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Abstract

We show that the γ-ray pulsar observables, i.e., their total γ-ray luminosity, gL , spectral cutoff energy, cut, stellar
surface magnetic field, Bå, and spin-down power ̇ , obey a relation of the form =g  L f B, ,cut( ˙ ), which
represents a 3D plane in their 4D logspace. Fitting the data of 88 pulsars of the second Fermi pulsar catalog, we
show this relation to be µg

   L Bcut
1.18 0.24 0.17 0.05 0.41 0.08˙ , a pulsar fundamental plane (FP). We show that the

observed FP is remarkably close to the theoretical relation µg  L Bcut
4 3 1 6 5 12˙ obtained assuming that the pulsar

γ-ray emission is due to curvature radiation by particles accelerated at the pulsar equatorial current sheet just
outside the light cylinder. Interestingly, the FP seems incompatible with emission by synchrotron radiation. The
corresponding scatter about the FP is ∼0.35 dex and can only partly be explained by the observational errors while
the rest is probably due to the variation of the inclination and observer angles. We predict also that µ cut

7 16˙
toward low ̇ for both young and millisecond pulsars implying that the observed death line of γ-ray pulsars is due
to cut dropping below the Fermi band. Our results provide a comprehensive interpretation of the observations of
γ-ray pulsars, setting requirements for successful theoretical modeling.

Unified Astronomy Thesaurus concepts: Pulsars (1306); Gamma-rays (637); Gamma-ray telescopes (634); Akaike
information criterion (1940); Bayesian information criterion (1920)

1. Introduction

Since its launch in 2008, the Fermi Gamma-Ray Space
Telescope, has increased by manyfold the number of γ-ray
pulsars. More specifically, Fermi has detected over 230 new4

γ-ray pulsars to date (117 of which are included in the Second
Fermi Pulsar Catalog, 2PC; Abdo et al. 2013). The large
number of newly discovered γ-ray pulsars show a number of
trends and correlations among their observed properties, which
probe the underlying physics connected to their emission.

On the theoretical side, there has been tremendous progress
in modeling global pulsar magnetospheres. The force-free (FF)
solutions (Contopoulos et al. 1999; Spitkovsky 2006; Timokhin
2006; Kalapotharakos & Contopoulos 2009) despite their ideal
(i.e., dissipationless) character revealed that the equatorial current
sheet (ECS), which emerges at and beyond the light cylinder
(LC), is a good candidate for the observed γ-ray pulsar emission
(Bai & Spitkovsky 2010; Contopoulos & Kalapotharakos 2010).

Later studies of dissipative macroscopic solutions
(Kalapotharakos et al. 2012; Li et al. 2012) confirmed that
near FF conditions, the ECS is indeed the main dissipative
region with high accelerating electric-field components, Eacc.
More recently, the approach of kinetic particle-in-cell (PIC)
simulations (Chen & Beloborodov 2014; Philippov & Spit-
kovsky 2014; Cerutti et al. 2016, hereafter C16; Brambilla et al.
2018; Kalapotharakos et al. 2018, hereafter K18; Philippov &
Spitkovsky 2018, hereafter PS18) confirmed the general picture
that γ-ray pulsars possess a field structure resembling the FF
one, while the high-energy emission takes place near the ECS
outside the LC. The advantage of the latter approach is that it
provides particle distributions that are consistent with the
corresponding field structures.

Kalapotharakos et al. (2014, 2017) and Brambilla et al.
(2015), assuming curvature radiation (CR) emission from test
particles in dissipative macroscopic solutions, were able to
reproduce the radio-lag δ versus peak-separation Δ correlation
of the γ-ray profiles depicted in 2PC, while a comparison
between the model and the observed cutoff energies, cut,
revealed a relation between the plasma conductivity of the
broader ECS region as a function of the spin-down power, ̇ .
The PIC simulations of K18, taking into account the contri-

bution of CR (by appropriately rescaling the particle energies to
realistic values), revealed a relation between the particle injection
rate and ̇ that reproduces the observed range of cut values (i.e.,
1–6GeV).
C16 and PS18 presented PIC simulations of single particle

injection rates and claimed that the corresponding high-energy
emission is due to synchrotron radiation (SR).
Thus, even though there is consensus that the main component

of the observed pulsar γ-ray emission originates from regions near
the ECS there still is an open question about which radiative
process dominates in the Fermi band. Moreover, the recent
detections by MAGIC and HESSII of very high energy emission
from the Crab (Ansoldi et al. 2016), Vela (Djannati-Ataï et al.
2017), and Geminga (Lopez et al. 2018) pulsars imply an
additional emission component, and inverse Compton seems to be
the most reasonable candidate (Rudak & Dyks 2017; Harding et al.
2018). In any case, the multi-TeV photon energies detected imply
very high particle energies (g > 10L

7), which favors CR over SR.
In this Letter, we explore the effectiveness of CR and SR to

explain the Fermi spectra, mainly under the assumption that the
acceleration and radiative energy loss occurs in the same
location. This is a different SR regime from that in C16
and PS18, who assume that acceleration and radiation, due to
reconnection in the ECS, are spatially uncoupled. Our results
show that the observables of all the Fermi pulsars, i.e., young
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(YP) and millisecond (MP), are consistent with CR emission.
More specifically, our analysis shows that the Fermi YPs and
MPs lie on a 3D fundamental plane (FP) embedded in the 4D
space of the total γ-ray luminosity, gL , cut, the stellar surface
magnetic field, Bå, and ̇ . This FP is in full agreement with the
theoretical predictions of CR-regime emission.

2. Reverse Engineering

The cut values observed by Fermi provide an excellent
model diagnostic tool. Their variation is small, while their
value determination is robust. We note, however, that the cut
values depend on the adopted spectral fitting model, which in
the 2PC reads µ --G   dN d exp cut( ), where Γ is the
spectral index. Nonetheless, the apex energies, A, of the
spectral energy distributions are not much different than the cut
values corresponding to the model adopted in 2PC. Actually,

= - G 2A cut( ) , and therefore only for Γ≈2 does A deviate
considerably from cut. A detailed discussion about the best-
fitting function model goes beyond the scope of this study. For
the rest of the Letter, we assume the cut values presented in the
2PC, which we believe accurately reflect the characteristic
emission energies.

We consider a charged particle that is moving in an arbitrary
electromagnetic field. In Appendix A, we show that the
trajectory radius of curvature, RC, depends mainly on the
maximum field value (max(E,B)) and the generalized pitch
angle, q, that measures the deviation of particle velocity from
the locally defined asymptotic trajectory. Below, we assume a
magnetically dominated field structure where the local RC of
the asymptotic flow, which in this case is the guiding-center
trajectory, is R0. The position vector =r x y z, ,( ) of a
relativistic particle, without loss of generality, can be locally
described by

q w

q w q
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= +
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with rg as the gyroradius, w = c rg g as the gyrofrequency, and t
as the time. The motion corresponding to Equations (1) takes
place on a 2D torus with radii R0 and qr sing . Thus, the orbital
RC is a function of q. As q goes from 0 to p 2, RC goes from R0

to rg, respectively (see Figure 1). We note that particle
trajectories corresponding to different field configurations have
similar qR ,C( ) relations taking always into account that the
generalized rg is determined by the corresponding maximum
field value (Appendix A). The cut value of the corresponding
spectrum reads

g
q

= c
R

3

2
, 2

C
cut

L
3

( )
( )

where ÿ is the reduced Planck constant.
Assuming motion near the LC, we set =R R0 LC and
=B BLC. In Figure 2(a), we plot gL versus q, for different ̇

values of YPs and MPs that reproduce the cut corresponding to
the empirical  cut – ˙ relations
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presented in Kalapotharakos et al. (2017).5 Each line
corresponds to different combinations of stellar surface
magnetic field, Bå, and period, P (i.e., different ̇ ), for YPs
(solid lines) and MPs (dashed lines). The adopted cases (i.e.,
B P, values) are the same as those presented in Table 2

of K18. More specifically, the ̇ values corresponding to the 6
YP curves are

~ -10 , 10 , 10 , 10 , 10 , 10 erg s ,33 34 35 36 37 38 1( )

while those corresponding to the 6 MP curves are

~ ´ -10 , 10 , 10 , 4 10 , 10 , 10 erg s .32 33 34 34 35 36 1( )

For each case, a particle should either lie on a point of these
lines or move along these lines in order to emit at the
corresponding cut value. The gL value for q  0 (i.e., CR
regime) does not vary significantly with ̇ but is always higher
than the value corresponding to q p 2 (i.e., SR regime).
Moreover, the ratio between the gL values corresponding to the

two regimes increases with ̇ .
In Figure 2(b), we show the g qL – relations corresponding to
=R R100 LC. The gL ratio between the CR and SR regimes

increases by a factor of 103 . In Figure 2(c), we plot the g qL –
relations for the fourth case of YPs (i.e., » - 10 erg s36 1˙ ) that
produce the indicated cut values. We see that small deviations
of gL and q can significantly change the spectrum cut value.
In order for particles to continue emitting at the desired cut,

the g qL – constraint should be sustained. In regions of high
acceleration, q normally decreases not only because of the
relative rapid decrease of the perpendicular momentum
component, which is the result of the radiation reaction, but
also because of the increase of the parallel momentum
component, which is the result of acceleration. The corresp-
onding gL may increase or decrease depending on the balance
between the radiation reaction and the accelerating forces.
These variations make the particles divert from the corresp-
onding g qL – line. Balancing the radiation losses with the

Figure 1. Particle orbit for the indicated pitch angle, θ values. The
corresponding motion takes place on a torus with radii R0 and qr sing . For
q  0 , R RC 0, while for q  90 , R rC g.

5 These expressions were originally presented with truncated coefficients in
Figure 2(a) of Kalapotharakos et al. (2017), and therefore they were not as
accurate as those here.
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energy gain due to the accelerating fields,

g

q
=

v Eq
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2

e

e
2( )

·
( )

can preserve gL but not q. This does not affect the CR regime,
but for the decreasing segment of the lines (Figure 2) the
corresponding rapid decrease of q (i.e., increase of RC) tends to
destroy the balance and therefore the cut. Thus, the q value
should be sustained by another mechanism (e.g., a heating
process). In such a case, the development of noisy/fluctuating
electric components in the perpendicular direction could in
principle sustain q.

Taking into account the above assumptions, we can calculate
the Eacc corresponding to each q value (assuming preserved
g q,L values). In Figure 3(a), we plot the Eacc (in BLC units) for
the different YP and MP models (i.e., different ̇ ) and for the
different q values. For small q (i.e., CR regime), Eacc decreases
with ̇ , and it saturates for smaller ̇ to a value »BLC. For
higher q, the Eacc increases considerably to a value even above
BLC. In this case, the problem is that the required Eacc value is

well above its upper limit, which is determined by the
surrounding B field (i.e., BLC). Nonetheless, for >R R0 LC the
lower envelope of Figure 3(a) moves toward lower values
allowing larger parts of q > 0 with <E Bacc LC.
In Figures 3(b) and (c), we plot the RC as a function of q in

units of the corresponding RLC and rg, respectively. We see that
RC becomes a certain fraction of RLC (rg), for all ̇ values, for
q - 10 3 (q - 10 1). Thus, in the pure CR regime µR RC LC,
while in the pure SR regime µR rC g.

3. The Fundamental Plane of Gamma-Ray Pulsars

In Appendix B, we present, for both the CR and SR
processes, relations between g  L B, ,cut , and ̇ , always
assuming emission at the LC near the ECS. These relations
imply the existence of a 3D or 2D (depending on the regime)
FP embedded in the 4D or 3D variable space.
The Fermi data allow the investigation of the actual behavior

of the γ-ray pulsar population. We consider the function model
=g  L A Ba b d

cut
˙ , and we calculate the best-fit parameter

values taking into account the 88 2PC YPs and MPs with
published gL and cut values. Applying the least-squares

Figure 2. (a) The gL vs. θ relations that reproduce the cut values corresponding to the different ̇ values (different colors) for YPs (solid lines) and MPs (dashed lines).
These relations assume motion at the LC and =R R0 LC. (b) Similar to (a) but for =R R100 LC. (c) The gL vs. θ relations for the YP model with = - 10 erg s36 1˙ that
reproduce the indicated cut values.

Figure 3. (a) The Eacc in corresponding BLC units as a function of ̇ for MPs (dashed lines) and YPs (solid lines). The colors along the lines denote the θ value
according to the indicated color bar. (b) The RC in RLC units as a function of θ for the different YP and MP models. (c) Similar to (b) but the RC is measured in rg units.
For all the cases, =R R0 LC is assumed.
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method in logspace, considering the same weight for every
point, we get the best-fit relation

=g
    L B10 , 53D

14.2 2.3
cut
1.18 0.24 0.17 0.05 0.41 0.08˙ ( )( )

where cut is measured in MeV, Bå in G, and g L , ˙ in erg s−1.
We note that the Bå values have been derived assuming the
FF ̇ relation for the inclination angle, α=45°, i.e., =B

p +  c P r4 1 sin 453 4 4 6 2˙ ( ) , where =r 106 cm is the stellar
radius. The best-fit parameters in Equation (5) are extremely
close to those predicted for the CR regime,
= = =a b d4 3, 1 6, 5 12 (see Equation (18)).
The FP described by Equation (5) applies to the entire

population of γ-ray pulsars (i.e., YPs and MPs). Moreover,
since the 3D-FP, described by Equation (5), is embedded inside
a 4D space, it cannot be easily visualized. In Figure 4(a), we
show the distributions of the signed distances of the observed

objects from this FP for YPs and MPs. The scattering around
the FP is similar for the two classes with a standard deviation of
∼0.35 dex.
The theoretical approach presented in Appendix B clearly

suggests that the dimension of the FP is 3 since it involves four
variables. Nonetheless, even though our data analysis, which
was motivated by the theoretical findings, resulted in relation
(5), this does not necessary mean that the effective dimension-
ality of the data is 3 (i.e., that all the four variables are
necessary to explain the observed data variation). A quick look
at the values of the different variables makes it clear that the
range of cut is intrinsically much smaller than that of the other
variables. Thus, a question that arises is whether the
consideration of cut provides a better interpretation of the data
variation.
Taking into account the above, we considered a relation
=g L A Bb d˙ that excludes cut. Then, the best-fit relation

becomes

=g
  L B10 . 62D

15.0 2.6 0.11 0.05 0.51 0.09˙ ( )( )

In order to compare the two models, we use the Akaike
information criterion (AIC; Akaike 1974) and the Bayesian
information criterion (BIC; Schwarz 1978). Both AIC and BIC
measure the goodness of the fit while they penalize the addition
of extra model parameters. The lower the values of AIC and
BIC the more preferable the model is. For the adopted models,
the corresponding AIC and BIC values read

= =
= =

AIC 159, AIC 180,
BIC 172, BIC 189,

73D 2D

3D 2D
( )

which indicate that the 3D model (i.e., the one that includes
cut) is strongly preferred over the 2D one although the 3D
model has an additional parameter. We note that it is the
difference in AIC and BIC values between the two models that
is important rather than their actual values. The specific AIC
difference implies that the observed sample of data is

= »- - -e e 10159 180 2 21 2 5( ) times less probable to have been
produced by the 2D model than the 3D one. For the BIC any
difference greater than 10 indicates very strong evidence in
favor of the model with the lower value.
In Figure 4(b), we plot similarly to what we did for the 3D

plane, the distributions of the distances of the sample points
from the 2D plane (6). We see that these distributions are not
only broader than those of the 3D model, but they also deviate
considerably from the Gaussian shape. We note that a relation

=g L A d˙ provides results similar to those of relation (6).
The last approach provides an unbiased treatment in the

sense that it is data oriented and dissociated from any
theoretical assumptions. Therefore, the FP, described by
Equation (5), is supported by the data and could have, in
principle, been discovered without the theory guidance.
Nonetheless, the almost perfect agreement with the theoretical
FP, described by Equation (18) corresponding to the CR
regime, provides a solid description in simple terms of the
physical processes that are responsible for the phenomenology
of γ-ray pulsars.
In Figure 5, we reproduce the gL versus ̇ diagram by

calculating the gL values from the FP relation (5). Thus, the red
and blue points correspond to the YPs and MPs, respectively,
and have been derived using the corresponding (observed) Bå,

Figure 4. (a) Smoothed-out distributions of the distances D3D from the 3D-FP
(Equation (5)) for the 2PC MPs (red color) and YPs (blue color). (b) Similar to
(a) but for the 2D-FP (Equation (6)).
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̇ , and cut values. The black and gray points show the moving-
average values (five points along ̇ ) of 2PC for YPs and MPs,
respectively. Finally, the blue (YPs) and red (MPs) lines have
been derived assuming the empirical  cut – ˙ relations (3). The
two lines (of the same color) and the shaded region between
them cover the range of the different Bå values (i.e.,

=B 10 10 G8 9– for MPs and =B 10 10 G11.8 13– for YPs).
We see that the FP relation reproduces the observed behavior of
gL very well. Actually, it reproduces the trend of YPs having

(on average) slightly higher gL values than those of MPs for the
same ̇ as well as the softening of the gL versus ̇ at high ̇ for
the YPs.

Finally, our results indicate that for the CR regime E Bacc LC

saturates toward low ̇ values (see Figure 3(a) and Figure 2(b)
in Kalapotharakos et al. 2017). Assuming that this trend
persists for lower ̇ , from Equations (2) and (15) and taking
into account Equations (11) and (13) for the CR regime, we get

µ - B , 8cut
1 8 7 16˙ ( )

which is a generalization of Equation (A7) of Kalapotharakos
et al. (2017). Taking into account the weak dependence on Bå

and that Bå can be considered more or less constant for each
population (YP or MP), we get µ cut

7 16˙ , which is not much
different than the empirical behaviors (for low ̇ ) reflected in
the expressions in Equation (3). The implied decrease of cut

toward smaller ̇ values where Fermi becomes less sensitive
combined with the correspondingly smaller gL provides a
viable interpretation of the (to-date) observed γ-ray pulsar
death line (see Smith et al. 2019). Equation (18) (for the CR
regime) and Equation (8) provide the asymptotic behavior

µg L ˙ , toward low ̇ . These claims could be tested and

further explored with a telescope with better sensitivity in the
MeV band like AMEGO.

4. Discussion and Conclusions

In this Letter, we explore the behavior of particle orbits, for
the entire spectrum of regimes from the pure CR to the pure SR
one, which are consistent with the observed photon energies,
adopting the current consensus that the γ-rays are produced
near the ECS. The particle gL values in the CR regime reach up
to 10 107 8– while in the SR regime and especially for the high ̇
values are 2–3 orders of magnitude lower.
Kinetic PIC models also agree with this picture. K18

demonstrated that in PIC global models, CR emission is
produced by particles with realistic gL values that reach up to
these levels (i.e., 10 107 8– ). Moreover, PS18 claimed that
particle emission at GeV energies is due to SR. Nonetheless,
in PS18, the potential drops and the corresponding Eacc as are
reflected in the presented proton energies (see Figure 6
of PS18)6 are (scaled to the actual pulsar environment values)
sufficient to support the + -e e, energies required for the CR
regime.
We have derived fundamental relations between gL , cut, Bå,

and ̇ for the pure CR and SR assuming emission near the LC
at the radiation-reaction regime. Remarkably, the Fermi data
reveal that the entire pulsar population (YPs and MPs) lies on
an FP that is totally consistent with emission in the CR regime.
On the other hand, SR seems to fail at least under the assumed
considerations. Even though SR may work under different
conditions (e.g., acceleration and cooling may occur at different
places), it seems that in such a case, fine-tuning is needed to
lock not only Eacc, the acceleration lengths, the B values, and
the corresponding q values where the cooling takes place, but
also their dependence on ̇ that reproduces the observed
correlations.
The decrease of the accelerating electric fields (in BLC units)

with ̇ implies an increasing number of particles that more
efficiently short out Eacc. However, our analysis shows that for
CR the best agreement with observations is achieved when the
number of emitting particles is scaled with the Goldreich–
Julian number density, nGJ . Apparently, based on our
considerations in Appendix B, this implies that even though
the relative particle number density increases with ̇ , the
corresponding relative volume decreases in inverse proportion.
The scatter around the FP has a standard deviation

∼0.35 dex and is typically larger than the corresponding
observational errors (mainly owing to distance measurement
errors). This implies that the scatter is due to some other
systematic effects. Other unknown parameters (i.e., α, observer
angle, ζ) may be responsible for the thickening of the FP. We
note that the calculation of gL in 2PC is based on the observed
flux, gG , assuming that the beaming factor fb (see Romani &
Watters 2010; 2PC) is 1 (i.e., the same) for all the detected
pulsars. However, our macroscopic and kinetic PIC simulations
show a variation of fb with ζ, which in combination with the
various α values could explain the observed scatter. Therefore,
the gL values provided by 2PC are essentially effective values,
gL eff , since they are based on the assumption that the

corresponding fb are uniformly distributed.

Figure 5. gL vs. ̇ diagram. The black and gray points denote the moving-
average values of 2PC YPs and MPs, respectively. The blue (2PC YPs) and red
(2PC MPs) points denote gL values that have been calculated by the FP relation
(Equation (5)) taking into account the observed ̇ , cut, and Bå values. The blue
(YPs) and red (MPs) zones map the FP relation (Equation (5)) assuming that
cut is given by Equations (3) and Bå ranges 10 10 G8 9– (for MPs) and
10 10 G11.8 13– (for YPs).

6 In that study, the protons are defined as +e , which do not experience
radiation-reaction forces.

5

The Astrophysical Journal Letters, 883:L4 (7pp), 2019 September 20 Kalapotharakos et al.



The theoretical analysis, presented in this Letter, provides a
simple physical justification of the observed FP based on the
assumption that RC is a certain fraction/multiple of the
corresponding RLC, for all ̇ . Nonetheless, the particle orbits
corresponding to different α and ζ values have different RC

values. This implies that the proportionality factor between RC

and RLC varies with α and ζ, which consequently implies the
existence of different (though parallel) FPs. Thus, the relative
position of a pulsar with respect to the FP may constrain α
and ζ.

Any theoretical modeling should be able not only to
reproduce the uncovered relations but also to provide
justifications of the observed scatter. In a forthcoming paper,
we will present under what conditions kinetic PIC models
reproduce the revealed γ-ray pulsar sequence.

We would like to thank an anonymous referee for helpful
suggestions that improved the Letter. We also thank Ioannis
Contopoulos, Anatoly Spitkovsky, Isabelle Grenier, and David
Smith for stimulating discussions. This work is supported by
the National Science Foundation under grant No. AST-
1616632, by the NASA Astrophysics Data Analysis Program,
and by Fermi Guest Investigator Program.

Appendix A

In an electromagnetic field, an asymptotic trajectory is
always locally defined by the so-called Aristotelian electro-
dynamics (Gruzinov 2012; Kelner et al. 2015; K18):

=
´  +

+
v

E B B EB E

B E
c, 9A

0 0
2

0
2

( ) ( )

where = - = -E BE B E B E B,0 0 0
2

0
2 2 2· .

The particle velocity v continuously approaches vA (i.e., the
generalized pitch angle q decreases). The particle energy-loss
rate is determined by the local g=R m c q BC L e

2
e eff( ), where

g m q, ,L e e are the Lorentz factor, the mass, and the charge of

the particle, respectively, c is the speed of light, and Beff reads
(C16)

= + ´ -E v B v EB c c . 10eff
2 2( ) ( · ) ( )

Figure 6(a) shows that RC depends on E B, , the angles ψ, q, and
the relative orientation of v on the θ cone (i.e., fv). On the one
hand, the lowest RC value, rmin, which is achieved for high q, is
mainly determined by the order of magnitude of the highest field
value ( =B E Bmax ,eff ( )), while the variation of ψ and fv
produces a modulation around a mean value (Figure 6(b)). On
the other hand, for =v vA, =B 0eff . Assuming that R0 is the RC
value corresponding to the asymptotic flow, a small velocity
component perpendicular to vA (i.e., small θ) is developed that
imposes =R RC 0. For motion near the LC, the fields are~BLC,
and therefore ~r rmin g.

Appendix B

The spin-down power for a dipole field reads

µ - B P . 112 4˙ ( )

Assuming

1. Emission at the LC near the ECS (i.e., fields of the order
of BLC) and taking into account that

µ µ- -
 B B R B P 12LC LC

3 3 ( )

and µR PLC , we get

g
µ

µ

µ -


13R
R P

r P B

CR regime

SR regime,
C

LC

g L
3 1 ( )

‐
‐

⎧⎨
⎩

Figure 6. (a) Relative orientation between v and vA is determined by the angles q and fv, where b, k denote the perpendicular projection of B to vA and the ´v vA

direction, respectively. (b) The average (over fv) RC for the indicated parameter values, E/B ratio, and various ψ values. For E B and E B , the effect of ψ is
negligible (thin single-color regions), while for »E B, ψ slightly modulates RC (green line zones).
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and then from Equations (2) and (13), we get

g µ
-



 

P

P B

CR regime

SR regime.
14L

cut
1 3 1 3

cut
1 2 3 2 1 2

‐
‐

( )
⎪

⎪

⎧
⎨
⎩

2. A balance between acceleration and radiative losses

gµ -E B R , 15BLC LC L
4

C
2 ( )

where EBLC is the Eacc in BLC units. From Equations (12)–
(15), we get

µ
-


E

P B CR regime
SR regime,

16BLC
cut
4 3 7 3 1

cut

‐
‐

( )
⎧⎨⎩

and consequently the luminosity of one particle reads

µ µg

-

-



 

L E B
P

B P

CR regime

SR regime.
171 BLC LC

cut
4 3 2 3

cut
3

‐
‐

( )
⎪

⎧⎨
⎩

3. That the total γ-ray luminosity gL scales with the number of
emitting particles in the dissipative region, =N n Vd dGJ LC– ,
where nGJ LC– is the Goldreich–Julian number density at the
LC, µ µ- - -

 n n R B P R ,GJ LC GJ LC
3 1

LC
3

– where nGJ is the
Goldreich–Julian number density on the stellar surface and
Vd the volume of the dissipative region, which we assume
that µV Rd LC

3 . Thus, µ µ -
 N n B Pd GJ

1 and taking into
account Equation (11), we get

µ µg g
- 








L L B P
B CR regime

SR regime.
181

1 cut
4 3 1 6 5 12

cut

˙ ‐
˙ ‐

( )
⎪

⎪

⎧
⎨
⎩

We note that according to Equations (11) and (18), gL may be
a function of any two combinations of the  B P, ,( ˙ ) variable
set. Moreover, taking into account that µ - P P3˙ ˙ , gL may also
be expressed as a function of the directly observable quantities

µg

-

-




L

P P

P P

CR regime

SR regime.
19cut

4 3 7 6 1 2

cut
3

˙ ‐
˙ ‐

( )
⎪

⎪

⎧
⎨
⎩

Nonetheless, any of these relations are equivalent.
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