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1 Introduction
Cancer is a collection of diseases with the common feature of uncontrolled cellular growth.

Many tissues in the body can give rise to cancer. There are certain types of tissue which are
prone to cancer, and each cancer has unique features. The salient feature of cancer cells is that
the mechanisms that control growth, proliferation and death of cells in a multicellular organism are
disrupted and are the result of mutations. The ≈ 1013 cells in the human body are subject to
numerous checks and balances that, to varying degrees, are absent, ignored or affirmatively avoided
during cancer development. In effect, cancer cells escape the usual controls on cell proliferation and
proliferate excessively to form a neoplastic growth or tumour [1].

In the early 1970s, Folkman [2] hypothesized that most, if not all, solid tumor growth occurs
in two phases: the avascular phase and the vascular phase. In the first (avascular) phase, the tumour
reaches nutrients and eliminates wastes by diffusion transport processes alone. At this stage, the
tumour growth is diffusion limited; the tumour maybe considered roughly spherical in shape and
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cannot expand more than a few millimetres in diameter. This occurs because the tumour consumes
nutrients at a rate proportional to its volume, whereas the supply of nutrients is delivered at a rate
proportional to its surface area. An avascular nodule consists of a central necrotic core surrounded
by a layer of quiescent cells that are in turn surrounded by a layer of proliferating cells. Although a
tumor still contains live dividing cells, in this phase, it does not expand.

The second and clinically more important phase is the vascular phase , which can occur
only in vivo. This phase involves the blood supply which provides cancer cells with oxygen, the
necessary nutrients, and factors required for replication and survival. A given tissue or organ must
have a sufficient blood supply in order to function. No extra blood supply is available though, which
will hinder any potential abnormal growth. Cancer cells have to induce the generation of new blood
supply in order to sustain their growth. This process is called angiogenesis , and it is important to
state that solid tumour growth is angiogenesis dependent [3,4]. Research on the role of angiogenesis
for cancer progression has been pioneered by Judah Folkman in the 1960s and 70s [2], and work
from his laboratory has been dominating the literature up to now. In early experiments, Folkman
and colleagues placed a small number of rabbit melanoma cells on the surface of the rabbit thyroid
gland. They observed that the tumour cells initially grew but subsequently stopped growing once they
reached a relatively small size comparable to that of a pea. The reason is that the tumour cells run
out of blood supply. It is now clear that growth to larger sizes requires the emergence of so-called
angiogenic tumour cells. The ability of the cancer to grow depends on the balance between so-called
angiogenesis inhibitors, and angiogenesis promoters.

It is now well established [5, 6] that solid tumours initiate the neovascularization process,
secreting a number of diffusible chemical compounds into the surrounding tissues and extracellular
matrix. These compounds are called angiogenic factors, and angiogenic processes have been
exploited in order to control, or even stop altogether any subsequent tumour growth. Drugs have been
discovered that are able to prevent the formation of new capillary growth. Therefore, antiangiogenesis
has been proposed as a potential target for the treatment of cancer [7].

For blocking tumour angiogenesis, one of the main targets of the antiangiogenic drugs is
the inactivation of angiogenic factors released from tumour cells into the host tissues. Angiogenesis,
tumour growth, and antiangiogenesis processes are very complicated. However, their main features
can be described in a few relatively simple statements that allow us to describe tumour growth by
the following Gompertz tumour growth model. If V (t) is the volume of the tumour at time t, then we
obtain the model

dV (t)

dt
= AV (t)− βV (t) lnV ∗(t), (1.1)

where A, the intrinsic growth rate of the tumour, is a parameter related to the initial mitosis rate and
β, the growth deceleration factor is related to the antiangiogenic processes and V ∗(t) = V (t)

V0
, define

V (0) = V0, is the volume at time t = 0. From a biological point of view, a greater β value means
a stronger association between drug and angiogenic protein and/or a greater bio availability of the
drug; a smaller A value means a slower initial growth rate of the tumour. Therefore, a greater β value
or a smaller A value indicates a greater anti-tumorous effect of the therapy [8]. So it’s very useful to
study about the Gompertz parameters β and A.

The plan of this paper is as follows. In section 2, we describe the Gompertz model and
2.1, we give the detailed procedure to estimate parameters A and β. In this method we used the
cumulative volume rate (Vc) and the maximum lifespan of tumour cells (tm), where (tm) is the time at
which tumour reaches its maximum volume just before disintegration (at time of death). In section 3
we have proved the uniqueness theorem for Gompertz parameters and in the section 4, we perform
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sensitivity analysis of Gompertz parameter β. Finally, in section 5 we have a discussion.

2 Gompertzian Model
The mathematical models are useful to describe the general size of a tumour under relatively

simple conditions (two populations, Fickian diffusion), but have yet to be extended to multiple populations
or active cellular motility. A review of several other mathematical models is contained in [9–11].

The Gompertzian model is a classical continuous model useful in describing population
dynamics; in particular, it is a very efficient mathematical model to describe tumour growth in humans
and animals [12, 13]. It was introduced by Benjamin Gompertz (1825) [14] to analyse population
dynamics and to determine life contingencies. Later, the Gompertzian model was found to fit well
for diverse growth phenomena in nature, including tumour and embryonic growth. To the best of our
knowledge, there have been few attempts to give biological theoretical grounding to the Gompertz
model [15–18] in spite of its extensive use in biological and medical research. Especially in experimental
oncology, the Gompertzian model is most widely used to describe in vivo tumour growth.

Qualitatively, this model gives exponential growth at early time periods which then saturates
at later time periods (decelerating growth). Using data obtained from a sequence of sampling times,
the Gompertz parameter A and β have been estimated by various statistical methods like maximum
likelihood, linear regression, non-linear regression [8].

In section 2.1, the procedure of estimation of parameters A and β are discussed.

2.1 Estimation of parameters
An exact mathematical description of our model of tumour cell proliferation is given by a

Gompertz equation (1.1) of the following form

V (t) = V0e
A
β
(1−e−βt)

, (2.1)

where V (t) is volume of the clonogenic tumour cell at time t, V0 is the clonogen volume at time t = 0.
A and β(> 0) are the Gompertz growth parameters.

The doubling time is a key parameter for assessing the impact of delays in cancer treatment.
Most of the information about tumour growth rates comes from studies performed long ago and
the data on the maximum volume before disintegration of an individual/groups of tumour cells is
unknown. In general the time the tumour takes to double itself varies widely, such that in case of
histological type of tumour the time distribution for tumour doubling itself is normally long [19–23].
The Gompertz model presents a doubling time (Volume Rate Doubling time (VRD)) which depends
only on β. Comparing volume of solid tumours in tumour growth model is aided by calculation of
the VRD, as VRD changes in the same direction as lifespan of tumour cells. The growth rate of
the tumour may also be described by additional coefficients (Gompertz-Makeham model) or by other
power functions (Weibull model), in which the VRD changes with time [17]. Solving equation (2.1) for
VRD gives

V RD = − 1

β
ln

[
1− β

A
ln(2)

]
. (2.2)

The equation (2.2) is the key term of our model, which depends only on β. Therefore, we are going
to estimate the value of β.
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Equation (2.1) gives

ln [V ∗(t)] =
A

β
(1− e−βt),

or

A

β
=

ln [V ∗(t)]

1− e−βt
, (2.3)

where V ∗(t) = V (t)
V0

.
From equation(2.1)

V (t∗m) = V0e
A
β
(1−e−βt∗m )

, (2.4)

(where tm is the time at which the tumour contains a cell volume which is one less than its maximum
and which approximates the maximum lifespan of tumour cells t∗m). After a few algebraic manipulations
we get

t∗m = − 1

β
ln

[
1− β

A
ln

[
V (t∗m)

V0

]]
. (2.5)

The cumulative intrinsic volume growth rate of the Gompertz model equation (2.1), is defined by
Vc =

∫∞
0

V ∗(t)dt.
After a little algebra we get the following equation

−β =
1

Vc
e
−A

β

∫ ∞

−A
β

e−z

z
dz, (2.6)

where z = −A
β
e−βt.

Here, we estimate the parameter β to calculate the value of VRD, which is the key term of our model.
Now, we check the existence of the parameter β by analytical method. Clearly, the above integral in
equation (2.6), exists, if β < 0. If β > 0 then, e−z

z
has a pole at z = 0, and hence we take the principal

value of this integral. The existence of the principal value of the integral is proved by the following
lemma.
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Table-1 Computations of theoretical Gompertz functions in terms of VRD (Volume Rate Doubling
time) which depends on the tumour cell volume at any time from equation (2.2).

Tumor A β VRD
Mouse:
Krebs 5.25 0.411 0.1357 hours
Ehrlich 0.078 0.009 9.26 hours

MC1M,low dose 0.119 0.0147 6.09 hours
6C3HED,high dose 0.0397 0.012 19.6 hours
6C3HED, low dose 0.0626 0.0116 11.9 hours

DBA lymphoma 0.276 0.0238 2.59 hours
El4,low dose 0.207 0.019 3.46 hours

El4, high dose 0.172 0.023 4.23 hours
EO771 0.666 0.063 1.08 days

Osteosarcomas 1.02 0.159 0.7191 days
Rat:

Walker, W26b1 0.220 0.0218 3.26 days
Walker, W12a7 0.342 0.0205 2.07 days
Walker, W10a6 0.362 0.039 1.99 days
Walker, W10b4 0.132 0.003 5.29 days

R39 Sarcoma, R3a7 1.28 0.124 0.56 days
R39 Sarcoma, R4c4 0.540 0.078 1.35 days
R39Sarcoma, a7R3 0.737 0.063 0.97 days

Flexner-Jobling 0.394 0.049 1.84 days
Rabbit:

Brown-Pearce 1.262 0.0169 0.576 days

The source of data for each species is given in [24,25].

Lemma: Principal value of the integral
∫∞
−A

β

e−z

z
dz exists, if β > 0.

Proof: Consider∫ ∞

−A
β

e−z

z
dz =

∫ −ϵ

−A
β

e−z

z
dz +

∫ ϵ

−ϵ

e−z

z
dz +

∫ ∞

ϵ

e−z

z
dz.

Now, we consider only the middle of the RHS of the above integral

lim
ϵ→0

∫ ϵ

−ϵ

e−z

z
dz = lim

ϵ→0

[∫ 0

−ϵ

e−z

z
dz +

∫ ϵ

0

e−z

z
dz

]
= lim

ϵ→0

[
−
∫ ϵ

0

e−z

z
dz +

∫ ϵ

0

e−z

z
dz

]
= 0.

Hence the principal value of the above integral exists, if β > 0. The basic equation (2.6) is transcendental,
involving an exponential integral. Hence, its solution may not be unique. It thus becomes necessary
to investigate the uniqueness of β.

3 Uniqueness
Before proving the uniqueness theorem, we observe that 1

Vc
cannot exceed A, because the

former represents contributions from A and β.
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Here is the proof:

−β =
1

Vc
e
−A

β

∫ ∞

−A
β

e−z

z
dz,

−β ≤ 1

Vc
e
−A

β e
A
β

(
− β

A

)
,

which implies 1
Vc

≤ A.

Theorem 1: Equation (2.6) has a unique solution, if 2tm
Vc

< 1 for β > 0.
Proof: Suppose β1, β2 are two positive distinct solutions of equation (2.6), that is

β1 = − 1

Vc
e
− ln[V ∗(t)]

(1−e−β1tm )

∫ ∞

− ln[V ∗(t)]

(1−e−β1tm )

e−z

z
dz

β2 = − 1

Vc
e
− ln[V ∗(t)]

(1−e−β2tm )

∫ ∞

− ln[V ∗(t)]

(1−e−β2tm )

e−z

z
dz.

Consider

β1 − β2 = − 1

Vc

[∫ ∞

x1

e−z+x1

z
dz −

∫ ∞

x2

e−z+x2

z
dz

]

= − 1

Vc

∫ ∞

0

e−u

[
1

u+ x1
− 1

u+ x2

]
du, (3.1)

where xi = − ln[V ∗(t)]/(1 − e−βitm) for i = 1, 2 and u = (z − xi) for i = 1, 2 also e−u ≥ 1, ∀u ≤ 0,
(by lemma:1) we obtain

|β1 − β2| ≤
1

Vc
|x1 − x2|

∫ ∞

0

du

(u+ x1)(u+ x2)
=

1

Vc
ln

[
x1

x2

]
.

Therefore,

|β1 − β2| ≤
1

Vc

∣∣∣∣ln [1− e−β2tm

1− e−β1tm

]∣∣∣∣
=

1

Vc

∣∣∣∣ln [e−β2tm(eβ2tm − 1)

e−β1tm(eβ1tm − 1)

]∣∣∣∣
=

1

Vc

∣∣∣∣ln [e−β2tm

e−β1tm

]
+ ln

[
eβ2tm − 1

eβ1tm − 1

]∣∣∣∣
=

1

Vc

∣∣∣[β1tm − β2tm] + ln
[
eβ2tm − 1

]
− ln

[
eβ1tm − 1

]∣∣∣ .
Applying the mean value theorem, we get

|β1 − β2| =
1

Vc

[
|β1tm − β2tm|+ ln

∣∣∣e−β2tm − e−β1tm
∣∣∣]

=
1

Vc
[|β1 − β2| tm + |β1 − β2| tm]

=
2tm
Vc

|β1 − β2| .
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That is,(
2tm
Vc

− 1

)
|β1 − β2| ≥ 0.

Since 2tm
Vc

< 1, the last inequality implies that β1 ≡ β2 for β > 0.

Hence, we conclude that the equation (2.6) has uniqueness solution if 2tm
Vc

< 1 for β > 0.

3.1 A necessary condition for uniqueness
Theorem 2: To have a unique solution of equation (2.6), it is necessary that

tm
Vc ln[V ∗(t)] < 1, β > 0.

Proof: Suppose β1, β2 are two positive distinct solutions of equation (2.6), that is from equation (3.1)

β1 − β2 = − 1

Vc
(x2 − x1)

∫ ∞

0

e−u

(u+ x1)(u+ x2)
du

= − 1

Vc

(
1

1− e−β2tm
− 1

1− e−β1tm

)
(1− e−β1tm)(1− e−β2tm)

×
∫ ∞

0

e−z ln[V ∗(t)]

(1 + z(1− e−β1tm))(1 + z(1− e−β2tm))
dz,

since

e−z ln[V ∗(t)]

(1 + z(1− e−β1tm))(1 + z(1− e−β2tm))
≤ 1.

We get

β1 − β2 ≤ − 1

Vc

(
1

1− e−β2tm
− 1

1− e−β1tm

)
(1− e−β1tm)(1− e−β2tm)

∫ ∞

0

e−z ln[V ∗(t)]dz

= − 1

Vc

(
1

1− e−β2tm
− 1

1− e−β1tm

)
(1− e−β1tm)(1− e−β2tm)

1

ln[V ∗(t)]
.

Hence,

|β1 − β2| ≤
1

Vc ln[V ∗(t)]

∣∣∣(1− e−β1tm)− (1− e−β2tm)
∣∣∣

=
1

Vc ln[V ∗(t)]

∣∣∣∣(β1tm)

(
(1− e−β1tm)

β1tm

)
− (β2tm)

(
(1− e−β2tm)

β2tm

)∣∣∣∣
=

1

Vc ln[V ∗(t)]

∣∣∣∣∣∣ β1tm(
β1tm

1−e−β1tm

) − β2tm(
β2tm

1−e−β2tm

)
∣∣∣∣∣∣ .

Thus,

|β1 − β2| ≤
tm |β1 − β2|

Vc ln[V ∗(t)]max
(

β1tm
(1−e−β1tm )

, β2tm
(1−e−β2tm1)

) . (3.2)

Suppose we have a unique solution of (2.6). It follows from (3.2) that

tm

Vc ln[V ∗(t)]max
(

β1tm
(1−e−β1tm )

, β2tm
(1−e−β2tm )

) < 1. (3.3)
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Since βtm
1−e−βtm

≥ 1, ∀βtm ≥ 0, from (3.3) we get

tm
Vc ln[V ∗(t)]

< min

(
β1tm

(1− e−β1tm)
,

β2tm
(1− e−β2tm)

)
< max

(
β1tm

(1− e−β1tm)
,

β2tm
(1− e−β2tm)

)
,

(3.4a)

1 ≤ min

(
β1tm

(1− e−β1tm)
,

β2tm
(1− e−β2tm)

)
≤ max

(
β1tm

(1− e−β1tm)
,

β2tm
(1− e−β2tm)

)
(3.4b)

Note that max
(

βtm
1−e−βtm

)
attains 1 only if βtm = 0.

Hence, the above inequalities (3.4a) and (3.4b) implies that tm
Vc ln[V ∗(t)] < 1, β > 0.

We conclude that to have uniqueness solution of equation (2.6), it is necessary that
tm

Vc ln[V ∗(t)] < 1, β > 0.

Remark 1: We observed that, from theorem 1, it follows that to have a unique independent parameter
A, it is necessary that, 1

Vc
≤ A and unique β.

Remark 2: From theorem 1, the condition of unique β does not depend on tumour volume V ∗(t), but
from theorem 2 the necessary condition for unique β depends on the tumour volume V ∗(t), hence
theorem 2 is more useful than theorem 1.
Remark 3: The unique value of A can be calculated through the unique value of β.
Remark 4: Using lemma, theorem 1 and theorem 2 we proved the existence of the parameter β by
theoretical analysis method.
Remark 5: We verified the numerical solution values through the values of Table-II for the existence
and validity of the data’s of the parameter β.

4 Sensitivity of Parameter Changes
Sensitivity analysis can be used to determine the functional relationship between tumour volume

or growth rate and the constituent rates (e.g., fecundity, survival, growth, maturation, recruitment,
movement), and to project changes in tumour growth rate and volume as vital rates change.

From the work of Witten and Satzer [15] we know that in the standard Gompertz growth
model the deceleration factor β becomes insensitive to change in initial tumour volume V0 if V0

approaches a very large value, but becomes very sensitive to changes in V0 if V0 approaches 1.
Similarly we may consider how equation (2.6) behaves when V ∗(t), Vc and tm are large. To do this
we consider equation (2.6) and the partials of β with respect to V ∗(t), Vc and tm,

− ∂β

∂V ∗ =
[A− (1/Vc)]/V

∗ lnV ∗

1 + (e−βtm/(e−βtm − 1))tm[A− (1/Vc)]
, (4.1)

− ∂β

∂Vc
=

−β/Vc

1 + (e−βtm/(e−βtm − 1))tm[A− (1/Vc)]
, (4.2)

− ∂β

∂tm
=

−β(e−βtm/(e−βtm − 1)/[(1/Vc)−A]

1 + (e−βtm/(e−βtm − 1))tm[A− (1/Vc)]
, (4.3)

respectively.
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We get that

∂β

∂V ∗(t)
=

[A− (1/Vc)]/V
∗(t) lnV ∗(t)

1 + (e−βtm/(e−βtm − 1))tm[A− (1/Vc)]
≥ 0, ∀V ∗(t), (4.4)

∂β

∂Vc
=

−β/Vc

1 + (e−βtm/(e−βtm − 1))tm[A− (1/Vc)]
≤ 0, (4.5)

and

∂β

∂tm
=

−β(e−βtm/(e−βtm − 1)/[(1/Vc)−A]

1 + (e−βtm/(e−βtm − 1))tm[A− (1/Vc)]
≤ 0. (4.6)

If we send V ∗(t) to ∞ in (4.4),(4.5) and (4.6) get that

lim
V ∗(t)→∞

∂β

∂V ∗(t)
= 0, lim

V ∗(t)→∞

∂β

∂Vc
= 0, lim

V ∗(t)→∞

∂β

∂tm
= 0.

. Thus, we see that β is relatively insensitive to changes in V ∗(t) → ∞. That is, β does not change
rapidly as the number of tumour cells becomes larger.
If we sent V ∗(t) to 1 in equation (4.4), we get

lim
V ∗(t)→1

∂β

∂V ∗(t)
= ∞,

because 1/V ∗(t)lnV ∗(t) → ∞ as V ∗(t) → 1. This , will gives

∂β

∂Vc
and

∂β

∂tm
= −∞, as V ∗(t) → 1.

Hence, as the tumour size V ∗(t) decreases, we see a greater change in the sensitivity of β with
respect to the initial tumour size V0.

4.2 Existence of graphical interpretation of estimated parameter:
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Classifications: Above figures of Gompertizian Tumour Growth of Mouse - Krebs were
plotted from data [25] using equation (2.4) and (2.5).
Figure-1 For a constant A = 3.25, different β = 0.411 ± 0.055 the growth curve is plotted.
Figure-2 For a constant A = 5.25 and different β = 0.411±0.055 the growth curve is plotted.
The curve is increasing like the previous curve.
Figure-3 For a constant A = 7.25, different β = 0.411 ± 0.055 the growth curve is plotted.
This curve also, increasing like previous curves.
Figure-4 (a) Is the curve depicting the biological existence of tumour when tm = 0 to
3.9909 days and (b) Is the curve depicting the biological existence of tumour to theoretically
existence of tumour (tm= 3.9909 upto maximum lifetime 4.53 days) of the curve.
For different A values(A = 5.35±2.00) and different β values (β = 0.411±0.055) the curves
were plotted and growth of the curve followed the same pattern. This illustrated that when
the entire tumour volume was growing exponential growth was expected, but with the growth rate
gradually reducing as the tumour volume of active growth was progressively restricted to decreasing
size, utimately arriving at a linear growth rate. The observation that the Gompertz tumour growth
model, as it implies the existence of a common upper limit of tumour size that the tumours may reach
in time. However, our analysis showed that this general rule apply for all rumours. The data presented
in this study suggest that the maximum volume size varies within the tumour sub-populations.

Remark 6: We verified the existence of numerical solution values through the graphical comparison
and fitting the curve with classification based on the values of Table-II for the validity of a data of the
parameter β.
The numerical values from table-II were fit well with growth curve and exist theoretically as well as
biologically. In the above figures we plotted only the tumour growth of Mouse-Krebs and also we
checked the remaining data in the same manner. The output supported our claim in the degree of
acceptable level. Hence the existence of solid Gompertz tumour growth parameter is justified.
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5 Discussion and Conclusions

The growth of nearly all tumours reported in the literature is characterized by a continuous
deceleration from the earliest periods of observation. Growth of this nature is well described by a
Gompertz function by equation (1.1). Such a function fits to the growth data of a volume of tumours
in the mouse, rat and rabbit, and has been shown to follows growth through a 1000-fold increase in
tumour volume size. A Gompertz function of this type has an asymptote solution; this fact implies that
growth rate of tumours progresses towards an upper limit of volume size. The expectation that tumour
growth under ideal conditions would prove to be exponential until it terminates with the exhaustion of
the host has not been borne out in many careful studies of the growth of a wide variety of tumours.
The growth rate of tumours is usually not constant even for a short time, but decreases steadily. In the
present study we have shown that tumour growth is well described by a Gompertz function, according
to which the time required to double the tumour volume (VRD)increase according to an exponential
function.

A Gompertz function used here is a theoretical projection based on the measured growth
of the tumour. The approximate size at death for those tumours were computed. For all the tumours
included in the present survey, enough data were presented in the original studies to allow us to fit
such a function to the data, and to project the maximum lifespan to tumour cell at approximate size at
death. For most of the tumours the growth actually observed before the death of the host was a large
fraction of the projected growth, falling short of the asymptote by only one or at most two doublings
of tumour size. Only on special case we may conclude that the slowing of tumour growth simply
reflects a terminal failure of the host to give nutritional support to the tumour. However, for several of
the tumours, the observed growth fell far short of the projected upper limit, although the tumours all
reached about the same size before the death of the host.

In table-1 the theoretical Gompertz parameter in terms of VRD of the tumour cell volume
were calculated. In table-II we calculated the numerical data of our model. The existence of these
data were checked with existing clinical data and they were observed to fit well. Using the theoretical
existence formula we checked the numerical existence of clinical data.

We calculated the partials of β with respect to V ∗(t), Vc and tm, to project changes in
tumour growth rate and volume as vital rates change. In table-II, maximum time for approximate size
at death tm for Mouse-MC1M-low dose, was not obtained, as because if V ∗(t) → 1 then tm → ∞
using equation (4.4). In table-II, Mouse-El4-low dose, V (tm) is very close to V0, and therefore we are
unable to calculate its tm. The source of data for each species is given in [24,25].

The theoretical Gompertz curve gives the best fit by the method of least squares to the
experimental data. The values for A lie generally between 0.08 and 0.36, and for β between 0.01
and 0.02. But several exceptions stand out notably like the high values for A and β found for the
Kerbs tumour, and the very low value for β found for one for the Walker tumours. The ratio A/β,
which determines the asymptote of the growth curve, is remarkably similar in spite of the differences
in the individual values for A and β. Figure-1, Figure-2 and Figure-3 are plotted using the data from
[24] of the tumour Kerbs ascites carcinoma A = 5.25 ± 2.00, β = 0.411 ± 0.056 and tm = 3.9909
calculated through equation (2.4) and (2.5) and the remaining data also fit well. This shows that
the numerical data of estimated Gompertz tumour growth parameters are very well supported by
the graphical interpretations. The well fitting curves demonstrates, the existence of the estimated
Gompertz tumour growth model parameter and its behaviour.

The condition of uniqueness β does not depends on tumour volume V ∗(t), but from
theorem 2 the necessary condition for unique β depends on the tumour volume V ∗(t). The tumour
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volume V ∗(t) was limited to an imaginable big tumour size (does not include unbelievable size of
tumour growth, or biologically not possible growth, etc.,) by the necessary condition, and this must be
satisfy for the existence of valid tumour growth parameter.

Also observed that, from theorem 1, it follows that to have a unique independent parameter
A, it is necessary that 1

Vc
≤ A. But this data is not dependent on the value of V ∗(t), so it is not affected

by any large number of solid tumour cells. So we calculate the unique β by Gompertz tumour growth
model. We can estimate the growth deceleration parameter using the equation (2.6) and with this the
value of A can be calculated.

A possible approach to examine the relationship between labelling index and tumour
doubling time has been suggested by [26]. A relationship can be demonstrated theoretically for
certain model cell population and if a sufficient variety of tumorous can be found in which both
doubling time and labelling index are measurable the experimental confirmation should be possible.
If such relationship value exists then with the tumour doubling time the growth rate of most tumours
can be calculated using Gompertz growth model. In figure-4 (a) we plotted biologically existence
curve when tm = 0 to 3.9909 days and (b) From biologically existence curve to theoretically existing
value (tm= 3.9909 upto maximum lifetime 4.53 days) of the curve. This curve shows the existence
of theoretical and biological curves. The biological existence of the curve will help in quantitative
analysis of tumour growth and response to therapy. The measure formulated in this work can be
used for future clinical trails on novel, or combinations of, anticancer therapeutic modalities.

The purpose of this discussion is to provide a method to estimate the unique growth rate β
of the Gompertz tumour growth model. Such a method is necessary when attempting to estimate the
growth rate in a Gompertz tumour growth model, at their maximum lifespan. Furthermore, a sensitivity
analysis is performed. From these analysis, we believe that our model and methods will provide a
useful approach to prediction of experimental and clinical tumour growth. For further applications
more research is needed, and it may be started with the questions:
1) How can one apply this model and methods to develop efficient procedures for controlling tumour
growth ?
2) Is it worthwhile to study asymptotic behaviour of the solution for the
equation (2.6)?.
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