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Social robots have been shown to be promising tools for delivering therapeutic tasks for
children with Autism Spectrum Disorder (ASD). However, their efficacy is currently limited
by a lack of flexibility of the robot’s social behavior to successfully meet therapeutic and
interaction goals. Robot-assisted interventions are often based on structured tasks where
the robot sequentially guides the child towards the task goal. Motivated by a need for
personalization to accommodate a diverse set of children profiles, this paper investigates
the effect of different robot action sequences in structured socially interactive tasks
targeting attention skills in children with different ASD profiles. Based on an autism
diagnostic tool, we devised a robotic prompting scheme on a NAO humanoid robot,
aimed at eliciting goal behaviors from the child, and integrated it in a novel interactive
storytelling scenario involving screens. We programmed the robot to operate in three
different modes: diagnostic-inspired (Assess), personalized therapy-inspired (Therapy),
and random (Explore). Our exploratory study with 11 young children with ASD highlights
the usefulness and limitations of each mode according to different possible interaction
goals, and paves the way towards more complex methods for balancing short-term and
long-term goals in personalized robot-assisted therapy.

Keywords: socially assistive robots, autism therapy, action selection, storytelling, attention skills, personalization,
human-robot interaction

1 INTRODUCTION

Autism Spectrum Disorder (ASD) is a set of developmental conditions that affect an individual’s
social abilities, verbal and non-verbal communication, and potentially motor and cognitive skills
(APA 2013). In past years, the introduction of robots in therapy for children with ASD has gained
increased interest (Diehl et al., 2012; Scassellati et al., 2012; Thill et al., 2012; Cabibihan et al., 2013;
Huijnen et al., 2017). Socially assistive (humanoid) robots offer a number of characteristics that make
them attractive tools for use in ASD therapy. They are predictable, which can help reduce the anxiety
that some children may experience when navigating the uncertainty of a social interaction; they are
engaging, which can allow for richer and more sustained interactions during therapy; and they are
simplified social models of humans, which allows children to explore a more basic version of social
interactions before applying their learned skills to interactions with people. This paper considers a
robot-assisted autism therapy scenario specifically targeting attention skills, a major area of
impairment for young children with ASD (APA 2013). These attention skills include the ability
to direct one’s attention from one object to another when prompted, and constitute a crucial
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developmental milestone needed to unlock more complex social
abilities throughout development (e.g., Baron-Cohen (1989);
Mundy et al. (1990); Murza et al. (2016)).

Due to the high variability across different children with ASD
and the high level of uncertainty when interacting with them,
autism therapists heavily rely on personalization strategies. Every
therapy session is different depending on the ASD profile of the
child, their responsiveness to given stimuli, and their level of
engagement with the task at hand (Schaaf and Roley 2006).
While therapists engage in such strategies naturally, thanks to
years of professional experience, the challenges in applying these
principles to effective robot-assisted therapeutic tasks are
numerous. These challenges include:

• Assessment—Building useful profiles of children interacting
with robots consists in assessing features characterizing
their interaction with the robot. This is a challenging
goal for several reasons.

First, children’s response to robots may significantly differ
from their response to humans (Bekele et al., 2014). As a result,
there might not be a systematic way to predict response to a robot
given data on interaction with a human. Second, the cost of
exploration may be high. Individuals with ASD are often
extremely sensitive to details, and a single “wrong step” in the
robot’s behavior may result in serious consequences, such as
jeopardizing the willingness of the child to interact again with the
robot. Finally, the amount of data that a robot can collect with a
specific child is limited, which makes it difficult to estimate, from
scarce data, child features that are useful for the interaction.

In this work, we base our feature assessment method on
standard diagnostic procedures widely used by human therapists.

• Personalization methods—Personalization of actions
selected during a social interaction plays a crucial role in the
context of autism therapy, but is still lacking in socially assistive
robotics research. The most effective approach in human-
administered therapy is to tailor the “just-right challenge” to
each individual (Schaaf and Roley 2006). Effectively, this strategy
translates into finding the right balance between making social
cues “easy enough” to limit task duration and maintain
engagement, but “hard enough” to promote improvement over
time by challenging current child abilities.

In this work, our personalization strategy in mode Therapy
aligns with typical strategies followed by human therapists that
have been shown to promote learning in the long-term.

• Integration in naturalistic context—Since most ASD therapy
tasks rely on aspects of social interaction, it is necessary to
integrate them in an engaging scenario with a consistent
context and progression. Maintaining stable engagement levels
with such a population is particularly challenging and also
particularly helpful as it reduces uncertainty in the robot’s
ability to predict children’s responses.

In this work, we integrate structured tasks of interest within a
larger interactive storytelling scenario.

While different methods for personalization have been
investigated across a variety of therapeutic tasks and scenarios,
three main aspects are overlooked in the existing socially assistive

robotics literature (see Section 2). First, most personalization
methods don’t explicitly account for the fact that children will
often require several trials by the robot before they respond
appropriately (according to the pre-defined task goal). Also,
the methods that do support multiple robot trials don’t
investigate how different sequencing methods for consecutive
robot actions may affect interaction-related or therapeutic
metrics. Second, existing personalized action selection methods
don’t take into account the value of variability (loosely, how
diverse actions in a given sequence are). We hypothesize that
variability, while not necessarily serving a therapeutic purpose,
may play an important role in maintaining the fluency of the
interaction. Third, it remains unclear whether and how diagnostic
information (obtained through child-therapist interaction) can
inform child-robot interaction. This paper attempts to fill these
three gaps by first reasoning about action sequences instead of
individual actions for each instance of a task; second, by
controlling for different levels of variability within these
sequences across the different modes (Assess, Therapy,
Explore); and third, by including diagnostic information as
part of the empirical analysis of the study.

In this paper, we report on an exploratory study whereby a
NAO humanoid robot engages with 11 children with different
ASD severities in a storytelling scenario. Our scenario integrates
structured tasks inspired by the Autism Diagnostic Observation
Schedule (ADOS) (Lord et al., 2012), the gold standard tool for
ASD diagnosis. The study, run in collaboration with a child
development center at a Portuguese hospital, aimed at analyzing
the role of action sequencing on children’s response to the robot’s
actions. While the actions available to the robot within the
structured tasks were pre-defined, we controlled the action
sequences that the robot executed within different instances of
the same task. In particular, we considered three modes of
operation for the robot, corresponding to three different ways
of generating action sequences. The first mode, Assess, is inspired
by the ADOS procedure within the tasks of interest. The second
mode, Therapy, uses the profile assessed in the previous mode to
generate action sequences inspired by the way therapists would
select their actions in alignment with therapeutic goals. The third
mode, Explore, generates completely random action sequences.

The rest of the paper is organized as follows. After discussing
related work (Section 2), we detail our use of the ADOS tool for
developing a set of prompting actions and modes in structured
tasks on a NAO humanoid robot (Section 3). Section 4 explains
the integration of these tasks in an interactive storytelling
scenario involving the robot and two controllable screens.
Section 5 reports on our empirical study of children’s
behavioral responses during a session with the robot. We
proceed to discussing our findings in Section 7 and end with
conclusions and future work in Section 8.

2 RELATED WORK

This section presents an overview of related work in robot
personalization and attention-related tasks, identifying the
research gap in existing research. Furthermore, as adjacent but
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relevant topics to situate our approach, we briefly mention
relevant work on robot assessment of social child behavior,
and interactive storytelling, with a focus on the ASD domain.

2.1 Robot Personalization and Adaptation in
the Autism Spectrum Disorder Domain
Personalization can be understood as a special case of general
adaptation (changing an agent’s behavior as a function of
different conditions). Personalization means that the robot adapts
its behavior according to inter-individual differences. In contrast, in
what follows, we will use the term “adaptation” to specifically refer to
intra-individual adaptation, whereby a robot changes its behavior to
account for changes in an individual’s behavior over time.

While personalization in human-robot interaction has been an
increasingly relevant topics across several different domains
(Ahmad et al., 2017; Rossi et al., 2017), in the autism domain
many existing approaches still heavily rely on tele-operation or
user-driven content customization (Palestra et al., 2016).
According to Esteban et al. (2017), higher levels of autonomy
are needed to bootstrap the performance and flexibility of such
systems. The authors believe that supervised autonomy would be
the ideal solution, leveraging the advantages that autonomy has to
offer while including the therapist in the loop to ensure that the
robot does not perform detrimental actions. The authors also
developed a platform-independent architecture for automatic
personalization (Cao et al., 2018) of robot behavior. On the
perception side, the personalization of algorithms for detecting
child behaviors, for instance related to affect and engagement, has
also been investigated (Rudovic et al., 2018). These works
highlight the importance of personalization in every
component of a system developed for ASD intervention.

Other major aspects of socially assistive autonomy are real-
time and long-term adaptation. Examples of adaptive systems in
the autism context include an affective robot adaptation method
through multimodal measurements of affect to regulate a
basketball-based task (Conn et al., 2008), and a model for
graded robotic cueing in an imitation task (Greczek et al.,
2014). Recent work by Clabaugh et al. (2019) demonstrated
the effectiveness of their personalization and adaptation
approach for in-home robot-assisted therapy. In our work, the
robot adjusts its action level when no success is observed, which
can be seen as an example of basic adaptation.

Other methods for long-term adaptation, including changing
exercise difficulty based on assessed skill or past performance have
been investigated in therapy and tutoring settings (Leyzberg et al.
(2014); Scassellati et al. (2018)), however it is still unclear how
personalization can be integrated as soon as the first session, or how
the concept of “difficulty” can be also transferred to social cues
rather than problem-solving tasks. It is also still unclear to date how
personalized robot behavior should balance therapeutic goals and
other objectives of the interaction, such as maintaining engagement.

2.2 Attention-Related Robotic Tasks
Attention skills are a major area of impairment of ASD children
as such an impairment deprives them of social information from
an early age, resulting in a disruption of their development

(Mundy and Neal 2000). A significant attention impairment
relates to joint attention, which pertains to the ability to
coordinate attention between a social partner and an object or
event, allowing two people to share awareness of those objects or
events (see e.g., Dawson et al. (2004)). One example of joint
attention behavior is to follow someone’s eye gaze or follow
someone’s pointing towards a target object. Following the
direction of someone’s gaze emerges early in the development
and it is seen a facilitator of social learning, particularly language
(Mundy and Newell 2007). Following someone’s gaze and paying
attention to what they are looking at, helps children organize and
process unstructured social situations (Mundy and Newell 2007).
Mundy et al. (2007) found that, after controlling for general
cognition, the frequency with which children engage in joint
attention relates to important developmental aspects such
language acquisition, IQ, social competence and self-regulation.

Given the importance of joint attention in children’s
development, it is not surprising that this is a targeted
behavior for therapy in ASD children who show significant
impairments in this area (Baron-Cohen 1989). As such, several
works have looked at robot-mediated solutions to train joint
attention skills of children with ASD. In particular, Anzalone
et al. (2014) investigated a spatio-temporal model of response to
robots versus humans, showing generally lower response to
robots. Furthermore, the Michelangelo project (Anzalone
et al., 2019) tested three protocols for eliciting joint attention
in Typically Developing (TD) children and children with ASD, in
a setup similar to the one in our work. As expected, the authors
found that TD children responded to joint attention prompts
more frequently. The same authors also found improvement on
children with ASD responses to joint attention following a
6 month training protocol, which shows promise and the
usefulness of using a robot to train joint attention in children
with ASD. Other work in this space has analyzed gaze patterns in
different gaze orienting tasks (Edmunds et al., 2017) as well as
non-verbal cognitive tasks (Kunda et al., 2016).

Robotic interventions for joint attention do show promise,
however, the extent to which they can be integrated in a successful
therapy plan needs additional research. For example, Cao et al.
(2019) tested responsive joint attention for TD children and
children with ASD in two conditions: elicited by a human and
elicited by a robot. Overall the results show that despite an
increased interest in the robot’s face, children spent more time
looking at targets in the human condition. This does not mean
that robots do not have an important role and should not be used
to train joint attention but it does raise a question of how robots
can improve joint attention skills of children with ASD. The
choice of behaviours and protocols seems to have a crucial role in
the design of a robotic interaction aimed at improving joint
attention skills.

The work that comes closest to this work is that of Warren
et al. (2015), who developed ADOS-inspired robotic tasks
involving screens as targets for joint attention prompts. In our
work, we use a similar setup, but with different research
questions. While their focus was on studying the effect of
fixed action sequences throughout multiple sessions, our focus
is to study and compare alternative action sequences within a
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session. Our study also goes a step further by integrating the setup
in a naturalistic storytelling interaction, considering additional
tasks/prompts, providing a validation of response coding (see
Section 6.1), and looking at a larger sample size.

2.3 Robot-Administered Assessment
In addition to therapy, perhaps the most investigated use of
robots in relation to autism is assessment for the sake of diagnosis.
The idea is to take advantage of the objectivity and controllability
of robots to avoid the variability and subjectivity of human-
administered assessment.

The work in robot-administered diagnosis has considered
several subproblems, such as developing quantitative metrics
of social response (Scassellati 2005), developing standardized
tasks inspired by existing diagnostic tools (Petric et al., 2014),
or researching algorithms for relevant robot perception (Kokot
et al., 2018; Presecan et al., 2018). Petric et al. (2017) developed a
framework for robot-administered diagnosis based on a Partially
Observable Markov Decision Process (POMDP) formulation, to
assess specific child features, using robot perception of multiple
social and communication cues. They developed four robotic
tasks inspired by the ADOS, and tested them in a clinical setting
(Petric et al., 2014).

In this work, one of the robot’s modes of operation uses a
similar approach to robot control to estimate a profile of the child
for the purpose of subsequent personalization, and not for precise
diagnosis. In our previous work (Baraka et al., 2019), we provided
an alternative role for robots in the diagnosis process by using the
robot as a simulation platform for complementing the diagnostic
training of therapists. We believe that the human aspect of
diagnosis is an important one, as ultimately an evaluation of
ASD should be measured with respect to a human rather than an
artificial agent.

2.4 Robot Storytelling
While not central to our research goals, the use of storytelling is
an important part of our work that supports the integration of the
tasks of interest into a more naturalistic context. We therefore
provide a brief overview of related work on robot storytelling.

Storytelling has often been used in human-robot interaction
and technology-based scenarios, with both adults and children,
for a wide array of educational goals (Tartaro 2006; Dillon and
Underwood 2012; Fridin 2014; Kory Westlund et al., 2017).
However, the interactive component of these scenarios
remains limited, and has been the focus of recent investigation
(Paradeda et al., 2017; Park et al., 2017; Ligthart et al., 2020). In
particular, Sun et al. (2017) introduced a collaborative storytelling
scenario in which both the robot and the child contribute to
create a story. While most storytelling scenarios focus on the
expressivity of the robot and the educational goals, in this work
we introduced novel ways of introducing interactive engagement
in robotic storytelling, through the use of screens that illustrate
and support the story with engaging video snippets.

2.5 Summary and Research Contributions
Due to the highly interdisciplinary nature of socially assistive
robotics as a research area, the relevant literature appears to be

scattered across contributions in robot behavior or interaction
design, interactive algorithms, and empirical contributions.
This paper’s main contribution to the field is empirical, in the
sense that it investigates the effectiveness of different action
sequences on child response across a spectrum of ASD
severities, in order to inform the development of automatic
personalization mechanisms in the future. The paper’s
secondary contribution is integrative, meaning that our
approach builds on and integrates a unique set of elements to
serve the main contribution. These elements are: 1) the use of
tasks that target a major impairment in individuals with ASD,
namely joint attention, prevalent in previous socially assistive
robotics work, 2) an approach to action sequence design
grounded in psychological tools and therapist expertise, and 3)
a focus on naturalistic interaction in the study design, through
interactive storytelling as a way to maintain children engaged
across multiple task instances.

In the following sections, we delve into our research
methodology.

3 AUTISM DIAGNOSTIC OBSERVATION
SCHEDULE-INSPIRED ROBOTIC
PROMPTING SCHEME
This section describes our robotic prompting scheme developed
for a NAO humanoid robot, and inspired by the structure of the
ADOS tool (Lord et al., 2012). The ADOS is composed of 10
standardized tasks as well as a number of features used to code
different aspects of behavior observed during the administration
session. The two robotic tasks considered in this research are
inspired by the “algorithmic” nature (clear instruction steps and
if/then conditions) of two ADOS tasks, related to joint attention
and response to name calling. After describing the interaction
setup considered, we present our developed robotic actions
inspired by these ADOS tasks. We then discuss our flexible
robot control architecture, which allows for different modes of
operation (namely Assess, Therapy, and Explore).

3.1 Interaction Setup
Figure 1 shows the physical setup used in this paper, inspired by
the work of Warren et al. (2015) who demonstrated its suitability
for young children with ASD. We found this scenario to be
attractive to explore the idea of personalization of attention-
related interactions, as it allows for both control and flexibility
when compared to scenarios involving physical objects, portable
digital devices (e.g., tablets) (Bernardo et al., 2016), or scenarios
where the child moves around the space (Melo et al., 2018). The
setup consists of a NAO robot standing on a table, at which the
child is seated, and two 49.4 cm LCD screens positioned at
around a 90° angle on both sides of the child’s chair.

The robot engages in two main tasks of focus, inspired by the
ADOS:

• “Joint Attention” task (JATT) — The robot directs the
child’s gaze from looking at the robot to looking at a
target screen where a video will play.
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• “Name Calling” task (NAME) — The robot directs the
child’s gaze from looking at the video on one of the
screen back to looking at the robot.

A “perception Wizard” provides the robot with information
about the child’s gaze behavior through a computer interface,
hidden behind a single-sided mirror at an angle that maximizes
the view to the scene. Specifically, during each of the two tasks, the
Wizard is responsible for triggering a “success” event whenever
the child performs the goal behavior for that task (i.e., orienting
their gaze in the right direction). For the JATT task, a success
triggers a short video snippet. For the NAME task, a success stops
the video playing on the screen where the child is looking. While
eye-tracking or head-tracking technology were available for us to
use, we preferred to rely on human perception, as such
technologies are too invasive and inaccurate, especially for
children with attention impairments who tend to move
considerably. Furthermore, it allows us to focus on the action
selection problem, while factoring out the additional noise that
comes with an automated perception system.

A single processing unit allows the control of each screen
individually. The Wizard’s machine runs the main software to
automatically control the behavior of both the robot and the
screens, while allowing the Wizard to provide success
information when needed. A wired network connection
through a switch between all computing units was used to
minimize delays and connectivity issues. We used the
Thalamus framework (Ribeiro et al., 2012) to facilitate
communication between the distributed modules. For safety
purposes, the robot’s feet were stuck to the table using tape to
avoid falls, as we have noticed that some children were
particularly keen on touching and poking the robot.

Next we describe the actions that we programmed the robot to
execute during the two tasks.

3.2 Action Scales
As part of the ADOS tasks, there exist systematic “algorithms” for
evaluating a child’s response to joint attention and response to

name, through scales of actions with increasing levels of
explicitness (“hierarchies of presses” in ADOS terminology).
Each action corresponds to a more or less explicit action taken
by the therapist with the common aim of eliciting a goal behavior
on the child’s part. The ADOS actions and the goal child
behaviors are summarized in columns 2–4 of Table 1.

Inspired by the structure of the ADOS tasks, we developed
similar action scales for the robot, aiming to elicit the
corresponding goal behavior from the child. Column 5 of the
table summarizes our developed robotic actions. We should point
out that the aim was not to replicate the content of the ADOS
actions with high fidelity. Rather, we came up with similar scales
adapted to our scenario and accounting for a range of responses
along the scales. Also, to ensure an increasing level of explicitness
for the actions, we structured them such that action a + 1 is a
replica of action a with an added element that either adds
intensity to the stimulus (e.g., sound on top of video) or
facilitates the understanding of the action (e.g., pointing added
to gaze). We used the SERA software architecture (Ribeiro et al.,
2016) to control the robot’s multi-modal behaviors. Speech was
automatically generated by NAO’s built-in text-to-speech engine.

We fine-tuned our actions based on pilot trials with four TD
children, two children with ASD, and one child with minimal to
no evidence of ASD (according to ADOS). Specifically, for task
JATT, we had to take special care with the behavior of the screens,
as it seemed from our pilots that the sharp transitions from a
black screen to an image or video was a very salient stimulus that
transiently overpowered the robot’s role. For this reason, we
decided to pre-load a static picture on both screens,
corresponding to the first frame of the video to be shown, and
to keep the brightness of the screens on a low setting.

3.3 Robot Control
Figure 2 shows the relation between the different modules of the
robot control architecture. Before starting the execution of the
task, the robot first generates an action sequence
Π � 〈a1, a2 . . . , aT〉, i.e., a plan of actions to be executed over
consecutive time steps. An action sequence generation module
produces these sequences according to parameters
communicated by a high-level decision maker, including task
type, robot operation mode, as well as other scenario- and child-
related parameters. The action sequence Π � 〈1, 3, 2, 2〉, for
instance, means that the robot will perform action of level 1 as
a first trial, then potentially execute more trials with actions of
level 3, 2, and again 2, until the goal behavior is observed or the
sequence is exhausted. While in this work we restrict the action
sequence length T to 4, our architecture is general enough to allow
for arbitrary sequences of any length. An action sequence
execution module executes the actions on the robot
sequentially, until either a success is triggered by the Wizard
or the sequence is exhausted. The trigger of the next action in the
sequence is a timeout in case no success occurs. Based on our
pilots, we set the duration of the timeout to 3.5 s.

3.4 Child Profile Assessment
In the ADOS, the therapist goes through the actions
hierarchically from least to most explicit until the expected

FIGURE 1 | Interaction setup. Figure is only meant for illustrative
purposes; relative positions and sizes of the components are not exact.
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response is observed, and records the level of the first successful
action. This number can be seen as a measure of abnormality of
response to the task. In this work, since we consider two tasks, the
child profile is represented as a pair of features “Response to Joint
Attention (RJA)” and “Response to Name (RNA),” denoted by
(RJA,RNA). These features take on the lowest action level (1–4) at
which a success is observed in the corresponding task. If none of the
four action levels achieve a success, we assign to the corresponding
feature a value of 5. In a typical ADOS session, features RJA and
RNA are measured only once. In a robotic scenario however, we
expect much greater variability in the response due to the novelty
effect associated with the robot, as well as the scenario as a whole. For
this reason, accurately estimating values of a feature of interest fmay
require severalmeasurements. Given nmeasurements f(1), f(2). . ., f(n),
we estimate f as:

f �
rnd ∑n

1

f i( )

n
⎛⎝ ⎞⎠ if ∑n

1

f i( )

n
mod 2 ≠ 0.5

rnd ∑n
2

f i( )

n − 1
⎛⎝ ⎞⎠ if ∑n

1

f i( )

n
mod 2 � 0.5

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where rnd () represents rounding to the nearest integer. In other
words, in case of an estimate lying exactly in the middle of two
levels, we omit the first sample. The latter is more prone to
novelty factors and is hence, in comparison to more recent
samples, less reflective of subsequent performance of the child
on the task. Eq. 1 applies for estimating both RJA and
RNA.Examples (n = 4):

f(1) � 3, f(2) � 3, f(3) � 4, f(4) � 2 → f � rnd(3+3+4+24 ) � 3
f(1) � 3, f(2) � 3, f(3) � 2, f(4) � 2 → f � rnd(3+2+23 ) � 2

3.5 Robot Modes
We consider three modes of operation for the robot during task
execution. These modes effectively translate into different action
sequences, as follows:

• Assess mode—The robot follows the action scale
hierarchically, from least to most explicit action, as is done in
the original ADOS tasks. The action sequences for this mode are
fixed for all children, and of the form Π � 〈1, 2, 3, 4〉. This mode
enables the robot to build a profile of the child by recording the
lowest action level at which the child responds for the two tasks,
as explained in the previous subsection.

• Therapy mode—The robot follows a therapy-inspired action
sequence characterized by consistency, repetition, and
personalization. For a given child feature f, the first two actions
in the action sequence are repetitions of action f, while the last two
actions are repetitions of action f + 1. In the edge cases where f = 4
or f = 5, this mode generates four repetitions of action 4.Examples:

f � 2 → Π � 〈2, 2, 3, 3〉
f � 3 → Π � 〈3, 3, 4, 4〉
f � 4 → Π � 〈4, 4, 4, 4〉.

This mode was developed in accordance with typical
therapeutic strategies, based on the concepts of “just-right
challenge” and task grading (Hersch et al., 2005; Schaaf and
Roley 2006), as well as a discussion with autism experts.

It is important to mention that the goal of this mode is not to
minimize the number of actions needed to observe a success,

TABLE 1 | Summary of our robotic actions, organized along a scale with increasing levels of explicitness (1–4), inspired by the actions of ADOS tasks.

Task Level ADOS action Robot action

1 Shift + “[Name], look!” (Gaze + speech) Shift gaze from child to target screen + “[Name], look!” (static
picture on both screens)

JATT (Goal behavior: Look at
target)

2 Shift gaze + “[Name], look at that!” (Gaze + speech + point) Shift gaze + “[Name], look at that!” + point (static
picture on both screens)

3 Shift gaze + “[Name], look at that!” + point (Gaze + speech + point + video) Shift gaze + “[Name], look at that!” + point +
play muted video on target screen (static picture on other screen)

4 Activate target (toy) (Gaze + speech + point + video + sound) Shift gaze + “[Name], look at that!” +
point + play video with localized sound on target screen (static picture on other
screen)

1 “[Name!]” “[Name!]”
NAME (Goal behavior: Look
at provider)

2 Ask parent/caregiver to call name “[Name], look over here!”
3 Ask parent/caregiver to make a familiar sound “[Name], look over here!” + blink lights
4 Ask parent/caregiver to do whatever necessary

to get child’s attention
“[Name], look over here!” + blink lights + wave arm

FIGURE 2 | Robot control architecture.
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otherwise the robot could always select the most explicit action 4.
Instead, in alignment with therapeutic goals, this mode chooses
the least explicit action that has been shown to work on a
particular child, while adapting the level to a higher one if no
success is observed after the exhaustion of half the sequence. This
choice promotes learning (in the long term) at the cost of
potentially increasing the number of actions needed for a
success to occur.

• Explore mode—The robot follows completely random action
sequences, where actions are drawn uniformly and independently
at every time step. These action sequences are characterized by
inconsistency, unpredictability, and lack of personalization, and
therefore have little therapeutic value.

We should point out that in any of the modes presented
above, the action sequence represents a plan, whose execution
is aborted if a success occurs, i.e., if the child performs the
goal behavior. While our robot control architecture allows
for more modes than the ones above, those were the ones that
best fit our scenario and research goals. Moreover, while in the
future one may consider an algorithm that alternates between an
Explore phase and an “Exploit” phase, the Therapy mode does
not update its action sequence as a function of the outcome of
mode Explore.

4 INTERACTION SCENARIO

In order to test our robotic prompting scheme in the context of an
extended social interaction, we designed and implemented an
interactive storytelling scenario, in which short excerpts of an
animated cartoon on the screens regularly support and illustrate
the robot’s speech delivery. The JATT task is repeatedly used
throughout the interaction to direct the child’s attention to one of
the two screens where the cartoon excerpt is to be shown.
Following this task, the robot uses the NAME task to call back
the child’s attention and resume the storytelling.

4.1 Storytelling Design
The story we chose is based on an episode of a Japanese cartoon,
Ox Tales, dubbed in European Portuguese. Popular in previous
generations, this amusing cartoon is much lesser known by the
current generation of children. This reduces the chances of
current children having strong (positive or negative) feelings
about it. The episode was selected based on the simplicity of
the plot and the presence of simple actions for the child to imitate,
which the robot uses to engage the child throughout the story. We
transcribed, simplified and rewrote the video episode in a
storytelling style with simple language to ensure that children
with different language abilities would be able to follow the story.
We then edited and adapted the length and organization of the
story based on our pilot trials, aiming at optimizing for child
engagement, clarity of robot speech, and plot simplicity. In
parallel to the verbal content of the story, we extracted and
edited 12 cartoon snippets of 12 s each. We handpicked
snippets that showed interesting actions throughout the story,
including four snippets whose aim is to introduce specific
characters of the story.

The robot used its built-in European Portuguese text-to-
speech engine for both the storytelling part and the interactive
tasks. Even though pre-recorded voice could have been more
engaging and natural-feeling for the sake of storytelling, the
choice of text-to-speech aligned with our long-term goal of a
personalized and adaptive solution that includes modulating
speech content automatically. As a result, we opted for the
greatest level of reliable autonomy possible on the robot side.
To increase the expressivity of the robot during storytelling, we
animated it with a “Breathing” behavior consisting of swinging its
weight side to side between each leg at a rate of 30 times per min.
We also added expressive hand gestures (palm up, randomly
alternating between left and right), inspired by simple gestures
typically used by storytellers (Ribeiro and Paiva 2012).

4.2 Interaction Timeline
Figure 3 shows the timeline of the interaction. The scenario
alternated between storytelling and interactive prompting using
the two tasks. The robot also used imitation prompts meant to
keep the child engaged (imitation ability is also commonly
impaired in children with ASD and has been the focus of
some robot-assisted interventions (Taheri et al., 2015; Zheng
et al., 2015)).

FIGURE 3 |Chronological scenario timeline (to approximate scale) along
with corresponding robot modes, illustrated with a toy example. Greyed out
portions of action sequences represent planned actions that were not
executed due to a success.
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The robot started with some greetings, which consisted in
introducing itself and asking for the child’s name until the child
responded (or the parent, in case of failure). The robot then
moved to the assessment phase, in which it presented four
characters of the story, using four instances of each task. After
the assessment phase, the robot started the main story phase. In
both phases, the robot used the cartoon snippets in the tasks to
illustrate relevant story content. We tried to balance the number
of words as much as possible between the different story parts
defined by the occurrence of the tasks. Any success or timeout in
JATT triggered the 12-s video snippet of the corresponding part
of the story. Any success or timeout in NAME turned both
screens to black for a short period of time, then updated both
screens with a new static image corresponding to the next part of
the story as the robot resumed its speech. In the imitation
prompts, the robot asked the child to imitate a total of four
gestures related to the story plot (pretending to fly, pretending to
run, covering eyes, and looking around). To further keep the child
engaged, throughout the story the robot relied on questions such
as “What do you think will happen?,” or “Will Ox Tales be able to
fly?” Right before the main story phase, as well as during the
farewell phase, the cartoon theme was played with music on both
screens.

In the assessment phase, the robot was programmed to be in
Assess mode, and performed each task a total of four times. It
used the recorded levels at which the children responded to
estimate their profile. In the main interaction phase, the robot
alternated between the Therapy and Explore modes, performing
each task a total of eight times. We remind the reader that the
Therapy mode only relied on the result from the assessment
phase, and unlike some existing machine learning algorithms that
interleave exploration and exploitation in their policies, it was not
influenced by the results of the Explore mode.

5 EMPIRICAL STUDY

Based on the scenario described in the previous section, we ran an
empirical study aimed at analyzing how children with ASD
responded to the robot’s different action sequences. The
present section provides details about the study participants
and experimental procedure.

5.1 Participants
We recruited 11 children with different ASD severities from the
Child Development Center at the Garcia de Orta Hospital in
Almada, Portugal, to participate in the study. These children did
not include the seven participants of our pilot trials. The criteria
for selection were: between two and 7 years old, and diagnosed
with ASD according to the ADOS. In addition to these criteria, we
consulted with the therapist working with those children asking
whether they thought the child would respond well to this type of
scenario (e.g., sitting on a chair for a relatively long period of
time). We also asked if there were any factors that may not make
them suitable for our scenario (e.g., fear of robots).

The ages of our sample ranged between 2 years 9 months and
7 years 1 month (M = 4.64, SD = 1.36 years). Seven were male

(63.6%) and four female (36.4%). Three children had low severity
scores, six moderate and two severe. Three of the participants
(27.3%) had interacted with a robot before (but not NAO) in the
context of a separate study. All participants successfully
completed the session, except for one who only completed the
assessment phase.

5.2 Experimental Procedure
One of the experimenters first obtained informed consent from
the child’s parent/primary caregiver for using the data collected
for research purposes, and optionally to use media for public
research communication. Because the date at which the ADOS
was administered differed significantly across children, we
decided to re-assess the features of interest (RJA and RNA) in
an interaction with a human right before the session with the
robot. The re-assessment was done by one of the examiners who
has experience with children with ASD and has a post-doctoral
level training in psychological research. Some children had the
ADOS administered the same week the study was run, so we did
not reassess them and used the available ADOS features directly.

The experimenter then brought the child into the experiment
room, along with their parent(s)/caregiver(s). Before initiating
the session, the child was given ample time to explore the robot,
and was encouraged to touch it and talk to it. During this initial
time, the Wizard controlled the robot progressively using a
library of pre-defined actions meant to attract the child in case
of lack of interest, or to calm the child in case of fear or distress.
After the child was seated and ready to interact with the robot, the
semi-autonomous control of the robot was initiated. From there
on, the experiment timeline outlined in Figure 3 started. The total
session time ranged between 15 and 20 min approximately.
Figure 4 shows some snapshots from different sessions.

The parents were instructed to minimally intervene, especially
during the tasks, so as not to bias our results. During the tasks, the
experimenter followed strict guidelines when intervention was
needed. She only intervened to make sure the child was looking at
the robot before the robot initiated the JATT task, and at the
screen (or at least away from the robot) for the NAME task, both
of which are important pre-conditions for the tasks we are
studying.

The role of the Wizard was played by a second experimenter
during all the sessions. To ensure that there was no bias in the
data he provided, we asked an autism therapist, who was agnostic
to the aims of the study, to separately record her coding of
children’s responses for later comparison. Since she was not
familiar enough with the Wizard interface, we decided that it
was best for her not to operate the interface directly, as a low
latency was crucial when triggering successes.

Throughout the interaction, the robot recorded the responses
of each child to each robot action, as either “success” or “failure,”
based on the Wizard’s input. This data was then used to compute
objective measures to compare the effectiveness of the different
modes (see Section 6.3).

5.3 Counterbalancing
In the assessment phase, the choice of screen (left/right) in the
JATT task alternated between consecutive tasks, and the choice of
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first screen was counterbalanced across participants. In the main
interaction phase, the choice of screen was randomly selected
while ensuring equal left/right proportions for each participant
and not allowing more than two consecutive instances on the
same screen, in order to avoid any practice effect. Also, the choice
of the first mode in the alternating sequence (Therapy/Explore)
was counterbalanced across participants.

6 RESULTS

We extracted all relevant data from the robot logs, and
analyzed them using a combination of SPSS, Matlab and
Excel software. Our analysis mainly revolved around
children’s responses to the action sequences in the different
robot modes.

6.1 Wizard Coding Method Validation
We computed Cohen’s Kappa interrater agreement between the
Wizard’s coding, which dictated the robot’s behavior, and the
coding of the autism expert present during the sessions. We
compared the ordinal variables representing the index in the
action sequence at which a success occurred. If no success
occurred after exhaustion of the action sequence, we assigned
a value of 5. If a success was triggered by theWizard but not coded
as a valid success by the expert, we assigned to the expert’s coding
a unique value (e.g., 0). Our analysis shows a strong agreement
between the two raters (κ = 0.89, n = 248), based on common
interpretation guidelines (McHugh, 2012). Based on observation,
we believe that disagreements mainly occurred when the children
exhibited multiple quick consecutive gaze shifts, which
introduced ambiguity in coding.

6.2 Assessment Results
Figure 5 reports the values of features RJA and RNA as assessed
by the robot, according to Eq. 1, and the values of these features
according to the human-administrated ADOS assessment (see
Section 5.2). Looking at the plots in Figure 5, the immediate
observation is a difference in spread. A paired samples
Friedman’s two-way analysis of variance by ranks showed that
the distributions between robot-assessed and human-assessed
features are statistically significantly different (χ2 (1) = 11.00**,
p = 0.001 for RJA, and χ2 (1) = 4.46*, p = 0.035 for RNA).
Similarly, a Spearman correlation test showed no statistically
significantly correlation between them (rS (9) = 0.39, p = 0.236
for RJA, and rS (9) = 0.30, p = 0.377 for RNA). On the other
hand, there was a strong statistically significant correlation
between the two robot-assessed features (rS (9) = 0.63*, p =
0.037) and between the two human-assessed features (rS (9) =
0.66*, p = 0.026).

These results show that children’s response to the human-
administered ADOS tasks do not directly correlate to their
response to a similar interaction with a robot, but that the
cross-task response relationship is maintained. Moreover, the
children overall needed significantly higher action levels with the
robot than when interacting with a human (M = 2.55 versusM =
1.45 for RJA, and M = 2.09 versus M = 1.64 for RNA). In
particular, on the one hand, the human-assessed values didn’t
exceed a value of 2, which is most likely indirectly due to our
selection criteria favoring enough attention span to follow a story
(a criteria which seems to correlate with our feature values since
both are related to attention). In contrast, on the other hand, the
robot-assessed RJA values spanned all 4 possible values, which
means that children where less sensitive to the robot’s stimuli in
comparison with the human’s.

FIGURE 4 | Snapshots from the experimental sessions. (A), (B): JATT successes for the right and left screen respectively (right screen not shown). (C): NAME
success for action level 4. (D): Child imitating the robot’s movement as instructed during storytelling for increased engagement. Images are shared under informed
consent of parent/primary caregiver.
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In addition to RJA and RNA, an autism expert also coded the
response to the four imitation prompts performed by the robot
throughout the story. For each prompt, she coded the response
into three ordinal categories (satisfactory 1), below average 2),
and poor 3)). We then aggregated these responses into a single
feature for each child according to Eq. 1. A Spearman correlation
test showed a strong and statistically significant correlation
between the response to the robot’s imitation prompts and the
robot-assessed RJA (rS (8) = 0.73*, p = 0.016), as well as the robot-
assessed RNA (rS (8) = 0.66*, p = 0.037).

In the ADOS, there is no feature specifically dedicated to
response to imitation prompts (although there is a task that
revolves around functional and symbolic imitation). Therefore,
before the session the examiner who performed the reassessment of
RJA and RNA also assessed imitation ability. She simply performed
one of the prompts the robot would perform (namely, the
“Running” prompt) and asked the child to imitate her. She then
coded the response in the same three categories as above. The
response to robot-prompted imitation was not found to be
statistically significant correlated with the response to human-
prompted imitation (rS (8) = 0.40, p = 0.254). Similarly to the
results with RJA and RNA, children had statistically significantly
poorer response on imitation with the robot than with the human,
as shown by a Wilcoxon signed rank test (Z < 0.001*, p = 0.015).
Interestingly, the response to human-prompted imitation
correlated with both the robot-assessed RJA (rS (8) = 0.73*, p =
0.016) and with the robot-assessed RNA (rS (8) = 0.66*, p = 0.037).

6.3 Comparison of Modes
In analyzing the occurrence of successes across the different
modes, we used four different metrics:

• Within-4 success rate—i.e., the percentage of task instances
in which a success occurred within the exhaustion of a full
action sequence (i.e., at most 4 trials).

• Within-2 success rate—i.e., the percentage of instances in
which a success occurred within at most two trials of an
action sequence.

• Average number of trials—i.e., the average number of
actions the robot had to execute during a task instance.

• Average successful action level—i.e., the average level of all
actions that caused a success.

To illustrate the computation of these metrics using the
example of Figure 3 for a single interaction, the Therapy
mode shows successes after trials 2, 1, none, and 3, for the
first, second, third, and fourth instances of JATT in that mode
respectively. As a result, the within-4 success rate is 3/4 = 75%, the
within-2 success rate is 2/4 = 50%, the average number of trials is
(2 + 1+5 + 3)/4 = 2.75 (no success after 4 trials is treated as a 5),
and the average successful level is (3 + 3+4)/3 = 3.33 (no success
after 4 trials ignored).

The results for these four metrics in our study across all
participants are reported in Table 2. Our comparative analysis of
the different modes showed that our sample was not large enough to
achieve statistical significance on most of the pairwise comparisons
of modes for the different metrics, as evaluated by both a repeated
measures and a mixed-effects model (p > 0.05). Therefore, we advise
the reader to take the following analysis merely as suggestive
comparative results to guide further investigation.

Overall, the Assess mode required the lowest action level on
average to achieve a success, but at the cost of the highest average
number of trials. It also had the highest within-4 success rate,
which can be explained by the fact that it was ensuring that the
children were exposed to a maximum number of different
actions. The Therapy mode needed lower action levels to
achieve a success on average as compared to the Explore
mode, but higher than the Assess mode. However it needed
less trials than the Assess mode, andmore than the Explore mode.
On the other hand, it had the lowest success rate on both metrics,
except for task JATT where it outperformed mode Assess. The
Explore mode had the highest within-2 success rate and the
lowest average number of trials, but at the cost of needing the
highest action level on average to achieve a success.

Since cross-task comparisons in the Assess mode were
previously included, we focus our cross-task analysis here on

FIGURE 5 | Distribution of children profiles during interaction with the robot and with a human (ADOS assessment) in similar tasks. Overlapping points were slightly
disturbed for better visibility. For comparison with actual ADOS feature values, reported values need to be reduced by one unit as ADOS feature values start at 0 by
convention.
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modes Therapy and Explore. In both these modes, the JATT task
showed a success rate above 80% across the first two metrics. The
NAME task, however, showed significantly lower success rate,
according to a two-proportion Z test, both within four trials
(Z = 8.94**, p < 0.01), as well as within two trials (Z = 7.69**,
p < 0.01). Similarly, a Wilcoxon signed rank test showed that the
median average number of trials per participant was significantly
lower for the JATT task as compared to the NAME task for both
Therapy mode (Z = 36.00*, p = 0.011) and Explore mode (Z =
28.00*, p = 0.018). This same test showed no statistically significant
results when considering the average successful level per
participant (Z = 7.00, p = 0.236 for mode Therapy and Z =
24.00, p = 0.857 for mode Explore).

Finally, it is important to stress that a comparison of the
different modes in a single session does not provide any
information about the long-term benefits of these modes. This
comparison is merely informative of how sequencing affects the
children’s response along the static metrics we selected. The
session was too short to expect any practice effects, and we
did not find any evidence of such effects in our data. We
reported all three modes in the table, although it is to be
noted that a methodologically sound comparison can only be
made between modes Therapy and Explore, since several
scenario-related factors differ in the Assess mode.

7 DISCUSSION

The results of the study bring insight into the structure of children
profiles, the effect of action sequencing on children’s responses,
and differences between tasks. We discuss each of these in turn,
and end this section with additional thoughts.

7.1 Children Profiles
Our comparison of profiles in the interaction with the robot
versus with a human suggests that the information encoded in the
human-administered ADOS cannot be used directly to inform an
interaction with a robot. In addition to the lack of evidence for a
correlation between the two, the children overall needed higher
action levels with the robot than when interacting with a human.
This result is in accordance with existing literature on socially
assistive robotics (Anzalone et al., 2014; Warren et al., 2015).

This result can be explained by the lower degree of expressivity
and naturalness of the robot as compared to a human, or by the
lack of familiarity of the children with the robot’s behavior. In
particular when it comes to gaze, literature on general human
response to robot gaze has also shown reduced reflexive gaze as

compared to response to human gaze, which may have been a
contributing factor in our JATT task (Admoni et al., 2011). It is
also worth mentioning that the robot performed each action only
once, while in the context of the ADOS actions are repeated
several times to ensure a lack of response at a given level before
moving to the next. In our scenario, we eliminated repetitions
because we expected a very high number of trials to be harmful
for engagement. However, we collected several measurements to
reduce the effect of the incurred noise. These observations
highlight the importance of having the robot perform its own
assessment to be able to model the children’s responses to its own
actions accurately, and ensure the validity of personalized robot
intervention such as in the Therapy mode.

On the other hand, our data showed significant correlations
among robot-assessed features, including response to imitation
prompts. These results may have implications on the
development of more efficient methods for co-estimating those
correlated variables, or for predicting cross-task performance
from measurements on a single task.

7.2 Effect of Sequencing
In this exploratory study, we analyzed the effect of sequencing on
child response through controlling the robot mode. Based on our
analysis, we observed that each of the modes comes with
advantages and disadvantages.

First, the Assess mode favors using as low action levels as
possible to cause a success. Based on our results, it seems to be
well suited, beyond assessment, for cases where therapeutic goals
need to be met with no concern for minimizing the number of
trials. This applies when engagement and interaction flow are not
priorities, for example in scenarios in which the tasks are repeated
only a small number of times, or are sparsely distributed in time.

On the other extreme, the Explore mode seems to be a suitable
mode if the only goal is to achieve early successes and to keep the
child as engaged as possible. Its surprisingly relatively high
success rate, especially as compared to the Therapy mode, may
be due to the high level of variability in action levels, which may
cause children to respond more frequently. This effect could be
explained by the existing literature on how statistically
“surprising” events lead to higher attention responses (Itti and
Baldi 2006; Klein et al., 2019). Despite its higher success rate, the
Explore mode does not align with therapeutic principles of
grading and just-right challenge characterized by consistency,
scaffolding and gradual change in actions (Hersch et al., 2005;
Schaaf and Roley 2006). As a result, it would not be suitable to be
used for therapeutic purposes whose aim is to promote a positive
change in response over time. Between these two extremes, the

TABLE 2 | Comparison of success occurrences in the three modes.

Metric Assess (n = 44) Therapy (n = 40) Explore (n = 40)

JATT/NAME Total JATT/NAME Total JATT/NAME Total

Within-4 success (%) 97.5/100 98.8 100/72.5 86.3 100/87.5 93.4
Within-2 success (%) 70.0/77.5 73.4 80.0/62.5 71.3 97.5/65.0 81.3
Average #(trials) 2.40/2.00 2.20 1.55/2.45 2.00 1.25/1.98 1.62
Average successful level 2.43/1.95 2.19 2.58/2.18 2.38 2.70/2.64 2.67
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Therapy mode aims to balance causing successes at low action
levels and preferring a smaller number of trials in a personalized
way, according to assessed children profiles.

In short-term studies the novelty factor of the robot may have a
strong effect on child response and may not reflect actual
characteristics of the disorder, because as has been demonstrated
in this work, the response to the robot greatly varied, regardless of
ASD severity. In long-term studies, the novelty effect may disappear.
In contrast, the engagement of the child may also decrease, so long-
term studies should be looked at with care.

Linking back to our initial motivation on the need for
personalized robot behavior, our study suggests that an “optimal”
personalized action sequence (in terms of balancing different
interaction goals) could take the Therapy mode as a baseline and
iterate on it using additional data to createmore powerful algorithms
for automatic action sequence generation. On the other hand, our
results also highlight that different action sequences should be
selected based on context, possibly in response to indicators such
as affect, engagement, and progress during therapy. The results
presented in this paper provides future research in this space with
some decision-making guidelines based on the aim and scope of
personalization in therapeutic interventions.

7.3 Cross-Task Differences
There are a few possible explanations as to why we observed
cross-task differences across modes that were not consistent with
the human-assessed children profiles. These include the objective
difficulty of the prompts, the nature of the scenario, the relative
interest of the children in the cartoons versus the robot, and the
relative cartoon novelty as compared to the consistency of the
robot’s appearance. Identifying the exact causes or combinations
of causes would need additional research.

Since the tasks we considered are quite generic and can be
easily adapted to a range of different scenarios with different
targets, we expect good generalizability of our general findings
across similar scenarios. For example, any target object can be
equipped with controllable lights and sound, to play the role of
video and sound from our scenario, and we expect similar
response patterns to hold across classes of similar tasks.

7.4 Robotic Platform
The use of a NAO humanoid robot provided both advantages and
disadvantages for the research goals of this work. On the positive
side, the embodiment and size of the robot make it generally
attractive to children with ASD, as demonstrated by several
studies (Tapus et al., 2012; Anzalone et al., 2014; Greczek
et al., 2014; Yussof et al., 2015; Esteban et al., 2017) and
confirmed in ours. Moreover, its humanoid appearance and
control of individual joints allowed for flexible gesturing
options, while using speech and lights as additional expressive
modalities. The multi-modal aspect of the communication was
especially useful to allow the progressive integration of social cues
throughout the action scales, and contributed to keeping the
children engaged. On the negative side, the robot lacked actuated
eyes, which limited the expressivity of the robot’s gaze behavior.
Furthermore, its speech was often monotonous or unclear despite
our best efforts to make it engaging and articulate.

While we expect our general results to hold across different
kinds of humanoid platforms, we hypothesize that the degree
of anthropomorphism of the robot will have an effect on both
the success rate of individual actions, and the discrepancy
between the children’s response to the human versus the
robot. For example, we expect more responsiveness and less
discrepancy between human-assessed and robot-assessed
features for more anthropomorphic robots (e.g., robots with
eyes, hair, or artificial skin). Additional research is needed to
verify this hypothesis.

7.5 Other Observations and Lessons Learnt
We observed that the first contact with the robot was crucial in
determining if the child will accept or refuse to interact with the
robot. Several of our pilot attempts failed because of lack of care
during this critical phase, which we corrected for the actual study.
For future research, we highlight the need to very progressively
integrate communication modalities to avoid negative reactions
of the child in first-time encounters with a robot.

Children with ASD are a particularly challenging population
to work with, as the slightest change in stimulus can cause a large
difference in outcome. For example, the way the screens were
flashing had a big influence on whether the children responded or
not, so a lot of care had to be put in fine-tuning the scenario
parameters during our pilots. These parameters included the
screen behavior, the volume of the robot, the placement of the
screens, the story length and content, the interval between
consecutive task instances, the positioning of the imitation
prompts, among other considerations that we iteratively refined.

Also, the variability across children also affected other aspects
beyond the performance on the tasks. For example, while some
children paid full attention to the story and were fascinated by the
robot’s behavior, others had moments of complete distraction.
Such distraction moments included being fascinated by aspects of
the interaction irrelevant to the story, like for instance fixating or
touching a body part of the robot.

A final observation concerns a hypothesized relationship
between engagement and practice effects. While there is no
quantitative evidence of a consistent change in behavior
throughout the session, we noticed that two effects seemed to
balance each other differently across children. On the one hand,
we noticed that engagement tends to plateau after a few minutes
of interaction and then starts decreasing towards the last third of
the session, which may worsen the performance of children on
the tasks in that period. On the other hand, practice effects have
the opposite effect level on task performance in that they increase
it. Therefore, it is difficult to dissociate these two effects in our
data, and future research could look at examining them separately
to further inform robot adaptation within the session.

8 CONCLUSION AND FUTURE WORK

The goal of this paper was to study how different ways of sequencing
a socially assistive robot’s actions can affect the behavioral responses
of a child with ASD. We studied this problem in the context of two
robot-assisted attention-related therapy tasks inspired by the ADOS
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diagnostic tool. In a first step, we leveraged the structure of the
ADOS tasks to build robotic actions on the NAO robot. We then
integrated those actions into a control architecture that allows the
robot to operate in three modes: Assess, Therapy, and Explore.
These modes generate different sequences of the same robot actions,
with different properties. To evaluate the effect of the different
modes, we developed a semi-autonomous robotic scenario based on
interactive storytelling, which integrates the tasks.

Our data collected with 11 children with different ASD
severities highlight the advantages and disadvantages of each
mode depending on the interaction goals. The Assess mode
favored a consistent and progressive evolution of action levels
and had the highest therapeutic value, at the cost of a relatively
high number of trials. The Explore mode had the lowest number
of trials but the least therapeutic value. The Therapy mode found
a tradeoff between meeting the conflicting goals of maximizing
therapeutic value while minimizing number of trials. The
presented differences are however not statistically significant,
but based on the descriptive values on our selected metrics. To
confirm this interpretation, replication studies with higher
sample sizes are needed.

Based on these preliminary results, we propose the following
guidelines. The choice of robot action sequences in socially
assistive tasks should be made (whether autonomously or by
design) in accordance to the goals of the interaction. If the
interaction purely aims at challenging the child to learn, then
a consistent and progressive action sequence (such as mode
Assess) should be preferred. On the other end of the
spectrum, if the interaction aims at maintaining engagement
and fluency, then a high-variability action sequence (such as
mode Explore) should be preferred. Finally, if the interaction
aims to find a tradeoff between those conflicting goals for an
optimal learning experience, then a personalized and progressive
action sequence (such as Therapy) should be preferred, although
it is unclear based on this study what such an optimal action
sequence would be.

To follow up on this question, the data collected in this work
has been used to automatically generate action sequences
following a decision-theoretic formalism (Baraka et al., 2020).
These action sequences are aimed at providing a “just-right
challenge” for an optimal learning experience. Our model
assumes probabilities of success for each action (based on the
interaction data collected in this study) and costs for each action
(based on a survey with experts). Based on this model, our
algorithm computes sequences that optimize for an objective
function that includes these two components.

A potential further extension of the personalization approach
described in this manuscript would be to introduce mechanisms to
re-evaluate or adjust the robot’s behavior in real-time according to
the child’s response, to account for variations in engagement and
abilities over time. In addition, further personalization of individual
actions would be possible based on individual preferences or needs
(e.g., adjusting light colors or motion speed, avoiding behaviors that
are scary or triggering for a particular child, etc.).

While the study presented in this article focused on ASD
children and behavior-centric interventions, we expect our high-
level results to hold in other similar contexts aimed to induce a

change in the human over time, such as educational contexts and
other types of tasks (e.g., cognitive) whose difficulty level can easily
be controlled. Future empirical work could include studying the
long-term effects of different action sequences to inform the
development of long-term optimal robot control policies that
balance engagement and learning goals, bringing us a step
closer towards flexible and personalized intelligent robotic tools
for richer and more effective behavioral interventions.
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