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Abstract

This paper is concerned with an almost periodic discrete logistic equation. By using the
continuation theorem of Mawhin’s coincidence degree theory, this paper investigates the
existence and stability of a unique positive almost periodic sequence solution of the equation.
These results generalize and improve the previous works, and they are easy to check. An example
with a numerical simulation is also given to demonstrate the effectiveness of the results in this
paper.
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1 Introduction

Let R, Z and N denote the sets of real numbers, integers and positive integers, respectively. Related
to a continuous bounded function f on E (E = R or Z), we use the following notations:

f− = inf
s∈E

f(s), f+ = sup
s∈E

f(s), |f |∞ = sup
s∈E

|f(s)|.
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Discrete time models governed by difference equation are more appropriate than the continuous ones
when the populations have non-overlapping generations. Moreover, since the discrete time models
can also provide efficient computational models of continuous models for numerical simulations, it
is reasonable to study discrete time models governed by difference equations. The purpose of this
article is to investigate the dynamics of a discrete logistic equation:

x(n+ 1) = x(n) exp

(
r(n)

[
1− x(n)

K(n)

])
, (1.1)

where {r(n)} and {K(n)} are bounded nonnegative almost periodic sequences with r− > 0 and
K− > 0.

In [1], Mohamad and Gopalsamy proposed Eq. (1.1) and studied the existence and stability of a
positive almost periodic solution of the model. They obtained

Theorem 1.1. ([1]) If r+ < 2, then Eq. (1.1) has a unique globally asymptotically stable almost
periodic solution.

Following, by using asymptotically almost periodic theory, Li and Chen [2] also investigated the
existence and stability of a positive almost periodic solution of Eq. (1.1). They obtained

Theorem 1.2. ([2]) If K+

K− exp(r+ − 1) < 2, then Eq. (1.1) has a unique globally asymptotically
stable almost periodic solution.

By applying the continuation theorem of Mawhin’s coincidence degree theory and some analysis
techniques, the purpose of this article is to investigate the dynamics of Eq. (1.1) and one gets that

Theorem 1.3. Eq. (1.1) has a unique globally asymptotically stable almost periodic solution.

Remark 1.1. Without K+

K− exp(r+ − 1) < 2 and r+ < 2, Theorem 1.3 is simpler than Theorems
1.1-1.2. Therefore, the results in this paper generalize and improve the previous works in [1-2].

The organization of this paper is as follows. In Section 2, we give some definitions and present some
useful lemmas. In Section 3, by using Mawhin’s continuation theorem of coincidence degree theory
and constructing a suitable Lyapunov functional, we establish sufficient conditions for the existence
of a unique globally asymptotically stable almost periodic solution of Eq. (1.1). An example with a
numerical simulation is also given to demonstrate the effectiveness of the results in this paper.

2 Preliminaries

Definition 2.1. ([3]) Let f ∈ C(R). f is said to be almost periodic function on R, if for ∀ϵ > 0,
the set

T (f, ϵ) = {τ : |f(t+ τ)− f(t)| < ϵ, ∀t ∈ R}

is relatively dense, i.e., for ∀ϵ > 0, it is possible to find a real number l = l(ϵ) > 0, for any interval
length l, there exists a number τ = τ(ϵ) ∈ T (f, ϵ) in this interval such that

|f(t+ τ)− f(t)| < ϵ, ∀t ∈ R.

τ is called to the ϵ-almost period of f , T (f, ϵ) denotes the set of ϵ-almost periods for f and l(ϵ) is
called to the length of the inclusion interval for T (f, ϵ). Let AP (R) denote the set of all real valued
almost periodic functions on R.
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Definition 2.2. ([4, 5, 6]) A sequence f : Z → R is called an almost periodic sequence if the
ϵ-translation set of f

E{f, ϵ} = {τ ∈ Z : |f(n+ τ)− f(n)| < ϵ, ∀n ∈ Z}

is a relatively dense set in Z for all ϵ > 0; that is, for any given ϵ > 0, there exists an integer l(ϵ) > 0
such that each interval of length l(ϵ) contains an integer τ ∈ E{f, ϵ} such that

|f(n+ τ)− f(n)| < ϵ, ∀n ∈ Z.

τ is called the ϵ-translation number or ϵ-almost period. Let AP (Z) denote the set of all real valued
almost periodic sequences.

We narrate a number of results on almost periodic sequences for the benefit of the reader. The
proofs of the following results can be found in Samoilenko and Perestyuk [7].

Lemma 2.1. An almost periodic sequence is bounded.

Lemma 2.2. If f ∈ AP (Z) and g ∈ AP (Z) with g− > 0, then f + g, fg, f
g
∈ AP (Z).

Lemma 2.3. If f ∈ AP (Z), g ∈ AP (Z) and ϵ > 0 is an arbitrary real number, then there exists a
relatively dense set of their common ϵ-almost periods.

Next, we present and prove several useful lemmas which will be used in later section.

Let f ∈ AP (R) ∩ C1(R\Z), for ∀ϵ > 0, set

T+
ϵ = {t ∈ R\Z : f(t) ∈ [f∗ − ϵ, f∗], f ′(t) ≥ 0},

T−
ϵ = {t ∈ R\Z : f(t) ∈ [f∗, f∗ + ϵ], f ′(t) ≤ 0},

where f∗ = sups∈R f(s), f∗ = infs∈R f(s).

Lemma 2.4. For ∀ϵ > 0, T+
ϵ ̸= ∅.

Proof. By the way of contradiction. Suppose that T+
ϵ = ∅ for some ϵ > 0. Then we have

f ′(t) < 0, ∀t ∈ {t ∈ R\Z : f(t) ∈ [f∗ − ϵ, f∗]}. (2.1)

Since f ∈ AP (R), there must exist a point t0 such that f(t0) = f∗ − ϵ. It follows from (2.1) that

f(t) ≤ f∗ − ϵ, ∀t ≥ t0. (2.2)

By the definition of f∗ and (2.2), there is a point t1 ∈ (−∞, t0) such that

f(t1) ∈
[
f∗ − ϵ

2
, f∗

]
. (2.3)

For ϵ
4
> 0, it is possible to find a real number l = l( ϵ

4
) > 0, there exists a number τ = τ( ϵ

4
) ∈

[t0 − t1, t0 − t1 + l] such that |f(t+ τ)− f(t)| < ϵ
4
, ∀t ∈ R, which implies that

|f(t1 + τ)− f(t1)| <
ϵ

4
,

which yields from (2.3) that

f(t1 + τ) > f(t1)−
ϵ

4
≥ f∗ − 3ϵ

4
. (2.4)

Since t1 + τ ≥ t0, we have from (2.2) that f(t1 + τ) ≤ f∗ − ϵ, which leads to a contradiction with
(2.4). Therefore, for ∀ϵ > 0, T+

ϵ ̸= ∅. This completes the proof.
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Similar to Lemma 2.4, we can easily show that

Lemma 2.5. For ∀ϵ > 0, T−
ϵ ̸= ∅.

Lemma 2.6. Assume that f ∈ AP (Z) is a solution of the following equation:

f(n+ 1) = f(n) exp

(
r(n)

[
1− f(n)

K(n)

])
.

Define

f⃗(t) = f(n) exp

(
r(n)

[
1− f(n)

K(n)

]
(t− n)

)
, ∀t ∈ [n, n+ 1), n ∈ Z. (2.5)

Then f⃗ ∈ AP (R) ∩ C1(R\Z) is a solution of the following system:

d f⃗(t)

d t
= f⃗(t)r(n)

[
1− f⃗(n)

K(n)

]
, ∀t ∈ (n, n+ 1), n ∈ Z. (2.6)

Furthermore, one has f⃗∗ ≤ f∗ ≤ f∗ ≤ f⃗∗.

Proof. Obviously, f⃗(n) = f(n), ∀n ∈ Z. So f⃗∗ ≤ f∗ ≤ f∗ ≤ f⃗∗.

Next, we should prove the remaining part of this lemma by three steps.

Firstly, we claim that f⃗ ∈ C(R). Clearly, f⃗ ∈ C(R\Z). For t = n ∈ Z, in view of (2.5), one has

f⃗(t) = f⃗(n) = f(n) and

lim
t→n−

f⃗(t) = lim
t→n−

f(n− 1) exp

(
r(n− 1)

[
1− f(n− 1)

K(n− 1)

]
(t− n+ 1)

)
= lim

t→n−
f(n− 1) exp

(
r(n− 1)

[
1− f(n− 1)

K(n− 1)

])
= f(n).

So f⃗ ∈ C(R).

Secondly, we claim that f⃗ ∈ AP (R). For convenience, let

F (n) = r(n)

[
1− f(n)

K(n)

]
, ∀n ∈ Z.

By the almost periodicity of r, f and K, F ∈ AP (Z). Let G = max{eF
+

, f+eF
+

}. Since f, F ∈
AP (Z), for ∀ϵ > 0, there exists an integer l( ϵ

2G
) > 0 such that each interval of length l( ϵ

2G
) contains

an integer τ ∈ E{f, ϵ
2G

} ∩ E{F, ϵ
2G

} such that

|f⃗(n+ τ)− f⃗(n)| = |f(n+ τ)− f(n)| < ϵ

2G
, |F (n+ τ)− F (n)| < ϵ

2G
, ∀n ∈ Z. (2.7)

For arbitrary t ∈ (n, n+ 1), we have t+ τ ∈ (n+ τ, n+ τ + 1), n ∈ Z. Then

|f⃗(t+ τ)− f⃗(t)| =
∣∣∣∣f(n+ τ) exp

[
F (n+ τ)(t− n)

]
− f(n) exp

[
F (n)(t− n)

]∣∣∣∣
≤ |f(n+ τ)− f(n)| exp

[
F (n+ τ)(t− n)

]
+|f(n)|

∣∣∣∣ exp [F (n+ τ)(t− n)
]
− exp

[
F (n)(t− n)

]∣∣∣∣
≤ eF

+

|f(n+ τ)− f(n)|+ f+eξ
∣∣∣∣F (n+ τ)(t− n)− F (n)(t− n)

∣∣∣∣
<

eF
+

2G
ϵ+

f+eF
+

2G
ϵ ≤ ϵ. (2.8)
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From (2.7)-(2.8), τ ∈ T (f⃗ , ϵ). Therefore, f⃗ ∈ AP (R).

Finally, for t ∈ (n, n+ 1), n ∈ Z, it follows from (2.6) that

d f⃗(t)

d t
= f(n) exp

(
r(n)

[
1− f(n)

K(n)

]
(t− n)

)
r(n)

[
1− f(n)

K(n)

]
= f⃗(t)r(n)

[
1− f⃗(n)

K(n)

]
.

In sum, f⃗ ∈ AP (R) ∩ C1(R\Z) is a solution of (2.6). This completes the proof.

Similar to the proof of the above lemma, one could easily show that

Lemma 2.7. Assume that f ∈ AP (Z), define

f̃(t) = [f(n+ 1)− f(n)](t− n) + f(n), ∀t ∈ [n, n+ 1), n ∈ Z. (2.9)

Then f̃ ∈ AP (R) and ∥f∥Z = ∥f̃∥R.

3 Main Results

The method to be used in this paper involves the applications of the continuation theorem of
coincidence degree. This requires us to introduce a few concepts and results from Gaines and
Mawhin [8].

Let X and Y be real Banach spaces, L : DomL ⊆ X → Y be a linear mapping and N : X → Y be a
continuous mapping. The mapping L is called a Fredholm mapping of index zero if ImL is closed
in Y and dimKerL = codimImL < +∞. If L is a Fredholm mapping of index zero and there exist
continuous projectors P : X → X and Q : Y → Y such that ImP = KerL, KerQ = ImL = Im(I−Q).
It follows that L|DomL∩KerP : (I − P )X → ImL is invertible and its inverse is denoted by KP . If
Ω is an open bounded subset of X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is
bounded and KP (I −Q)N : Ω̄ → X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ→ KerL.

Lemma 3.1. ([8]) Let Ω ⊆ X be an open bounded set, L be a Fredholm mapping of index zero and
N be L-compact on Ω̄. If all the following conditions hold:

(a) Lx ̸= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);

(b) QNx ̸= 0, ∀x ∈ ∂Ω ∩KerL;

(c) deg{JQN,Ω ∩KerL, 0} ̸= 0, where J : ImQ→ KerL is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

Now we are in the position to present and prove our result on the existence of at least one positive
almost periodic sequence solution of Eq. (1.1).

For f ∈ AP (Z), define ∥f∥Z = sups∈Z |f(s)| and denote by

f̄ = m(f) = lim
n→∞

1

n

n−1∑
k=0

f(k)

the mean value of f . For f ∈ AP (R), define ∥f∥R = sups∈R |f(s)| and denote by

Λ(f) =

{
θ ∈ R : lim

T→∞

1

T

∫ T

0

f(s)e−iθsds ̸= 0

}
the set of Fourier exponents of f .
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Theorem 3.2. Eq. (1.1) admits at least one positive almost periodic sequence solution.

Proof. Under the invariant transformation x = ey, Eq. (1.1) reduces to

y(n+ 1) = y(n) + r(n)

[
1− ey(n)

K(n)

]
. (3.1)

It is easy to see that if Eq. (3.1) has one almost periodic sequence solution y, then x = ey is a
positive almost periodic sequence solution of Eq. (1.2). Therefore, to completes the proof it suffices
to show that Eq. (3.1) has one almost periodic sequence solution.

Take X = Y = V
⊕

R, where

V =

{
y ∈ AP (Z) : ∀θ ∈ Λ(ỹ), θ ∈ Θ

}
,

where ỹ is defined as that (2.9), Θ =
∪

k∈K[2kπ+ ρ, 2(k+1)π− ρ], K = {k1, k2, . . . , kn} ⊂ Z, n ∈ N
and ρ ∈ (0, π

2
) are given constant. Define the norm

∥y∥Z = sup
s∈Z

|y(s)|, ∀y ∈ X = Y,

then X and Y are Banach spaces with the norm ∥ · ∥Z (see Lemma 5.2 in section 5). Set

L : X → Y, Ly(n) = ∆y(n) = y(n+ 1)− y(n), ∀y ∈ X

and

N : X → Y, Ny =

[
r(n)

[
1− ey(n)

K(n)

]]
.

With these notations Eq. (3.1) can be written in the form

Ly = Ny, ∀y ∈ X.

It is not difficult to verify that KerL = R, ImL = V is closed in Y and dimKerL = 1 = codim ImL.
Therefore, L is a Fredholm mapping of index zero (see Lemma 5.3 in section 5). Now define two
projectors P : X → X and Q : Y → Y as

Py = m(y) = Qy, ∀y ∈ X = Y.

Then P and Q are continuous projectors such that ImP = KerL and ImL = KerQ = Im(I − Q).
Furthermore, through an easy computation we find that the inverse KP : ImL→ KerP ∩DomL of
LP has the form

KP y =

n−1∑
k=0

y(k)−m

[
n−1∑
k=0

y(k)

]
, ∀y ∈ ImL.

Then QN : X → Y and KP (I −Q)N : X → X read

QNy = m

[
r(n)

[
1− ey(n)

K(n)

]]
,

KP (I −Q)Ny = f(y)−Qf(y), ∀y ∈ ImL,

where f(y) is defined by f(y) =
∑n−1

k=0

[
Ny(k)−QNy(k)

]
. Then N is L-compact on Ω̄ (see Lemma

5.4 in section 5).

In order to apply Lemma 3.1, we need to search for an appropriate open-bounded subset Ω.
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Corresponding to the operator equation Ly = λy, λ ∈ (0, 1), we have

y(n+ 1)− y(n) = λr(n)

[
1− ey(n)

K(n)

]
. (3.2)

Suppose that y ∈ X is a solution of Eq. (3.2) for some λ ∈ (0, 1). Then x = ey ∈ AP (Z) is a positive
solution of the following equation:

x(n+ 1) = x(n) exp

(
λr(n)

[
1− x(n)

K(n)

])
.

By Lemma 2.6, there exists x⃗ ∈ AP (R, (0,+∞)) ∩ C1(R\Z) satisfying

d x⃗(t)

d t
= λx⃗(t)r(n)

[
1− x⃗(n)

K(n)

]
, ∀t ∈ (n, n+ 1), n ∈ Z (3.3)

and x⃗∗ ≤ x∗ ≤ x∗ ≤ x⃗∗. Let x⃗ = ey⃗ in Eq. (3.3), then

d y⃗(t)

d t
= λr(n)

[
1− ey⃗(n)

K(n)

]
, ∀t ∈ (n, n+ 1), n ∈ Z. (3.4)

By the definitions of y, x and x⃗, y⃗ ∈ AP (R). By Eq. (3.4), y⃗ ∈ C1(R\Z).

By Lemma 2.4, for ∀ϵ > 0, T+
ϵ ̸= ∅, that is, there is a point ξ ∈ R\Z such that

y⃗(ξ) ∈ [y⃗∗ − ϵ, y⃗∗] and
d y⃗(t)

d t

∣∣∣∣
t=ξ

≥ 0. (3.5)

In view of (3.4), there exists n0 ∈ Z such that ξ ∈ (n0, n0 + 1) and

d y⃗(t)

d t

∣∣∣∣
t=ξ

= λr(n0)

[
1− ey⃗(n0)

K(n0)

]
,

which implies from (3.5) that

y⃗(n0) ≤ lnK+. (3.6)

Further, it follows from (3.4) that∫ ξ

n0

d y⃗(t)

d t
dt =

∫ ξ

n0

λr(n0)

[
1− ey⃗(n0)

K(n0)

]
dt ≤ r+. (3.7)

By (3.6)-(3.7), we have

y⃗(ξ) = y⃗(n0) +

∫ ξ

n0

d y⃗(t)

d t
dt ≤ lnK+ + r+,

which yields from (3.5) that

y⃗∗ ≤ lnK+ + r+ + ϵ.

Letting ϵ→ 0 in the above inequality leads to

y⃗∗ ≤ lnK+ + r+ := α. (3.8)

On the other hand, by Lemma 2.5, for ∀ϵ > 0, T−
ϵ ̸= ∅, that is, there is a point η ∈ R\Z such that

y⃗(η) ∈ [y⃗∗, y⃗∗ + ϵ] and
d y⃗(t)

d t

∣∣∣∣
t=η

≤ 0. (3.9)

7



Zhang; AJPAS, 4(4): 1-15, 2019; Article no.AJPAS.49892

In view of (3.4), there exists n1 ∈ Z such that η ∈ (n1, n1 + 1) and

d y⃗(t)

d t

∣∣∣∣
t=η

= λr(n1)

[
1− ey⃗(n1)

K(n1)

]
,

which implies from (3.9) that

y⃗(n1) ≥ lnK−. (3.10)

Further, it follows from (3.4) and (3.8) that∫ η

n1

d y⃗(t)

d t
dt =

∫ η

n1

λr(n1)

[
1− ey⃗(n1)

K(n1)

]
dt ≥ −r

+eα

K− . (3.11)

By (3.10)-(3.11), we have

y⃗(η) = y⃗(n1) +

∫ η

n1

d y⃗(t)

d t
dt ≥ lnK− − r+eα

K− ,

which yields from (3.9) that

y⃗∗ ≥ lnK− − r+eα

K− − ϵ.

Letting ϵ→ 0 in the above inequality leads to

y⃗∗ ≥ lnK− − r+eα

K− := β. (3.12)

From (3.8) and (3.12), it follows that

β ≤ y⃗∗ ≤ y⃗∗ ≤ α⇒ eβ ≤ x⃗∗ ≤ x⃗∗ ≤ eα ⇒ eβ ≤ x∗ ≤ x∗ ≤ eα ⇒ β ≤ y∗ ≤ y∗ ≤ α.

Set C = |α| + |β| + 1. Clearly, C is independent of λ ∈ (0, 1). Let Ω = {y ∈ X : ∥y∥Z < C}.
Therefore, Ω satisfies condition (a) of Lemma 3.1. Now we show that condition (b) of Lemma 3.1
holds, i.e., we prove that QNy ̸= 0 for all y ∈ ∂Ω ∩ KerL = ∂Ω ∩ R. If it is not true, then there
exists at least one constant vector y ∈ ∂Ω ∩ R such that

0 = m

[
r(n)

[
1− ey

K(n)

]]
.

So β ≤ y ≤ α. Then y ∈ Ω ∩ R. This contradicts the fact that y ∈ ∂Ω. This proves that condition
(b) of Lemma 3.1 holds. Finally, by a direct computation yields

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
QN,Ω ∩KerL, 0

)
= −1,

where deg(·, ·, ·) is the Brouwer degree and J is the identity mapping since ImQ = KerL. Obviously,
all the conditions of Lemma 3.1 are satisfied. Therefore, Eq. (3.1) has at least one almost periodic
sequence solution, that is, Eq. (1.1) has at least one positive almost periodic sequence solution. This
completes the proof.

Proof of Theorem 1.3. From Theorem 3.1, we know that Eq. (1.1) has at least one positive
almost periodic sequence solution x. Suppose that y is another positive solution of Eq. (1.1).

It is not difficult to obtain that

x(n+ 1) = x(n) exp

(
r(n)

[
1− x(n)

K(n)

])
, n ∈ Z, (3.13)

8
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y(n+ 1) = y(n) exp

(
r(n)

[
1− y(n)

K(n)

])
, n ∈ Z. (3.14)

Define

V (n) = | lnx(n)− ln y(n)|, ∀t ∈ (n, n+ 1), n ∈ Z.

Since x⃗ and y⃗ are continuous, then V ∈ C(R).

By calculating the upper right derivative of V along (3.13)-(3.14), it follows that

D+V (t) ≤ − r−

K+
|x⃗(n)− y⃗(n)|, ∀t ∈ (n, n+ 1), n ∈ Z.

Therefore, V is non-increasing. Sine V ∈ C(R), integrating of the last inequality from 0 to n ∈ Z
leads to

V (n)− V (0) =

n−1∑
k=0

[V (k + 1)− V (k)]

=

n−1∑
k=0

∫ k+1

k

D+V (t) dt

≤ − r−

K+

n−1∑
k=0

|x⃗(k)− y⃗(k)|,

that is,
∞∑

k=0

|x⃗(k)− y⃗(k)| < +∞,

which implies that

lim
k→+∞

|x⃗(k)− y⃗(k)| = lim
k→+∞

|x(k)− y(k)| = 0.

The global asymptotical stability implies that the almost periodic sequence solution is unique. This
completes the proof.

4 An Example with a Numerical Simulation

The following example shows the feasibility of the main result of this paper.

Example 4.1. Consider the following discrete logistic equation:

x(n+ 1) = x(n) exp

(
(2 + sin4(

√
2t))

[
1− x(n)

1 + 0.1 cos(
√
3t)

])
. (4.1)

Clearly, Eq. (4.1) does not satisfy K+

K− exp(r+−1) < 2 or r+ < 2, which implies that it is impossible to
ensure the existence of a unique globally asymptotically stable almost periodic solution by Theorems
1.1-1.2. However, by Theorem 1.3, one gets that Eq. (4.1) has a unique globally asymptotically stable
almost periodic sequence solution (see Figure 1).
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Fig. 1. Global asymptotical stability of almost periodic sequence x of Eq. (4.1)

5 Conclusions

The logistic models have been studied extensively, and many important phenomena have been
observed in recent years. In this paper we study an almost periodic discrete logistic model. We
obtain sufficient criteria for the existence and globally asymptotic stability of positive almost
periodic solutions of the above model. In this paper, we only studied model without impulses.
Whether model with impulses can be discussed in the same methods or not is still an open problem.
We will continue to study this problem in the future.
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Appendix A. Proof of Some Lemmas

Define the fourier transform by

φ̂(u) =
1

2π

∫ ∞

−∞
e−iutφ(t) dt.

In most cases, if φ have compact support and have enough smoothness, then the following inversion
formula holds:

φ(t) =

∫ ∞

−∞
eiutφ̂(u) du.

Lemma 5.1. Assume that f ∈ AP (Z) and f̃ ∈ AP (R) is defined as that in (2.9). Let

f̃(t) ∼
∞∑

k=1

ake
iλkt

with λk ∈ Θ =
∪

l∈K[2lπ+ρ, 2(l+1)π−ρ], where K = {k1, k2, . . . , kn} ⊂ Z, k, n ∈ N and ρ ∈ (0, π
2
).

Define

g(n) =

n−1∑
t=0

f(t) =

n−1∑
t=0

f̃(t), n ∈ Z.

Then g ∈ AP (Z) and there exists a constant M independent of f and g such that ∥g∥Z ≤M∥f∥Z.

Proof. For some K = {k1, k2, . . . , kn} ⊂ Z, n ∈ N and ρ ∈ (0, π
2
), as defined in the proof of Theorem

4.8 in [3,P67], let φ(t) be a function which is equal to 1
eit−1

when t ∈ Θ =
∪

k∈K[2kπ+ρ, 2(k+1)π−ρ],
vanishes outside some finite interval [−L,L] (L > 0), and is in C∞(R). Then

2π|φ̂(u)| =
∣∣∣∣∫ ∞

−∞
e−iutφ(t) dt

∣∣∣∣ = ∣∣∣∣ 1iu
∫ ∞

−∞
e−iutφ′(t) dt

∣∣∣∣
=

∣∣∣∣− 1

u2

∫ ∞

−∞
e−iutφ′′(t) dt

∣∣∣∣ = ∣∣∣∣− 1

u2

∫ L

−L

e−iutφ′′(t) dt

∣∣∣∣
≤ 2LC0

u2
, C0 := sup

s∈[−L,L]

{|φ′′(s)|}.

So φ̂ ∈ L1(R), there results that the inversion formula holds.

Let f̃0 be a trigonometric polynomial f̃0(t) =
∑N

k=1 ake
iλkt with λk ∈ Θ, k = 1, 2, . . . , N , N is a

positive integer, t ∈ R. Define g0(n) =
∑n−1

t=0 f̃0(t) =
∑n−1

t=0

∑N
k=1 ake

iλkt, n ∈ Z. It follows that

g0(n) =

n−1∑
t=0

N∑
k=1

ake
iλkt =

N∑
k=1

ak
eiλkn − 1

eiλk − 1

=

N∑
k=1

akφ(λk)e
iλkn +

N∑
k=1

akφ(λk)e
iλk0

=
N∑

k=1

ak

∫ ∞

−∞
eiuλk φ̂(u) du eiλkn +

N∑
k=1

ak

∫ ∞

−∞
eiuλk φ̂(u) du eiλk0

=

∫ ∞

−∞

N∑
k=1

ake
i(u+n)λk φ̂(u) du+

∫ ∞

−∞

N∑
k=1

ake
iuλk φ̂(u) du

=

∫ ∞

−∞
f̃0(u+ n)φ̂(u) du+

∫ ∞

−∞
f̃0(u)φ̂(u) du.

12
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Then

∥g0∥Z ≤ 2∥φ̂∥1∥f̃0∥R :=M∥f̃0∥R,

where M := 2∥φ̂∥1 and ∥ · ∥1 is the norm of L1(R).

By Bochner’s approximation theorem [7,P114] (or [3,P48]), there exists a sequence of trigonometric
polynomials {σk(t); k ≥ 1} such that σk(t) → f̃(t) as k → ∞ in AP (R), with σk(t) of the form

σk(t) =

m(N)∑
l=1

a
(k)
l eiλlt, t ∈ R.

In other words, the exponents of σk(t) are chosen from those of f̃ .

Let us now define

σ̌k(n) =

n−1∑
t=0

σk(t) =

n−1∑
t=0

m(N)∑
l=1

a
(k)
l eiλlt, n ∈ Z.

Similar to the proof of Theorem 5.2 in [7,P141], ones could get that g(n) = limk→∞ σ̌k(n) =∑n−1
t=0 f̃(n) ∈ AP (Z) and

∥g∥Z ≤M∥f̃∥R =M∥f∥Z.
This completes the proof.

Lemma 5.2. X and Y are Banach spaces endowed with ∥ · ∥Z.

Proof. Assume that yk ∈ V and limk→∞ yk = y0. Then

lim
k→∞

ỹk(t) = lim
k→∞

{
[yk(n+ 1)− yk(n)](t− n) + yk(n)

}
= [y0(n+ 1)− y0(n)](t− n) + y0(n)

= ỹ0(t), ∀t ∈ [n, n+ 1), n ∈ Z.

Since yk ∈ V, for all θ ̸∈ Θ, ones have

lim
T→∞

1

T

∫ T

0

ỹk(s)e
−iθs ds = 0, k = 1, 2, . . . .

Thus

lim
T→∞

1

T

∫ T

0

ỹ0(s)e
−iθs ds = 0,

which implies that ∀θ ∈ Λ(y0), θ ∈ Θ. It is easy to see that V is a Banach space endowed with ∥ ·∥Z.
The same can be concluded for X and Y. This completes the proof.

Lemma 5.3. L defined in Theorem 3.1 is a Fredholm mapping of index zero.

Proof. It is obvious that L is a linear operator and KerL = R. It remains to prove that ImL = V.
Suppose that ϕ ∈ ImL ⊆ Y, there exist ϕ1 ∈ V and ϕ2 ∈ R such that ϕ = ϕ1 + ϕ2. By Lemma 5.1,
we have

∑n−1
k=0 ϕ1(k) ∈ AP (Z). Since ϕ ∈ ImL, there exists υ ∈ X such that Lυ = ∆υ = ϕ, which

implies that ∣∣∣∣ n−1∑
k=0

ϕ(k)

∣∣∣∣ = ∣∣∣∣ n−1∑
k=0

∆υ(k)

∣∣∣∣ ≤ |υ(n)− υ(0)| < +∞, ∀n ∈ Z.

Then

|ϕ2||n| =
∣∣∣∣ n−1∑
k=0

ϕ2

∣∣∣∣ = ∣∣∣∣ n−1∑
k=0

[
ϕ(k)− ϕ1(k)

]∣∣∣∣ < +∞, ∀n ∈ Z,

13
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which implies that ϕ2 = 0. Therefore, ϕ = ϕ1 ∈ V. This tells us that ImL ⊆ V.

In the following, we will prove that V ⊆ ImL. Suppose that φ ∈ V, by Lemma 5.1, Φ(n) =∑n−1
k=0 φ(k) ∈ AP (Z). Indeed, if θ ∈ Θ, let χ(θ) = 1− 1

iθeiθ
− 1

eiθ
, then we obtain

lim
T→∞

1

T

∫ T

0

Φ̃(t)e−iθt dt = lim
n→∞

1

n

∫ n

0

Φ̃(t)e−iθt dt

= lim
n→∞

1

n

n−1∑
k=0

∫ k+1

k

[
(Φ(k + 1)− Φ(k))(t− k) + Φ(k)

]
e−iθt dt

= lim
n→∞

1

n

n−1∑
k=0

(1− 1

iθeiθ
− 1

eiθ
)(Φ(k + 1)− Φ(k))e−iθk

+ lim
n→∞

1

n

n−1∑
k=0

1

iθ
(1− 1

eiθ
)Φ(k)e−iθk

= lim
n→∞

1

n

n−1∑
k=0

χ(θ)eiθΦ(k + 1)e−iθ(k+1)

− lim
n→∞

1

n

n−1∑
k=0

χ(θ)Φ(k)e−iθk + lim
n→∞

1

n

n−1∑
k=0

1

iθ
(1− 1

eiθ
)Φ(k)e−iθk

=

[
(eiθ − 1)χ(θ) +

1

iθ
(1− 1

eiθ
)

]
lim

n→∞

1

n

n−1∑
k=0

Φ(k)e−iθk

= e−iθ(eiθ − 1)2 lim
n→∞

1

n

n−1∑
k=0

Φ(k)e−iθk

= e−iθ(eiθ − 1)2 lim
n→∞

1

n

n−1∑
k=0

k−1∑
l=0

φ(l)e−iθk

= e−iθ(eiθ − 1) lim
n→∞

1

n

n−1∑
k=0

φ(k)e−iθk

= (eiθ − 1) lim
T→∞

1

T

∫ T

0

φ̃(t)e−iθt dt.

Let ψ(n) = Φ(n)−m
(
Φ(n)

)
, ∀n ∈ Z. So Λ(ψ̃) = Λ(φ̃). Therefore, ψ ∈ V ⊆ X. Further, we have

∆ψ(n) = ∆
[
Φ(n)−m

(
Φ(n)

)]
= φ(n), ∀n ∈ Z,

which implies that φ ∈ ImL. Hence, we deduce that V ⊆ ImL. Therefore, V = ImL.

Furthermore, one can easily show that ImL is closed in Y and

dimKerL = 1 = codim ImL.

Therefore, L is a Fredholm operator of index zero. This completes the proof.

Lemma 5.4. N defined in Theorem 3.1 is L-compact on Ω̄(Ω is an open-bounded subset of X).

Proof. Let P and Q are defined as that in Theorem 3.1. Obviously, P and Q are continuous such
that ImP = KerL and ImL = KerQ. Further, we have (I −Q)R = {0} and (I −Q)V = V. Hence,
Im(I − Q) = V = ImL. In view of ImP = KerL and ImL = KerQ = Im(I − Q), through an easy
computation we find that the inverse KP : ImL → KerP ∩ DomL of LP exists and is given in

14
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Theorem 3.1.

Furthermore, QN and (I −Q)N defined in Theorem 3.1 are continuous. We claim that KP is also
continuous. Assume that yn ∈ ImL = V (n ∈ N) such that

lim
n→∞

yn = y0.

By the completeness of V, y0 ∈ V and yn − y0 ∈ V (n ∈ N). Then we have from Lemma 5.1 that

|KP yn −KP y0|∞ ≤ 2M |yn − y0|∞, n ∈ N.

Therefore, limn→∞ |KP yn −KP y0|∞ = 0. So KP and KP (I −Q) are also continuous. In addition,
KP (I −Q)z are uniformly bounded on Ω̄. It is not difficult to verify that QN(Ω̄) is bounded and
KP (I −Q)Nz is equicontinuous on Ω̄. Hence, by the Arzela-Ascoli theorem, we can conclude that
KP (I −Q)N(Ω̄) is compact. Thus N is L-compact on Ω̄. This completes the proof.
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