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Abstract 
We consider the standard five-point finite difference method for solving the Poisson equation with 
the Dirichlet boundary condition. Its associated matrix is a typical ill-conditioned matrix whose 
size of the condition number is as big as ( )2O h− . Among ILU, SGS, modified ILU (MILU) and other 
ILU-type preconditioners, Gustafson shows that only MILU achieves an enhancement of the condi-
tion number in different order as ( )1O h− . His seminal work, however, is not for the MILU but for a 
perturbed version of MILU and he observes that without the perurbation, it seems to reach the 
same result in practice. In this work, we give a simple proof of Gustafsson's conjecture on the un-
necessity of perturbation in case of Poisson equation on rectangular domains. Using the Cuthill- 
Mckee ordering, we simplify the recursive equation in two dimensional grid nodes into a recursive 
one in the level that is one-dimensional. Due to the simplification, our proof is easy to follow and 
very short. 
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1. Introduction 
Consider the standard five-point finite difference method for solving the Poisson equation with the Dirichlet 
boundary condition. Its associated matrix is a typical ill-conditioned matrix whose condition number is of size 
( )2O h− , where h is the grid size. In mitigating the large size, Dupont, Kendall and Rachfold [1] propose a 
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preconditioning technique which works quite well for elliptic problems with ( )1O h−  convergence rate, which 
is a simple modification of incomplete LU (ILU) and called the modified ILU (MILU) preconditioning techni- 
que. The MILU requires all the same row sums for the preconditioner and the original matrices. Also, Gusta- 
fsson [2] [3] shows that the MILU preconditiong reduces the size to ( )1O h− , while other popular precon- 
ditionings such as ILU and symmetric Gauss-Seidel (SGS) do not improve the order. Numerical study by 
Greenbaum and Rodrigue [4] indicates that further reduction is not possible with the same sparsity pattern. 

The MILU preconditioing introduced by Axelsson [5] and developed by Gustafsson [2] adds some artificial 
diagonal perturbation on the orginal matrix. In [1] and [2], it is found that a small positive perturbation improves 
the convergence rate quite well for many elliptic problems. We refer to [6]-[9] and references therein for more 
results and details. 

The numerical experiments [10] with Dirichlet boundary condition, however, suggest that the perturbation is 
unnecessary. It is Gustafsson’s conjecture [2] [11] to prove the estimate ( )1O h−  for the unperturbed MILU 
preconditioing. Beauwens [12] considers a general setting that includes the five-point method, and proves the 
conjecture using the matrix-graph connectivity properties (see also [13]). Beauwens’ proof deals with a Stieltjes 
matrix under several assumptions. Notay [14] also obtains an upper bound ( )1O h−  for the block MILU with 
the line partitioning. We also refer the reader to [15]-[18] for related works on Gustafsson’s conjecture. 

We introduce a novel and heuristic proof for the conjecture in case of Poisson equation with Dirichlet 
boundary condition on rectangular domains. The MILU preconditioner is obtained from recursively calculating 
the row-sum equation at each grid node in the lexicographical ordering. In the case of the five-point method, it is 
well known [19] that the same matrix can be obtained in the Cuthill-Mckee ordering. The matrix entry on the  
( ),ih jh  node depends only on ( )( )1 ,i h jh−  and ( )( ), 1ih j h−  nodes, both of which lie on the same level 

1n i j= + −  of the Cuthill-Mckee ordering. So we can simplify the recursive equation in two dimensional grid  
nodes into a recursive one in the level that is one dimensional. Due to the simplification, our proof is easy to 
follow and very short. 

2. MILU Preconditioning 
Consider the Poisson equation u f−∆ =  in a rectangular domain ( ) ( )0, 0,a bΩ = ×  with the Dirichlet boun- 
dary condition u g=  on ∂Ω . The standard five-point finite difference method approximates the equation as 

2
1, 1, , 1 , 14 ,ij i j i j i j i j iju u u u u f h+ − + −− − − − = ⋅  

at each grid node ( ) ( )2, hih jh h∈Ω = Ω  . The approximations constitute a linear system ijA u b  =  . With 
the lexicographical ordering, we decompose the matrix as 

,A L D U= + +  

where L, U, and D are its strictly lower and upper, and diagonal parts, respectively. MILU preconditioner is the 
matrix of the form ( ) ( )1M E L E E U−= + + , where the diagonal matrix E is obtained recursively as follows. 

for 1, 2, ,i M=   
for 1, 2, ,j N= 

 

1 1, ,
2 2

, 1 1 1 1, 1, , , 1
1, , 12 2 2 2

4
i j i j

i j i j i j i j i j
i j i j

l l
e l l l l

e e

− −

− − + − + −
− −

   
= − + − +      

   
 

Here ,i je  denotes the diagonal element of E corresponding to the node point ( ),ih jh , i.e. ( ) ( ), , ,i j i jE . 1 ,
2

i j
l
+

 

and 1,
2

i j
l

+
 denote the entry ( ) ( ), , 1,i j i jA +  and ( ) ( ), , , 1i j i jA + , respectively. Note that the above formula results from  

the row sum property, Me Ae=  with ( )T1, ,1e =  . Due to the Dirichlet boundary condition, 1 ,
2

i j
l
+

 and 
1,
2

i j
l

+
 are either 1−  or 0, and 1,1 4e = . 

Lemma 1. Let { } 1n n
c ∞

=
 be a sequence defined recursively as  
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1 1
44 and 4 , 1.n
n

c c n
c+= = − ≥                                (1) 

Then we have  

22 , 1.nc n
n

≥ + ≥  

Proof. Let { } 1n n
c ∞

=
 be the sequence defined as (1). The lemma is shown by the mathematical induction. 

Assume that 2 2 ,nc n≥ +  for 1, 2, , .n k=   Then  

1
4 2 24 4 2 ,

1 1k
k

kc
c k k+ = − ≥ − = +

+ +
 

and this proves the lemma. 
Theorem 1. Let ( ) ( )1M L E E U E−= + +  be the MILU preconditioner for A. Then, for every diagonal 

element ( ),i je  of E corresponding to the node ( ), hih jh ∈Ω , we have  

,
22 for , 1, 2, .i je i j

i j
≥ + =

+
  

and, therefore,  

,
22 .i je

N M∞
≥ +

+
 

Proof. We shall show that ,i j i je c +≥  for , 1, 2,i j = 
 by mathematical induction on n i j= + . Then 

follows the result from the previous lemma. When 2n = , 1,1 24 3e c= ≥ = . Assume that ,i j ne c≥  for all 

( ), hih jh ∈Ω  with i j n+ = . Then for any ( ), hih jh ∈Ω  with 1i j n+ = + ,  

1 1, ,
2 2

, 1 1 1 1, 1, , , 1
1, , 12 2 2 2

1
1 1

4

2 2 44 4 .

i j i j

i j i j i j i j i j
i j i j

n
i j i j n

l l
e l l l l

e e

c
c c c

− −

− − + − + −
− −

+
+ − + −

   
= − + − +      

   

≥ − − = − =

 

Now, we are ready to estimate the condition number of the MILU preconditioned matrix 1M A− . The fol- 
lowing analysis is a standard approach, for the details see [2]. Since 1M A−  is similar to  

( ) ( )
1 1

1 12 2E L E A L U E− −+ +  that is symmetric and positive definite, all the eigenvalues of 1M A−  are real and 

positive. Moreover, the minimum and maximum eigenvalues of 1M A−  are given as  

min max

, ,
min and max ,

, ,h hv v

Av v Av v
Mv v Mv v

λ λ
Ω Ω∈ ∈

= =




                          (2) 

and , ,Av v Mv v  is written in the form  

, 1
, 1 , ,

Av v
Mv v Rv v Av v

=
+

                                    (3) 

for the matrix R M A= −  (see (b) of Figure 1 for its entries). For arbitrary hv Ω∈ , we have  

( ) ( )2 2
1 1, , 1 , 1 ,, ,1 1 2 2

, .
M N

i j i j i j i ji j i ji j
Av v l v v l v v+ +

+ += =

 
≥ − + −  

 
∑∑                       (4) 
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(a)                                                     (b) 

Figure 1. Matrices A and R. (a) Matrix A; (b) Matrix B = M – A.                                      
 

Using the inequality ( ) ( ) ( )2 2 22 2x y x z y z+ ≤ − + −  and Theorem 1, we also have  

( )

( ) ( )

1 1, , 22 2
1, , 1

1 1 ,

2 2
1 1, , 1 , 1 ,, ,1 1 2 2

,

1

, .
1

M N i j i j

i j i j
i j i j

M N

i j i j i j i ji j i ji j

l l
Rv v v v

e

N M l v v l v v
N M

N M Av v
N M

+ +

+ +
= =

+ +
+ += =

− = −

 +
≤ − + −  + +  

+
≤

+ +

∑∑

∑∑  

Thus, we obtain the inequalities  

( )
,

0 .
, 1

Rv v N M a b
Av v N M a b h

− + +
≤ ≤ ≤

+ + + +
                               (5) 

In summary, we have the following. 
Theorem 2. Let λ  be an eigenvalue of the MILU preconditioned matrix, then min 1λ =  and  

1 1.a b
h

λ +
≤ ≤ −                                          (6) 

Proof. Let λ  be an eigenvalue of the MILU preconditioned matrix 1 .M A−  From (5), we have that  
,1 1 1, 0,

1 ,
Rv v

v
N M Av v

≤ + ≤ ∀ ≠
+ +

 

and applying these inequalities above into (2) and (3) gives  

( ) ( )( )1 1 1, 1 , 1 ,a bN M a N h b M h
h

λ +
≤ ≤ + + = − = + = +  

which shows the inequalites (6). On the other hand, the row sum property implies that 1 is an eigenvalue of 
1M A− . Thus, we have min 1,λ =  and we complete the proof.  

Corollary 1. The ratio of the maximum and minimum eigenvalues of the MILU preconditioned matrix is 
bounded by ( )1O h− .  
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Remark 1. Our analysis deals with the two dimensional Poisson equation. It naturally extends to the three 
dimensional equation in a dimension-by-dimension manner.  
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