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Abstract

In this paper, the Solution to Impulsive Evolution Partial Differential Equations is given by

applying the Distribution Technigue and Rankine-Hugoniot condition.
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1 Introduction

Various evolutionary processes in real life situations or physical phenomena encountered in the
diverse fields of human endeavour, like biotechnology, industrial robotics, pharmcokinetics, optimal
control and population dynamics are characterised by the fact that they usually undergo abrupt
changes of state at certain moment of time between intervals of continuous evolution. Such changes
due to its time-lag, which are often negligible compared to the total duration of the process, are
regarded as having acted instantaneously and in the form of impulses.

As a consequence, impulsive differential equations have been developed for modeling of impulsive
problems. In recent times, much attention had been given by researchers impulsive problems in
differet directions. These directions indicate problems in biological and social macro systems which
have much functional applications as a result of processes that involves hereditary issues and this had
been worked upon by many mathematicians (see for example [1], [2]). Sometimes, the derivatives of
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the state variable may undergo a delay, such is being handled by introduction of neutral functional
differential equations and inclusions (see for example [3,4]).

Others have initiated the study of the state dependent delay (see for example [5,6]) while sudies
had been done also on impulsive evolutionary equations (see for example [7,8]) and in particular,[9]
considered the solution to impulsive evolution equations by the method of differential inequalities
via the Lyapunov functions.

Nevertheless, uptill now to the best our knowledge, the solution obtained by distribution techniques
is an untreated problem and this is the motivation for this paper. We consider the nonlinear
impulsive evolution equation of the form:

ut + (Ψ(u))x = 0 on R\C([tk, tk+1]) (1.1)

∆u(tk, x) = Ik(u(tk, x)), k = 1, 2, ..., n (1.2)

u(0, x) = u0(x) (1.3)

where Ik ∈ C(R,R), Ψ : R → Rn is a smooth function,

∆u|t=tk = u(t+k , x)− u(t−k , x); u(t+k , x), u(t
−
k , x)

indicate the right and left limits of the function u at tk. By using the idea of Rankine-Hugoniot
condition and the distribution approach, we give the solution representation to problem 1.1 - 1.3.

2 Preliminaries

Definition 2.1. : A function u : J → R is said to be piecewise continuous denoted by PC(J,R) if u
is continuous at each point of the in interval J = (α, β) except for some tk for which u(t+k ) and u(t−k )
exist.

Moreso, impulses problem requires a generalised definition of functions given that we often
arrived at unit intervals being supported on shorter time-lags or rather the functions could be
regarded as an instantteneous unit impulse. Such generalised definition are often necessary for
problems involving idealised point singularities in that it weakens the strict requirement of any
solution being continuously differentiable upto the order of the differential equation.[3mm] Let
Ω ⊆ [tk, tk+1]×Rn be nonempty open set and ϕ a smooth test function belonging to D(Ω) = C∞

0 (Ω).
We define thus:

Definition 2.2. ([10], p 131): A distribution or generalised function is a linear mapping ϕ → (f, ϕ)
from D(Ω) to R which is continuous in the sense that if ϕn → ϕ in D(Ω), then (f, ϕn) → (f, ϕ)
where

(f, ϕ) :=

∫
Ω

f(x)ϕ(x)dx ∀x ∈ Ω

.

Definition 2.3. (Rankine-Hugoniot condition): Let N be an open neigbourhood in the open upper
half plane and suppose a curve C : (α, β) ∋ t → C(t) divides N into two pieces, NL and Nr, lying
to the left and right of the curve respectively. Suppose u undergoes discontinuities denoted by [u]
at the curve C which are continuous along C, then for any point p ∈ C, the gradient S of C at p
have the relation S[u] = [Ψ(u)] where [u](p) = ur(p)− ul(p) = lim

(tr,xr)→p
u(tr, xr)− lim

(tl,xl)→p
u(tl, xl)

and Ψ as in 1.1, indicates the rate (velocities) at any point p.
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Consider the problem 1.1 - 1.3, assume Ω± to be the space of discontinuities in the interval
[tk, tk+1], k = 1, 2, ..., n defined by

Ω± =


x > C(tk)

(t, x) ∈ Ω :
x < C(tk).

(2.1)

The outward normal along C(tk) is given as

n(tk) =
±(C′(tk),−1)√

1 + C′(tk)2
(2.2)

where the surface measure along C is

dα(tk) =
√

1 + C′(tk)2dt (2.3)

We then apply these definitions and the divergence theorem to obtain the solution representation
by multiplying the problem with the test function and finding the inner product.

3 Main Results

Let ϕ ∈ C2
0 (Ω) be a test function, we multiply equation 1.1 with ϕ and integrate accordingly by

part to obtain ∫
Ω

[(ut, ϕ) + (Ψ(u)ux, ϕ)] dxdt = 0 (3.1)

⇒
∫
R

∫
t≥0

(uϕt +Ψ(u)ϕx)dtdx−
∫
R

|uϕ|
∣∣∣∣∞
t=0

dx = 0

.

Definition 3.1. A bounded measurable function u(t, x) ∈ C′(Ω\C([tk, tk+1])) is called a distribution
solution of 1.1 - 1.3 if it has the form

∫
R

∫
t≥0

[u(t, x)ϕt(t, x) + Ψ(u(t, x))ϕx(t, x)]dtdx+

∫
R

u0(x)ϕ(0, x))dx = 0 (3.2)

such that
C′(t)[u+(t, C(t))− u−(t, C(t))] = Ψ(u+(t, C(t))−Ψ((u−(t, C(t)) (3.3)

∀t ∈ [tk, tk+1].

Equation 3.2 follows from integration by part and applying the divergince theorem, we have that

∫
Ω

(uϕt +Ψ(u)ϕx)dtdx =

∫
Ω±

(u,Ψ(u).(ϕt, ϕx)dxdt = 0

=

∫
∂Ω±

ϕ(u,Ψ(u).n(t)dα(t) (3.4)

which implies

±

tk+1∫
tk

[u±
t (t, C(t))C′(t)−Ψ(u(t, C(t))]ϕ(t, C(t))dt (3.5)
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follwing the Rankine-Hugoniot condition.

Substituting equation 3.5 into the problem gives

tk+1∫
tk

{C′(t)[u+(t, C(t)) − u−(t, C(t))]−Ψ(u+(t, C(t))

−Ψ((u−(t, C(t))}ϕ(t, C(t)dt = 0 (3.6)

for all ϕ and then

C′(t)[u+(t, C(t))− u−(t, C(t))]− (Ψ(u+(t, C(t))−Ψ((u−(t, C(t))) = 0

thus
C′(t)[u+(t, C(t))− u−(t, C(t))] = Ψ(u+(t, C(t))−Ψ((u−(t, C(t)).

The characteristics curve along or within the impulse range can then be obtained from the equation

C′(t) =
Ψ(u+(t, C(t))−Ψ((u−(t, C(t))

u+(t, C(t))− u−(t, C(t))
(3.7)

Illustration: Consider the impulsive Burger’s equation of the form:

ut + uux = 0 on −∞ < x < ∞, 0 ≤ t < ∞
∆u(tk, x) = Ik(u(tk, x))

u(0, x) = u0(x) =


0 x ≥ 1
1− x 0 < x < 1
1 x ≤ 0.

The characteristics equations arising from the above conditions starting from initial point (0, x0)
are

x(t) = (1− x0)t+ x0 if x0 ∈ (0, 1)
x(t) = x0 + t if x0 < 0
x(t) = x0 if x0 > 1.

along which the concentration u(t, x) remain constant.

Our concern is to determine a distributional solution valid for all (t, x) in the region of discontinuity
where the impulse effect occurs. Thus, we consider a characteristic curve C(t) in Ω such that for
x > C(t), u = 0 and x < C(t), u = 1, in the region R = {(t, x) : t ≤ 1, x ≥ 1 and x ≤ t}.

The continuity conditions implies that

C′(t)(0− 1) = (0− 1
2
) = − 1

2

⇒ C′(t) = 1
2

hence the characteristics equation becomes

C(t) =
1

2
t+ 1, t ≥ 0

for which the solution is distributed above and below.
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Fig. 1. A Plot of u vs x
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Fig. 2. Surface Plot (x, t, u)
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Fig. 3. A Plot of x vs u(:, :, 1)
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Fig. 4. A Plot of x vs u
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Fig. 5. Surface Plot (x, t, u)
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Fig. 7. A Plot of x vs u
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Fig. 8. Surface Plot (x, t, u)
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Fig. 9. A Plot of x vs u(:, :, 1)
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Fig. 10. A Plot of x vs u

..................................

415



Ndiyo et al.; BJMCS, 9(5), 407-417, 2015; Article no.BJMCS.2015.212

0 1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

6

7

8

9
Characteristics Equations

t

x

Fig. 11. A Plot of t vs x

4 Conclusion

The Figs. (1) - (11) clearly show the region of impulses at the point of discontinuities tk.
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