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Abstract 
 

In this paper, we implemented a very important method to solve nonlinear partial differential 
equations known as the ))(exp( ξφ− -expansion method. Recently, there are several methods 
being constructed for finding analytical solutions of nonlinear partial differential equations. 
However, the ))(exp( ξφ− -expansion method is more effective and useful for solving the 
nonlinear evolution equations.  With the help of this method, we are investigated the exact 
traveling wave solutions of the Zhiber-Shabat equation. The obtaining exact solutions of this 
equation are describe  many physical phenomena in mathematical physics such as solid state 
physics, plasma physics, nonlinear optics, chemical kinetics and quantum field theory. Further, 
three-dimensional plots of the solutions such as solitons, cuspon, periodic, singular kink and 
bell type are also given to visualize the dynamics of the equation.  

Keywords: The ))(exp( ξφ− -expansion method, the Zhiber-Shabat equation, nonlinear evolution 
equations, traveling wave solutions, solitary wave solutions. 

Mathematics Subject Classification: 35K99, 35P05, 35P99. 
 

1 Introduction 
 
Nonlinear partial differential equations (NLPDEs) have been widely applied in many branches of 
applied sciences such as fluids dynamics, bio-mechanics, chemical physics, particle physics, 
quantum field theory, optical fibers and plasma physics etc. In the research of the theory of 
NLPDEs, searching for more explicit exact solutions to NLPDEs is one of the most fundamental 
and significant studies in recent years. With the help of computerized symbolic computation, 
much work has focused on the various extensions and applications of the known algebraic 
methods to construct the solutions to NLPDEs. There have been a various types of powerful 
methods for solving NLPDEs. Recently, many types of effective methods have been proposed to 
calculate exact solutions of nonlinear NLPDEs. For example, the improved F-expansion method 
[1], the Jacobi elliptic function expansion method [2, 3], the projective Riccati equation method 
[4], the tanh-function method [5-8], the inverse scattering transform method [9], the Exp-function 
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method [10-13], the tanh-method [14,15], the extended tanh-method [16, 17, 18], the exponential 

function method[18], the secp-tanhp method [18], the −′ )/( GG expansion method [19,20], the 

homogeneous balance method [21-23], sine-cosine method [24,25] and the ))(exp( ξϕ− -

expansion method [26,27] etc. But nobody has researched the application of the ))(exp( ξϕ− -

expansion method to construct the exact travelling wave solutions of the Zhiber-Shabat equation, 
which is very important to describe many physical phenomena in mathematical physics such as 
solid state physics, plasma physics, nonlinear optics, chemical kinetics and quantum field theory. 
 
The paper is organized as follows: In section 2, we have presented the briefly description of the 

))(exp( ξΦ−  expansion method. Section 3 is devoted to derive the travelling wave solutions of 
the Zhiber-Shabat equation using this method. The physical interpretation and graphical 
representations of the solutions are presented in section 4. The conclusion is given by in section 5.  
 

2 Description of the ))(exp( ξΦ− -Expansion Method 
 
Let us consider a general nonlinear PDE in the form 
 

),,,,,,( Kxtttxxxt uuuuuuF ,                                          (1) 

 
where ),( txuu = is an unknown function, F  is a polynomial in ),( txu and its derivatives in 

which highest order derivatives and nonlinear terms are involved and the subscripts stand for the 
partial  derivatives.  The main steps of this method are as follows: 
 
Step 1: Combine the real variables x  and t  by a complex variable ξ  
 

tcxutxu ±== ξξ ),(),( ,                    (2) 
 

where V  is the speed of the traveling wave. The traveling wave transformation (2) converts Eq. 
(1) into an ordinary differential equation (ODE) for )(ξuu = : 

 

 ),,,,( Luuuu ′′′′′′ℜ ,                                                                                                   (3) 
 

where ℜ  is a polynomial of u  and its derivatives and  the superscripts indicate the ordinary 
derivatives with respect to ξ . 

 
Step 2. Suppose the traveling wave solution of Eq. (3) can be expressed as follows: 
 

,)))((exp()(
0

iN

i
iAu ∑

=

Φ−= ξξ
        

                 (4) 

 

where )0( NiAi ≤≤  are constants to be determined, such that 0≠NA  and )(ξΦ=Φ  

satisfies the following ordinary differential equation: 
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,))(exp())(exp()( λξµξξ +Φ+Φ−=Φ′                                                           (5) 
 

Eq. (5) gives the following solutions: 
 

Family 1: When ,0≠µ  ,042 >− µλ  
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Family 2: When ,0≠µ  ,042 <− µλ  
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Family 3: When ,0=µ  ,0≠λ  and ,042 >− µλ  
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Family 4: When ,0≠µ  ,0≠λ  and ,042 =− µλ  
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Family 5: When ,0=µ  ,0=λ  and ,042 =− µλ  
 

( )E+=Φ ξξ ln)(                                                          (10) 

 

µλ,,,, cAN LL  are constants to be determined latter, ,0≠NA  the positive integer N  can be 

determined by considering the homogeneous balance between the highest order derivatives and 
the nonlinear terms appearing in Eq. (3). 
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Step 3: Substitute Eq. (4) into Eq. (3) and then we account the function ))(exp( ξΦ− . As a result 

of this substitution, we get a polynomial of ))(exp( ξΦ− . We equate all the coefficients of same 

power of ))(exp( ξΦ−  are equal to zero which yielding a system of algebraic equations. Solving 

the obtaining system, we can find the value of cAA ,, 21 LL . Substituting the values of 

cAA ,, 21 LL  into Eq. (4) along with general solutions of Eq. (5) completes the determination of 
the solution of Eq. (1). 
 

3 Some new Exact Travelling Wave Solutions of Zhiber-Shabat 
Equation 

 
Let us consider Zhiber-Shabat equation [28] of the following form, 
 

02
2

=+++
∂∂

∂ −− ZZZ ereqpe
tx

Z
                                                                                    (11) 

 
where, p , q and r are arbitrary constant. For 0=q , Eq. (11) reduces to the Dodd-Bullough-

Mikhailov equation. For ,0=p 1−=q , 1=r , Eq. (11) gives the Tzitzeica-Dodd-Bullough  

equation. . For 0=r , we obtain the sinh-Gordon equation. The above mention equations arise in 
many applications in mathematical physics. 
 
If we introduce the following transformations 
 

( ) ( ) ( ) tcxuetxu txZ −=== ξξ ,, ,                                                                                   (12)  

  
 
then the Eq. (14) can be reducing to a nonlinear ordinary differential equation as follows: 
 

0)( 32 =+++′−′′− rqupuuuuc                                                                                  (13) 
 

where, primes denotes the differentiation with regard to ξ .By balancing uu ′′  and 3u , the pole of 

the equation (13) is 2=N . Therefore, the ))(exp( ξφ− -expansion method admits the solution of 

(13) in the form 

 

0,)))((exp())(exp()( 2
2

210 ≠−+−+= AAAAu ξφξφξ                                           (14) 
 

By Substituting (5) and (14) into the Eq. (13) and equating the coefficient of ,)))((exp( iξφ−
)6,,2,1,0( L=i are equal to zero, yielding a set of algebraic equations as follows: 

 

02 3
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2
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0423 21
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Solving the algebraic Eq. (15) to (21), we obtain a set of solution as follows: 
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(22) 
 

where c ,λ , 0A , 2A   andµ  are arbitrary constants. 

By substituting (22) into Eq. (17), we have 
 

( ) ( )2
220 ))(exp())(exp( ξφξφλξ −+−+= AAAu

                                                      
    (23) 

 
where .tcx−=ξ

 
 
Again, by use of the Eq. (6), (7), (8), (9), (10), (12) and (23), the travelling wave solutions of the 
equation Eq. (11) are obtained as follows:  

When ,0≠µ  ,042 >− µλ we find that 
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where µλ 42 −=Ω ,   and E is arbitrary constant. 

When ,0≠µ  ,042 <− µλ we find that 
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where 24 λµ −=Ω ,   and E is arbitrary constant. 

When ,0=µ  ,0≠λ  and ,042 >− µλ we find that 
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where  E is arbitrary constant. 
 

When 0,0,042 ≠≠=− λµµλ ,  we find that 
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where E is arbitrary constant. 

When 0,0,042 ===− λµµλ ,  we find that  
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where E is arbitrary constant. 
 

4 Physical Interpretation 
 
In this section, we describe the physical interpretation and graphical representation of the 
solutions of the Zhiber-Shabat equation. 
 
4.1 Interpretations 
 
Solitons are solitary waves with elastic scattering property, which described many physical 
phenomena in soliton physics. Soliton retain their shapes and speed after colliding with each other. 
Soliton solutions also give rise to particle-like structures, such as magnetic monopoles etc. So, 
soliton are everywhere in the nature. The solution ( )txZ ,1  in Fig. 1 of the equation (11) is 

represented the soliton solution for ,1=E  ,1−=µ ,10 =A ,22 =A  ,5=c 1=λ  with 

10,10 ≤≤− tx . 
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Fig. 1. Exact soliton solution, shape of solution ( )txZ ,1 when  ,1=E  ,1−=µ ,10 =A

,22 =A  ,5=c 1=λ  and 10,10 ≤≤− tx  
 
Solution ( )txZ ,3  of the equation (11) is cuspon which is shown in Fig. 2 for ,1=E  ,0=µ

,20 =A ,32 =A  ,1=c 5.0=λ  with 10,10 ≤≤− tx .Cuspons are other kinds of solitons 
where solution exhibits cusps at their crests. 
 

 
 

Fig. 2. Exact cuspon solution, shape of solution ( )txZ ,3 when ,1=E  ,0=µ ,20 =A ,32 =A  

,1=c 5.0=λ  and 10,10 ≤≤− tx  
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The solution ( )txZ ,2 of the equation (11) is presented the periodic travelling wave solution for 
various values of the physical parameters. The Fig. 3 has been shown the shape of the solution 

( )txZ ,2  for  ,1=E  ,1=µ ,10 =A ,22 =A  ,1−=c 1−=λ  with 10,10 ≤≤− tx . 
 

 
 

Fig. 3. Exact periodic travelling wave solution, shape of solution ( )txZ ,2  when ,1=E  

,1=µ ,10 =A ,22 =A  ,1−=c 1−=λ  and 10,10 ≤≤− tx  
 

The solution ( )txZ ,4 of the equation (11) is described the exact singular kink type solution which 

is shown in Fig. 4 for ,1=E  ,1=µ ,5.10 =A ,22 −=A  ,1−=c 2=λ  with 10,10 ≤≤− tx . 
 

 
 

Fig. 4. Exact singular kink type travelling wave solution, shape of solution ( )txZ ,4  when 

,1=E  ,1=µ ,5.10 =A ,22 −=A  ,1−=c 2=λ  and 10,10 ≤≤− tx  
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Finally, solution ( )txZ ,5 of the equation (11) is represented the exact Bell type solitary wave 

solution which is shown in Fig. 5 for ,5.0−=c  ,10 =A ,5.11 =A ,1=E  ,0=µ  0=λ  with 

10,10 ≤≤− tx . 
 

 
 

Fig. 5. Bell type solitary wave solution, shape of solution ( )txZ ,5  when ,5.0−=c  ,10 =A

,5.11 =A ,1=E  ,0=µ  0=λ  and 10,10 ≤≤− tx  
 
4.2 Graphical Representations 
 
The graphical illustrations of the solutions are given below in the figures (Figs. 1-5) with the aid 
of Maple. 
 

5 Conclusion 
 
In this paper, the ))(exp( ξφ− -expansion method has been successfully applied to construct new 
travelling wave solutions for the Zhiber-Shabat equation. The performance of this method is 
reliable, convincing and can be used to other NLEEs in finding exact solutions. A variety of 
distinct physical structures such as solitons, cuspon, periodic, singular kink and bell type solitary 
wave solutions were formally derived. Although the method has a lot of merit it has a few 
drawbacks, such as, sometimes the method gives solutions in disguised versions of known 
solutions that may be found by other methods.  
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