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Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a
long-term deployment of an autonomous underwater vehicle for data collection. A new
generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum
glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-
aware capabilities. These new vehicles provide an effective solution to study different
oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the
ocean environment has forces and moments from changing water currents which are
generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not
practical to generate a simple trajectory from an initial location to a goal location in an
uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due
to disturbances resulted fromwater currents. Since state estimation remains challenging in
underwater conditions, feedback planning must incorporate state uncertainty that can be
framed into a stochastic energy-aware path planning problem. This article presents an
energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an
underwater environment under motion and sensor uncertainties. Our method uses ocean
dynamics from a predictive ocean model to understand the water flow pattern and
introduces a goal-constrained belief space to make the feedback plan synthesis
computationally tractable. Energy-aware feedback plans for different water current
layers are synthesized through sampling and ocean dynamics. The synthesized
feedback plans provide strategies for the vehicle that drive it from an environment’s
initial location toward the goal location. We validate our method through extensive
simulations involving the Tethys vehicle’s kinematic model and incorporating actual
ocean model prediction data.
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1 INTRODUCTION

Ocean ecosystems are complex and have high variability in both
time and space. Consequently, ocean scientists must collect data
over long periods to obtain a synoptic view of ocean ecosystems
and understand their spatiotemporal variability. To support data
collection, autonomous underwater vehicles (AUVs) are
increasingly being used for studying different oceanic
phenomena such as oil spill mapping (Kinsey et al., 2011),
harmful algal blooms (Das et al., 2010), phytoplankton and
zooplankton communities (Kalmbach et al., 2017), and coral
bleaching (Manderson et al., 2017). These AUVs can be classified
into two categories: 1) propeller-driven vehicles, such as the
Dorado class, which can move fast and gather numerous
sensor observations but are limited in deployment time to
multiple hours; and 2) minimally-actuated vehicles such as
drifters, profiling floats, and gliders that move slower, but can
remain on deployment for tens of days to multiple weeks.

A new generation of the long-range autonomous underwater
vehicles (LRAUVs), i.e., Tethys, combines the advantages of both
minimally-actuated and propeller-driven AUVs (Hobson et al.,
2012). These LRAUVs can move quickly for hundreds of
kilometers, float with water currents, and carry a broad range
of data collection sensors. They can also control their buoyancy
for changing depths in the water and the angle at which they
move through the water. By mixing modalities, an LRAUV can be
deployed in the water for weeks at a time and navigate challenging
ocean current conditions for long periods. Two instances of
deployed Tethys AUVs are shown in Figure 1. A planning
and control technique for this vehicle is critical to increase its
autonomy and generate mission trajectories during long-range
operations. The execution of a planned trajectory for this vehicle
is also challenging due to ocean currents’ variability and
uncertainty. Thus, it is not practical to generate a simple
navigation trajectory from an initial location to a goal location
in a dynamic ocean environment because the vehicle can deviate
from its trajectory due to motion noise and cannot estimate its
state accurately in underwater environments due to sensor noise.

To address these challenges, we consider the use of feedback
motion planning for an LRAUV by combining its kinematic
modeling and an ocean dynamic model while also incorporating
motion and sensor uncertainties. A feedback plan is calculated over
each ocean current layer in an underwater environment for a vehicle
inspired by our previous work (Alam et al., 2020) so that the vehicle

can adapt its trajectory from any deviated state in the presence of any
noise or modeling errors. Furthermore, this feedback plan is crucial
when the vehicle state is not fully observable from sensor readings.
For such vehicles with partially observable states, a Partially
Observable Markov Decision Process (POMDP) provides a
standard mathematical model for vehicle motion planning under
uncertainties. The two major factors make solving our problem
particularly difficult: 1) for the POMDP formulation, finding the
optimal solution is formally hard (NP-hard or PSPACE-hard), and 2)
our objective is to compute stochastic energy-aware feedback plans
using ocean dynamics in contrast to other prior POMDP feedback
planning methods that calculate the stochastic shortest path. A large
body of existing research focuses on the stochastic shortest path
problem without considering energy constraints. However, it may be
unrealistic to assume that the vehicle has unlimited resources inmany
applications. A more realistic model would consider that an
autonomous vehicle has limited stored energy, which continually
depletes as it operates. Here, we address this constraint and propose
an extension to the POMDP framework that includes energy
awareness. Although energy awareness should take into account
an initial energy condition, the efficiency of actuation, and the
drag effect, our method mostly utilizes ocean currents in our
calculations.

Contributions
In this article, we present a method to synthesize feedback plans
for an LRAUV in an underwater environment under motion and
sensor uncertainties. First, we develop an ocean dynamic model
from ocean current prediction data. Second, a goal-constrained
belief space is introduced to make the feedback plan synthesis
computationally tractable. Finally, energy-aware feedback plans
for several water current layers are synthesized by utilizing
sampling and the ocean dynamic model.

A preliminary version of this article appeared in (Orioke et al.,
2019). This article is fundamentally different in that it extends (Orioke
et al., 2019) by incorporating motion uncertainty and sensor
uncertainty coupled with energy awareness from the water flow of
an underwater environment within a modified POMDP framework.

2 RELATED WORK

The feedback mission control of autonomous underwater
vehicles in dynamic and spatiotemporal aquatic environments

FIGURE 1 | Two instances of a Tethys-class vehicle deployed in the ocean (MBARI, 2009).
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has attracted a great deal of interest. A feedback trajectory
tracking scheme was developed for an AUV in a dynamic
oceanic environment with modeled and unmodeled
uncertainties (Sanyal and Chyba, 2009). An informative
feedback plan was generated for AUVs to visit essential
locations by estimating Kriging errors from spatiotemporal
fields (Reis et al., 2018). An obstacle avoidance method
(Kawano, 2006) is presented, where an MDP-based re-planner
considers only the geometrical properties of obstacles and the
dynamics and kinematics of an AUV to find and track its target
path. An adaptive mission plan for an AUV according to its
available resources, such as battery and memory usage, is
proposed to add or remove locations for data collection tasks
in underwater environments (Harris and Dearden, 2012).

A finite-state automata-based supervisory feedback control
(Xu and Feng, 2009) is presented for obstacle avoidance by an
AUV. A temporal plan is calculated in (Cashmore et al., 2014) for
AUVmission control that optimizes the time taken to complete a
single inspection tour. A feedback and replanning framework
(Cashmore et al., 2014) is integrated along with the temporal plan
in the Robot Operating System (ROS). Sampling Based Model
Predictive Control (SBMPC) (Caldwell et al., 2010) is utilized to
simultaneously generate control inputs and feasible trajectories
for an AUV in the presence of nonlinear constraints.

Open-loop trajectory design methods (Chyba et al., 2009;
Smith et al., 2010) drive an AUV from a given initial location
to the desired goal location, minimizing a cost in terms of energy
and time taken by the vehicle. The implementation of open-loop
trajectories for AUVs works well in environments without any
model uncertainties. In our previous work (Alam et al., 2018a,
2020), we have proposed an open-loop approach for solving the
problem of deploying a set of minimally-actuated drifters for
persistent monitoring of an aquatic environment. In our another
work (Alam et al., 2018b), we predicted the localized trajectory of
a drifter for a sequence of compass observations during its
deployment in a marine environment. We presented a closed-
loop approach (Alam et al., 2018b) when an AUV has a
considerable unpredictability of executing its action in a
dynamic marine environment. Moreover, the previous studies
(Bellingham et al., 2010; Hobson et al., 2012) on the Tethys AUV
described the mission and other capabilities of the vehicle.
However, there is no work on the development of a planning
algorithm for controlling the vehicle.

Various types of rewards modification in POMDPs have been
investigated in previous research efforts (Lee et al., 2018; Kim
et al., 2019). Typically, the reward function in POMDPs is
designed to solve the stochastic shortest path problem, where
the goal is to compute a feedback plan that reaches a target state
from a known initial state by maximizing the expected total
reward. From a motion planning point of view, the reward can be
replaced by a cost, where the goal is to minimize the expected
total cost. In both cases, the sequence of rewards or costs,
however, can be aggregated by considering the discounted
reward (cost) or the average reward (cost).

A point-based algorithm to calculate approximate POMDP
solutions is presented combining the full and partial observable
components of an AUV’s state to reduce the dimension of its

belief space (Ong et al., 2009). An efficient point-based POMDP
algorithm for AUVnavigation (Kurniawati et al., 2008) exploiting
the optimally reachable states is developed to improve
computational efficiency. A point-based POMDP approach
(Kurniawati and Patrikalakis, 2013) is presented, where the
original solution is updated by modifying a set of sample
beliefs. The planning for hydrothermal vent mapping
problems using information from plume detections is modeled
as a POMDP utilizing the reachable states as the current state of
an AUV (Saigol et al., 2009). In this work, an information
likelihood algorithm is proposed turning the POMDP into an
information state MDP. An online POMDP solver (Kurniawati
and Yadav, 2016) based on an adaptive belief tree is proposed to
improve the existing solution and update the solution when
replanning is needed in dynamic environments.

To the best of our knowledge, this is the first work for
synthesizing energy-aware feedback plans from a POMDP
solution for an underwater vehicle using water flow under
motion and sensor uncertainties. In our work, we utilize an
LRAUV’s sensor readings to control its mission operation,
taking into account its several drifting and actuation capabilities.

3 PRELIMINARIES

In this section, we describe a representation of an underwater
environment and motion and observation (sensing) models for
our vehicle with relevant definitions. Then, we formulate our
problem of interest.

First, we consider a 3-D environment where a workspace is an
ocean environment denoted as W ⊂ R3. The workspace is
divided into a set of 2-D water current layers at different
depths of the environment which are represented by the third
dimension. Let L be the total number of water current layers in
the environment.

Definition 3.1 (Workspace). The workspace is defined as
W � W1∪W2∪/∪WL. At each current layer, we model the
workspace Wl ⊂ R2, where l ∈ {1, . . . , L}, as a polygonal
environment. Let Ol ⊂ R2 be the land and littoral region of
the environment at each layer which is considered an
inaccessible region for the vehicle. The free water space at
each current layer is composed of all navigable locations for
the vehicle, and it is defined as El � Wl∖Ol . The free water space in
the whole workspace is denoted by E � E1∪E2∪/∪EL. We
discretize each workspace layer Wl as a 2-D grid. Each grid
point or location, denoted as q, has a geographic coordinate in the
form of longitude, latitude, and depth (water current layer)
q � (x, y, l), where x, y ∈ R and l ∈ {1, . . . , L}.

Second, in our vehicle motion model, we incorporate noise
and uncertainty in the vehicle’s movement to account for the
modeling error and unmodeled dynamics.

Definition 3.2 (Motion Model). The state space for the vehicle
is defined as X � E × Θ in which Θ is the set of angles such that
θ ∈ Θ, and θ represents the vehicle’s orientation. At time t, the
vehicle state in the state space is represented by xt � (xt , yt , lt , θt)
in which (xt , yt , lt) denotes the vehicle’s position in the free water
space, and θt provides the vehicle’s orientation.
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The motion model f of the vehicle can be written as

xt+1 � f(xt , ut , dt), (1)

where xt is the vehicle state, dt is motion noise, and ut is the action
belonging to a set of admissible actions U such that ut ∈ U .

Third, it is assumed that our vehicle can observe its positions
and the goal location with uncertainties due to imperfect sensor
readings and the dynamic nature of an underwater environment.

Definition 3.3 (Observation Model). Let Y be the observation
space, which is the set of all possible sensor observations y ∈ Y ,
the vehicle receives. The observationmodel h of the vehicle can be
represented as below.

yt � h(xt ,wt), (2)

where wt denotes sensor noise.
It is challenging to plan in an uncertain, stochastic

environment when there are motion and observation
uncertainties in a vehicle model. To formulate this planning
problem, it is necessary to connect hidden states and
observations of our vehicle. A generic model in this context is
Partially Observable Markov Decision Processes (POMDPs).

Definition 3.4 (POMDP). A POMDP is defined by a tuple
P � (X,U , f ,R,Y , h, c), where

• X is a finite set of states.
• U is a finite set of actions, available to the vehicle.
• f(x, u, d, x′) � p(x′|x, u, d) is a probabilistic transition

function, which defines the probability of moving to a
state x′ ∈ X after taking an action u ∈ U and sustaining a
noise d in a state x ∈ X.

• R(x, u) is a reward function, which defines a real-valued
reward after taking an action u ∈ U in a state x ∈ X.

• Y is a finite set of observations for the vehicle.
• h(x′, u, y) � p(y|x′, u) is a probabilistic observation

function, which defines the probability of observing y ∈ Y
after taking an action u ∈ U and reaching a state x′ ∈ X.

• c ∈ [0, 1) is a discount factor.

Due to sensor noise, observations of our vehicle provide only
partial information over the states. Planning with partial
information can be framed as a search problem in a belief
space. Let B be the belief space.

Definition 3.5 (Belief). A belief state bt ∈ B of the vehicle is
defined as a posterior distribution over all possible states given the
past actions and sensor observations
bt � (xt

∣∣∣∣u0, . . . , ut−1, y0, . . . , yt). The belief state bt can be
recursively updated with the following transition function τ
(Kim et al., 2019)

bt � τ(bt−1, ut−1, yt), (3)

in which the next belief state depends only on the current belief
state, action, and observation.

Typically, the POMDP solution can be found by solving the
equivalent belief MDP where every belief is a state.

Definition 3.6 (Belief MDP). An equivalent belief MDP is
defined by a tuple P � (B,U , τ,R, c), where

• B is the set of belief states over the POMDP states.
• U is a finite set of actions, available to the vehicle as for the

original POMDP.
• τ is the belief state transition function.
• R(b, u) is the reward function on belief states.
• c ∈ [0, 1] is a discount factor equivalent to the γ in the

original POMDP.

A feedback plan is called a solution to a belief MDP problem if
it causes the goal state to be reached from every belief state in B.
Let bg ∈ B be a goal belief state of the vehicle at any water current
layer of the environment. Our objective of the article is to
compute a feedback plan for our vehicle.

Definition 3.7 (Feedback Plan). A feedback plan π is defined as
a function over the belief space π : B→U to produce an action
π(b) � u ∈ U , for a belief state b ∈ B, to reach the goal belief
state bg .

The value function of a feedback plan π is computed from the
expected discounted reward at the current belief state b as follows:

Vπ(b) � E⎛⎝∑∞
t�0

ctR(bt , π(bt)|b0)⎞⎠, (4)

where γ is the discount factor, and b0 is the initial belief state. This
value function is maximized for the optimal feedback plan π* as
follows:

πp(b) � argmax
π

Vπ(b), ∀b ∈ B. (5)

3.1 Problem Formulation
In our 3-D workspace W, we account for different localization
uncertainties due to sensor noise for its divided 2-D water current
layer at different depths. Specifically, we consider an almost

FIGURE 2 | Localization uncertainty of a vehicle increases as it goes
down along different water current layers.
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reliable localization on the water surface layer (first water current
layer) since the GPS information is accessible to the vehicle on the
water surface. As the vehicle goes deeper in the water column, its
localization uncertainty is assumed to increase due to the implied
time increase between potential GPS fixes, as illustrated in
Figure 2. In that circumstance, the vehicle’s state is estimated
using dead-reckoning only, and the vehicle is required to navigate
to the water surface periodically to keep the localization
uncertainty tractable. Thus, the localization uncertainty for the
vehicle decreases with its upward motion in the water column; it
could conceivably quickly surface for a GPS fix with minimal time
and/or energy consumption.

When the vehicle is uncertain about its state due to sensor
noise and has also motion uncertainty, it is crucial to compute a
feedback plan that maps every belief state to an action. In
computing a feedback plan, we take the environmental water
flow into account as an ocean dynamic model. We assume that
this ocean dynamic model and the reward function are known
a-priori. Our reward function is strictly positive, monotonically
increasing toward the goal belief state, and additive. Unlike many
prior POMDP feedback planning algorithms that compute the
stochastic shortest path, our goal is to compute the stochastic
energy-aware path using the ocean dynamic model. Due to the
curse of dimensionality of the belief space, it is computationally
intractable to synthesize feedback plans for multiple water
current layers concurrently. Therefore, we assume that a high-
level planner provides an intermediate goal at each water current
layer. This motivates us to formulate the following problem to
synthesize water current layer-wise feedback plans for our
vehicle.

Problem Statement: Given an ocean environment E and its
dynamicmodel, the action set of our vehicle U, the vehicle motion
model, and a goal belief state bg , compute a feedback plan π for
each water current layer that drives the vehicle from a belief state
b of the environment to reach the goal belief state bg of the same
water current layer.

4 METHODOLOGY

In this section, we detail an energy-aware feedback planning
method that utilizes sampling and the ocean dynamic model for
solving the problem formulated in Section 3.

4.1 Ocean Dynamic Model
4.1.1 Data Acquisition
We utilize the Regional Ocean Modeling System (ROMS)
(Shchepetkin and McWilliams, 2005) predicted oceanic
current data in the Southern California Bight (SCB) region,
CA, USA, as illustrated in Figure 3A, which is contained
within 33+17′60″ N to 33+42′ N and −117+42′ E
to −118+15′36″ E. ROMS is a free-surface, split-explicit,
terrain-following, nested-grid mode, and an extensively used
ocean model. ROMS is also an open-source ocean model that
is widely accepted and supported throughout the oceanographic
and modeling communities. ROMS primarily assimilates surface
velocities from HF radar data, and it is assumed that the

forecasting for near-surface velocities is accurate in direction
and magnitude.

The four dimensions of 4-D ROMS current prediction data are
longitude, latitude, depth, and time. The ROMS current
prediction data are given at depths from 0 m to 125 m and
with 24 h forecast for each day. Each ROMS current velocity
prediction is given at depths from 0 m to 4,000 m, with a 12-h
hindcast, a 12-h nowcast, and a 48-h forecast each day. The first
24-h comprising hindcasts and nowcasts of each day are the most
accurate ocean current prediction in the ROMS model. In our
work, we utilize a concatenation of the earliest 24-h of each
prediction for each day for 30 days of predictions. The three
components of oceanic currents are northing current (α), easting
current (β), and vertical current (λ). These components are given
based on the four dimensions (time, depth, longitude, and
latitude).

4.1.2 Water Flow Characterization
We create flow fields at several water current layers from the
ROMS ocean current prediction data. Ocean current
prediction data for a specific time and at a particular water
current layer can be represented as a flow field. Let the flow
field on a location q at a particular water current layer of the
environment El be F(q). For a location q at a particular water
current layer, the easting component along the latitude axis is
denoted by μ(q), the northing component along the longitude
axis is denoted by ](q), and the vertical component at that
water current layer is denoted by ξ(q). The flow field based on
two components for a location q at that water current layer is
specified as:

F(q) � μ(q)i + ](q)j, (6)

where i and j are unit vectors along the latitude and longitude
axes, respectively.

The vertical component of the ocean current ξ(q) at several
water current layers is considered zero. Thus, we create flow fields
for three water current layers as illustrated in Figure 3B. Then, we
find flow lines of the water flow from these flow fields. Flow lines
of the water flow over the flow field F are the trajectories or paths
traveled by an omnidirectional vehicle at the given water current
layer whose vector field is the flow field.

4.2 Goal-Constrained Belief Space
It is computationally expensive to compute a feedback plan for a
given goal belief state bg of a water current layer under a finite
horizon because of the high dimensional belief space B
(Papadimitriou and Tsitsiklis, 1987). Therefore, we utilize a
reachable belief space R(b0) containing belief states from an
initial belief state b0 to compute the plan for the water current
layerWl . The reachable belief spaceR(b0) is much smaller than B
in terms of the number of belief states. Then, we construct a goal-
constrained belief space Rp(b0, bg) containing belief states from
an initial belief state b0 that drive the AUV to the goal belief state
bg of the same water current layerWl . The goal-constrained belief
space R*(b0, bg) is much smaller than the reachable belief space
R(b0) since R*(b0, bg) is pruned from B. This goal-constrained
belief space R*(b0, bg) leads to a computationally efficient

Frontiers in Robotics and AI | www.frontiersin.org March 2021 | Volume 8 | Article 6218205

Alam et al. Towards Energy-Aware Feedback Planning

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


synthesis of the optimal feedback plan π* for the water current
layer Wl because any vehicle state sample x in π* is taken within
R*(b0, bg). The representation of R*(b0, bg) is represented as an
ellipse with x0 ∼ b0 and xg ∼ bg as focal points. This R*(b0, bg)
can be expressed as

Rp(b0, bg) � {b ∈ B|‖x0 − x‖2 +
xg − x

2< δ}, (7)

where x0 ∼ b0, xg ∼ bg , x ∼ b, and δ is a threshold value which can
be tuned to obtain a desiredR*(b0, bg). An exampleR*(b0, bg) is
illustrated in Figure 4.

4.3 Energy-Aware Feedback Plan Synthesis
We develop our energy-aware feedback planning algorithm based
on the Partially Observable Monte Carlo Planning (POMCP)
algorithm (Silver and Veness, 2010). The POMCP algorithm
assumes that the optimal plan can be synthesized by
aggregating rewards of the available actions from each state
using the Monte-Carlo Tree Search (MCTS) algorithm. It is an
approximate method that does not consider energy awareness,
but it is known to extract near-optimal policies in finding the
stochastic shortest path where optimal rewards depend on the
distance from the goal state. Furthermore, the POMCP algorithm
allows us to utilize the domain knowledge. In our work, we use the
domain knowledge of the reachable belief space R* to reduce the
search space for choosing actions. Instead of searching actions
over all possible events that could happen with low probabilities,
the reachable belief space constraints the action search space for
the most likely events.

To overcome the challenges associated with solving belief
space planning, we first define a set of discrete actions and a
set of discrete outcomes. For an LRAUV planning to reach a goal
location, we consider nine actions that include actions toward
eight compass directions, i.e., N, NE, E, SE, S, SW, W, NW along

FIGURE 3 | (A) The area of interest in the SCB region, California. (B) Flow fields generated from ROMS oceanic current prediction data.

FIGURE 4 | The blue elliptical goal-constrained belief spaceR*(b0 ,bg) is
given as prior knowledge for the green goal belief state bg from the red initial
belief state b0 of the vehicle.

Algorithm 1 | Preferred_Action (h, x,U, F ,R* ).
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with drift (idle). The outcomes of actions could be three
observations, i.e., goal, intermediate, and outside. In other
words, the goal observation refers to the vehicle reaches to the

goal location, the intermediate observation refers to it moves
toward the goal location, and the outside observation refers to it
goes beyond the goal-constrained belief space. Since the outcome

Algorithm 2 | Search (h, F ,R*).

Algorithm 3 | Rollout (x, h, β, F ).

Algorithm 4 | Preferred_Action (h, x,U, F ,R* ).
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of any action is not deterministic, the LRAUV must consider all
three observations when simulating an action. For a given state x,
Algorithm 1 provides a set of preferred actions A based on the
goal-constrained belief state. Algorithm 2 returns the optimal
feedback plan π* for a water current layer from a history of belief
states.

Algorithm 3 simulates an action and keeps track of its
outcome. We refer to a complete simulated trial as a rollout
where we keep track of actions and their outcomes as history h.
To plan with energy-awareness, we incorporate the ocean
dynamic model F in Algorithm 4 as a prior to the simulator
G. Therefore, during a rollout, the set of available preferred
actions and their outcomes take advantage of the prior
knowledge. In Algorithm 4, we compute the reward values of
actions by considering the flow field. The reward value is
calculated high when a simulated action takes advantage of the
flow field. Otherwise, the reward value is calculated low. For
instance, if the vehicle simulates a particular action in a rollout,
using transition probabilities and the ocean dynamic model, we
first generate a simulated trajectory and then evaluate the
trajectory with respect to the goal location. To evaluate a
simulated trajectory, we employ the particle filter, where each

state on the trajectory is considered as a particle and the goal
location can be thought of as a landmark (see this work (Kim
et al., 2019) for a detailed explanation of particle filter in the robot
localization). When considering the next step of this rollout, the
LRAUV knows which action from the set of available actions is
more likely to drive it to the goal location by computing the
reward associated with each action.

5 EXPERIMENTAL RESULTS

In this section, we examine a Tethys-like LRAUV’s kinematic
model and evaluate its navigation solution in an underwater
environment under motion and sensing uncertainties. The
experiments are conducted on a Unix/Linux computer with
Intel Core i7 4.5 GHz processor and 32 GB memory.

5.1 LRAUV Kinematic Model
The vehicle motion is noisy due to the inherent dynamic nature of
water flow of the underwater environment. The vehicle
observation model suffers uncertainty in measuring distances
and locations in sensor-denied, such as GPS, underwater

FIGURE 5 | Executed trajectories delineated with the green lines of the vehicle (red circle) from its initial location to the goal location (green circle) applying the
synthesized feedback plans for the first water current layer (surface layer) in (A)–(D) and for the third water current layer in (E)–(H) and for the sixth water current layer in
(I)–(L). The red lines around the vehicle represent a set of preferred actions of a belief state.
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environments. We modeled our vehicle motion and observation
models under Gaussian noise. This setup also makes our Tethys
navigation problem a POMDP problem.

Let El ∈ Rn be the state space of a water current layer Wl and
U ∈ Rm be the action space of the vehicle, where m≤ n. Let
Y ∈ Rp be the observation space of the vehicle sensors. The state
transition model of our vehicle similar to a unicycle-model can be
written as

xt+1 � xt + ut cos(θt), (8)

yt+1 � yt + ut sin(θt), (9)

_θt � ωt . (10)

We incorporate water flow fields as prior knowledge in our
motion model for the vehicle. In other words, the next transition
state of the vehicle is influenced by the water flow field of a
current layer as well as its actions. The unicycle motion and
observation models for the vehicle can be expressed as

_x � f(xt , ut , dt) � Atxt + Btut + dt dt ∼ N (0,Dt), (11)

_y � h(xt ,wt) � Ctyt + wt wt ∼ N (0,Wt), (12)

in which A is the state transition matrix of dimension n × n, B is
the action transition matrix of dimension n ×m, C is the sensor
observation matrix of dimension p × n, and dt and wt represent
the motion and sensor noise from a zero-mean Gaussian with
variance Dt and Wt respectively.

The importance of incorporating water flow fields as the ocean
dynamics in our motion model is that a Tethys-like vehicle is
deployed to navigate through the water flow. However, the vehicle

can leverage pressure, velocity, and acceleration of flow fields at
times to perform a drifting action and save energy in its long-term
mission. It is also important to note that motion and sensor noises
provide motion and observation uncertainties but flow fields can
be utilized for performing a passive action (drift) with no
actuation and thus saving energy.

The updated observation model with energy awareness from
the ocean dynamics can be expressed as

_y � h(xt ,wt) � Ctyt + wt + D~u, (13)

in which the energy awareness ~u � [ϕ,ψ] and its weight
D � diag(ku, kw), where ku, kw > 0. The energy awareness for a
specific location q on the water current is expressed as

ψ � arctan(](q), μ(q)), (14)

ϕ � tanh(x2 + y2), (15)

where ϕ is the angular velocity and ψ is the linear velocity of the
flow field.

5.2 Simulation Results
A simulated Tethys-like LRAUV with the above kinematics
model can take nine actions that include actions toward eight
compass directions, i.e., N, NE, E, SE, S, SW, W, NW along with
drift (idle). The task for the vehicle is to reach a designated goal
state with an energy-aware trajectory by utilizing water currents
as much as possible. In our simulation, when LRAUV takes an
action, the outcome of that action could be any of three
observations, i.e., goal, intermediate, and outside.

TABLE 1 | Comparison of executed trajectory lengths using synthesized feedback plans for several water current layers along with plan synthesis times for a number
of hours.

Water current
layer

Hour Initial location
(longitude, latitude)

Goal location
(longitude, latitude)

Trajectory length
(km)

Plan synthesis
time (s)

2 1 (−117.84, 33.54) (−118.22, 33.54) 4.33 0.61
2 (−117.84, 33.54) (−118.22, 33.54) 4.05 0.49

4 1 (−117.84, 33.54) (−118.22, 33.54) 4.06 0.36
3 (−117.84, 33.54) (−118.22, 33.54) 3.44 0.42

6 1 (−117.84, 33.54) (−118.22, 33.54) 4.38 0.41
2 (−117.84, 33.54) (−118.22, 33.54) 4.38 0.45

FIGURE 6 | Executed trajectories (green lines) of the vehicle (red circles) from its varying initial locations to different goal locations (green circles) applying the
synthesized feedback plan on the water surface layer.
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To incorporate the water flow pattern in our simulation, we
used the ROMS (Shchepetkin and McWilliams, 2005) predicted
ocean current data observed in the SCB region. The 3-D ocean
environment was taken into account as a simulated environment
for the Tethys movements having six 2-D ocean surfaces at six
different water current layers or depths (e.g., 0 m, 5 m, 10 m,
15 m, 20 m, and 25 m). Each 2-D ocean current layer is tessellated
into a grid map. Each tessellated water current layer is a 21 × 29
grip map with a spatial resolution of 1 km × 1 km.

The feedback plan synthesis using the MCTS algorithm
depends not only on the distance between initial and goal
locations but also on the ocean dynamics. In our experiments
during the rollout step of theMCTS algorithm, we use 50 trials for
each action over an approximated belief state. We then employ
the particle filter to evaluate the rollout outcomes with respect to
the goal location. When selecting the next best action using
Algorithm 3, we utilize a simple PID controller to follow the
high-level action.

We implement our energy-aware feedback planning
algorithm for many water current layers from our ROMS
ocean current prediction data. We obtain a set of feedback
plans as an output from our layer-wise feedback plan
synthesis. Figure 5 illustrates the executed trajectories of
the vehicle applying the synthesized feedback plans for the
same pair of given initial and goal locations. For these
experiments, we use longitude and latitude coordinates to
represent the vehicle locations. We first set the vehicle’s
initial location at (−117.84, 33.54) and the vehicle needs to
reach within 1 km radius of the goal location
(−118.22, 33.54). We then show the results for the
different water current layers subject to time-varying
ocean currents taking 3 h of water currents into account.
A couple of videos related to these experiments can be found
at https://youtu.be/FEk6QghDwgI and at https://youtu.be/
9dnCam8JFTg. Table 1 shows the execution statistics of our
synthesized feedback plans in terms of trajectory lengths and
plan synthesis times. We assume that our vehicle operates at
a constant velocity of 4.5 km/h.

We also execute trajectories applying the synthesized
feedback plan for the same water current layer for the
varying pairs of initial and goal locations that are
illustrated in Figure 6. We observe that the trajectories of
our feedback plans are not straight lines. This is because our
energy-aware feedback plan chooses an action using the
ocean dynamics in Algorithm 4. Therefore, the actions
are selected to facilitate drifting through water currents,
as mentioned in Section 4.3.

6 CONCLUSION AND DISCUSSION

This article presents an energy-aware feedback planning method for
an LRAUV utilizing its kinematic model in an underwater
environment under motion and sensor uncertainties. First, we
generated flow fields for several water current layers from a
concatenated ROMS ocean current prediction data to introduce

the ocean dynamic model. Our method then synthesizes energy
and computationally efficient feedback plans on goal-constrained
belief spaces for many water current layers using the ocean dynamic
model and sampling. Our simulation results of the execution of
synthesized feedback plans demonstrated our method’s practical and
potential application. There are several exciting directions to follow
up on this research.

Our POMDP solution uses nine actions (eight neighboring
cells and drift) for planning, which fits the scales of the ROMS
resolutions (kilometers) and allows us to treat the LRAUV as a
unicycle vehicle. We believe that our method can be easily
generalized to incorporate modeling AUV dynamics in
shorter spatial scales. We are currently using our planner,
but a realistic AUV simulator (Manhães et al., 2016), could
be used as a black box to generate the next states. Paring our
planner with a physically realistic simulation will help us avoid
complicated system identification issues and extend our
methodology’s range of applications. Additionally, we would
like to incorporate an initial amount of available energy, the
actuator efficiency, and the drag effect in our energy model.

One desirable feature of AUV deployments in many scenarios
is avoiding constant resurfacing due to energy, stealth, and
collision safety constraints. The vehicle can collide with ships
and jeopardize its mission. We are currently extending our
framework to incorporate dynamic obstacles on the surface,
representing, for example, boats and other vessels. We are
interested in the short term to generalize this idea to other
external motion fields that can be used by autonomous
vehicles to use their resources efficiently. Aerial platforms such
as blimps and balloons (Das et al., 2003; Wolf et al., 2010) can
provide another exciting study case for our ideas.
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