise may therefore activate

mitochondrial biogenesis and improve b-oxidation and

antioxidation in NAFLD model zebrafish livers.

Mitophagy is a conserved cellular process whereby

dysfunctional mitochondria are selectively removed by targeting

them to the autophagosome for degradation (40). Impaired

mitophagy has previously been associated with NAFLD, and

mitophagy-based therapy is therefore a new potential therapeutic

NAFLD target (41). The PINK1-PARKIN pathway is one of the

major pathways that regulates mitophagy (42). PARKIN functions

as a core mitophagy-regulating protein, and can be recruited to

damaged and depolarized mitochondria to induce mitochondrial

clearance by mitophagy. PINK1 also plays a vital role in mitophagy
A B

D E

F G IH

C

FIGURE 3

Swimming exercise maintains mitochondrial dynamic balance in diet-induced NAFLD zebrafish livers. (A) Representative TEM of zebrafish liver showing
visible LDs in fish fed a high-fat diet. TEM micrographs were used to determine (B) mitochondrial numbers at 10000× magnification, (C) mitochondrial
diameter at 40000× magnification, (D) mitochondrial length at 40000× magnification, and (E) mitochondrial area at 40000× magnification. (n=2) (F)
Western blots of DRP1, OPA1, and MFN2. (n=6) The protein expression of (G) DRP1, (H) OPA1, and (I) MFN2 according to densitometry analysis. *, p <
0.05, **, p < 0.01, ***, p < 0.001. Data represent the mean, and error bars represent SEM. Scale bar on TEM 10000× micrographs, 2 mm; scale bar on
TEM 40000× micrographs, 0.5 mm. NAFLD, non-alcoholic fatty liver disease; N, normal diet; H, high fat diet; HE, high-fat diet plus exercise; M,
mitochondria; LD, lipid droplet. ns, not significant.
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by selectively accumulating on depolarized mitochondria and

promoting PARKIN translocation to them (43). A recent study

showed that hepatocellular specific deletion of PARKIN

exacerbated fatty liver disease and insulin resistance in mice fed

with a high fat diet (44). Mitochondrial autophagy defects have been

reported in both high-fat diet (HFD)-induced mouse models and in

vitro cultured cells treated with oleic acid (OA) or palmitic acid

(PA), which are associated with a range of NAFLD-related

phenotypes, including increased fat accumulation, elevated

oxidative stress, and inflammation (45, 46). These studies suggest

that removing damaged mitochondria by activating mitochondrial

autophagy may be a promising approach to combat simple steatosis

and NASH. In the present study, the PINK1-PARKIN pathway was

inhibited, and the numbers of mitophagosomes was reduced, in

NAFLD model zebrafish livers. Swimming exercise activated

PARKIN protein expression and repressed P62 expression, but

did not affect PINK1 protein expression. Functionally, swimming

exercise alleviated mitophagosome formation in high-fat diet-

induced NAFLD model zebrafish. Interestingly, a recent study

reported that PARKIN could translocate to the mitochondria

independent of PINK1 (47). And elevated P62 expression used to
Frontiers in Endocrinology 07
be seen as a marker of inhibited autophagy activity (48). Swimming

exercise downregulated the P62 expression could be one of the main

ways to activate mitophagy. The findings of the present study

suggest that increased PARKIN expression and decreased P62

expression caused by exercise may partially restore mitophagy,

although the underlying regulatory mechanisms remain unclear

and could be investigated in future.

In conclusion, the beneficial effect of exercise on NAFLD is

associated with improved mitochondrial function in a zebrafish

NAFLD model. These findings highlight the importance of exercise

for maintaining mitochondrial morphology and function, and

enabling mitophagy. The present study confirms the possibility

that exercise could be an effective strategy for targeting hepatocyte

mitochondria as a treatment for NAFLD.
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FIGURE 4

Swimming exercise alleviates mitochondrial dysfunction in diet-induced NAFLD model zebrafish livers. (A) Western-blot of P-AMPK, AMPK, SIRT1, PGC1a,
NRF1, NRF2, and TFAM. (n=6) The protein expression levels of (B) P-AMPK/AMPK, (C) SIRT1, (D) PGC1a, (E) NRF1, (F) NRF2, and (G) TFAM according to
densitometry analysis. (H) Mtnd1 and mtnd6 mRNA expression. (n=6) (I) The mRNA expression levels of genes related to fatty acid oxidation. (n=6) (J) The
mRNA expression levels of genes related to mitochondrial respiratory complex subunits. (n=6) *, p < 0.05, **, p < 0.01, ***, p < 0.001. Data represent the
mean, and error bars represent SEM. NAFLD, non-alcoholic fatty liver disease; N, normal diet; H, high fat diet; HE, high-fat diet plus exercise; OXPHOS,
oxidative phosphorylation; Mitochondrial NADH dehydrogenase 1,mtnd1; Mitochondrial NADH dehydrogenase 6, mtnd6. Acyl-CoA dehydrogenase medium
chain, acadm; Carnitine palmitoyltransferase 1A, cpt1a; Peroxisome proliferator-activated receptor alpha b, pparab); NADH:ubiquinone oxidoreductase
subunit A9a, ndufa9a; Succinate dehydrogenase complex, subunit A, sdha; Ubiquinol-cytochrome c reductase core protein 2b, uqcrc2b; cytochrome c
oxidase subunit 4I1, cox4i1; ATP synthase F1 subunit beta, atp5f1b. ns, not significant.
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FIGURE 5

Swimming exercise restores mitophagy in diet-induced NAFLD model zebrafish livers. (A) Representative TEM of zebrafish liver. (B) Western-blot of
PINK1, PARKIN, and p62 (n=6). Protein expression levels of (C) PINK1, (D) PARKIN, and (E) p62 according to densitometry. * p < 0.05, ** p < 0.01, ***
p < 0.001. Data represent the mean, and error bars represent SEM. Scale bar on TEM 20000× micrograph, 1 mm. The red arrows indicated the
mitophagosomes. NAFLD, non-alcoholic fatty liver disease; N, normal diet; H, high fat diet; HE, high-fat diet plus exercise. ns, not significant.
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