

British Journal of Economics, Management & Trade 14(2): 1-35, 2016, Article no.BJEMT.25026 ISSN: 2278-098X

SCIENCEDOMAIN international www.sciencedomain.org

Remittance: Consumed or Invested? A Macro-Model of the Nigerian Economy

Innocent C. Ogbonna^{1*}, Nkechinyere R. Uwajumogu² and Augustine C. Odo³

¹Department of Economics, Enugu State University of Science and Technology, Enugu, Nigeria. ²Department of Economics and Development Studies, Federal University, Ndufu-Aliko Ikwo, Ebonyi State, Nigeria. ³Department of Economics, Godfrey Okoye University Enugu, Nigeria.

Authors' contributions

All the authors collaborated to produce this work. Author ICO designed the study, wrote the protocol and wrote the first draft of the entire manuscript. Author NRU reviewed the draft manuscript and managed the literature searches. Author ACO carried out the analyses. All the authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJEMT/2016/25026 <u>Editor(s):</u> (1) Paulo Jorge Silveira Ferreira, Superior School of Agriculture of Elvas (Polytechnic Institute of Portalegre), Portugal. (1) António Bento Caleiro, Universidade de Évora, Portugal. (2) Somnath Das, Kazi Nazrul University, Asansol, West-Bengal, India. (3) Abdul Razak bin Chik, UUMCOB, Malaysia. (4) Anonymous, Gazi University, Turkey. Complete Peer review History: <u>http://sciencedomain.org/review-history/15091</u>

Original Research Article

Received 14th February 2016 Accepted 20th May 2016 Published 21st June 2016

ABSTRACT

The increasing trend in remittance receipts, especially to developing countries has widened the opportunities for external sources of finance for investment and growth. However, while some literatures suggest that remittance matter for growth through investment, others contend that the relationship between remittance and growth depends on its end use. Given an import-dependent economy like Nigeria, it is necessary to examine the end-use of remittance – whether it is consumed or invested. Employing a quarterly time series data from 1986 to 2014 in a Keynesian dynamic macroeconomic framework, the results show that remittance significantly induces consumption and investment expenditure, as well as output growth in Nigeria. Specifically, when 1 unit remittance is received in Nigeria, it significantly induces consumption and investment spending by 3 units and 63 units respectively while output growth increases by 1012 units, ceteris paribus.

Keywords: Consumption expenditure; growth; investment expenditure; remittances.

1. INTRODUCTION

The Nigerian nation is facing the problem of increasing number of her skilled and unskilled labour migrating to other countries with the attendant brain drain. This negative trend is yielding positive fruits in form of remittance inflow. Remittance has become the second largest source of external finance next to oil. exceeding Official Development Assistance (ODA) since 1993 both in value and as percent of GDP, and surpassing FDI inflow since 1999 save for 2001, 2002 and 2003. Remittance was approximately 8 times the value of portfolio inflow for the same period and more than 30% of total export earnings in the most recent 12 year period. At regional level, remittance inflow into Nigeria represents about 50% of total remittance inflow to Sub-Saharan Africa (SSA) and approximately 77% of total inflow to West African countries.

Three factors - pull, push, and advancement in technology - may be advanced for this sudden upsurge in remittance inflow into developing countries including Nigeria [1]; Guiliano and Ruiz-Arranz, [2]. First, the developed and industrialized nations' demand for labour supported by the huge wage differences between developed and developing nations is the main pull factors that attract migrants to developed countries. Second. increasing rate of falling economic prospects, unemployment, volatile political environment, under-developed agriculture in both rural and urban areas, underdeveloped and inadequate infrastructure, and weak corporate governance are some of the factors that push migrants out to the outside world [1]. Third, according to Guiliano and Ruiz-Arranz [2], the technological advancement that has allowed for guicker, cheaper and easier international transfers between individuals and among countries and the attendant reduction in transaction costs have led to the current upsurge.

Remittance inflow is important because it affects growth in the recipient developing economies through savings and investment. Its potentials to scale up domestic consumption have short run effects on aggregate demand and output [3]. Finally, the balance of payment position of a country is determined by remittance inflow as it constitutes a major portion of a country's foreign exchange reserve. Available data support the upward trend in remittance inflow into Nigeria (Fig. 1). For instance, in absolute value and as proportion of GDP remittance inflow into Nigeria was 0.7 (10.5) million or 0.01% in 1970. It rose to 804 (165,365.2) million or 2.91% in 1995, 1.4 (142.4) billion or 3.87% in 2000, 14.6(13,99.6) billion or 13.04% in 2005, and 23.0(3,645.9) billion or 9.04% of GDP in 2012 World Development Indicator (WDI), [4].

Despite the upward trend, the nature and magnitude of the economic implications of remittances into Nigeria is not clear, especially aiven the import-dependent-consuming peculiarity of the country. A cursory look at the WDI [4] import content of foreign trade reveals that in 1970 total import was \$1.4 billion (₩84.0 million), but rose to \$6.9 (₩561.0) billion in 1995. By 2005, import figure had climbed to \$21.4 billion (₩2.2 trillion), and rose further to \$88.4 billion (₦13.9 trillion) in 2011. As a ratio of GDP it was 11.2%, 24.0%, 19.1%, and 36.0% in the years 1970, 1995, 2005, and 2011 respectively [4]. On its part, the outcome of gross fixed capital formation both as value and proportion of GDP during the period was rather mixed as depicted by WDI [4] data. For example, in 1990, 1995, 2005, and 2011 it was \$4.4 (\\$35.4) billion, \$2.0 (₩162.6) billion, \$6.1 (₩620.4) billion, and \$25.3 billion (₩3,802.6 trillion) respectively. However, as ratio of GDP it was 14.3%, 7.1%, 5.5%, and 10.3% respectively.

Despite the results of some existing studies (see for instance, Balde, [5]; Faini, [6]; Abeng, [7]; Ukeje and Obiechina, [8]) which show evidence that remittance inflow promote investment and hence growth, the questions are whether this huge remittance inflow actually scale up investment and consumption levels and hence create economic opportunities in recipient economies. Do available data on gross fixed capital formation on Sub-Saharan Africa (SSA) and Nigeria in particular support these findings; or is it that remittance inflow has savingsinducing potentials that has not yet been harnessed? Aware that remittance is essentially unrestricted private financial flows capable of financing investment and consumption, the study attempts to answer the question about the use of remittance. This stems from the fact that the use of remittance determines its macroeconomic effect. Previous studies dwelt on impact analysis of remittance [8,5]. In this context, the study takes as a point of departure, the effect of the use of remittance on three macroeconomic variables – consumption, and investment, and growth – in Nigeria in the period 1986Q1 to 2014Q4. Structurally, the rest of the work is organised as follows: section 2 reviews relevant

empirical literature and trends some important variables used for the study, section 3 discusses the methodology, section 4 presents and discusses the empirical results while section 5 presents the conclusion.

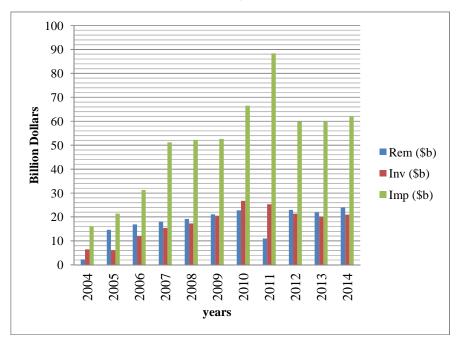


Fig. 1. Value of remittances, investment and imports in Nigeria in the most recent 12-year period (in billion dollars)

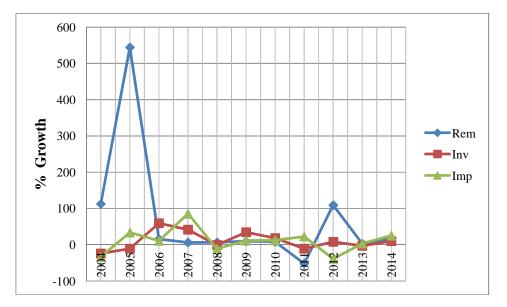


Fig. 2. Growth rates of remittances, investment and import in the most recent 12-year period

1.1 Related Theoretical and Empirical Literature

Studies in economic literature suaaest conflicting relationship between remittance and growth. For instance, while Connell and Conway [9] contend that remittance has growthinducing impact on investment, poverty alleviation, growth and development, studies such as Robert [10], Robert [11] argue that remittance does not contribute to economic growth and development. For Burnside and Dollar [12], Bjuggren, Dzansi, and Shukur [13], the impact of remittance on the growth of remitters' home economy can be either way, that is, it is conditional on its end use - whether it is consumed, saved, or invested. If it is invested, it is likely to have growth-promoting impact on the economy. Commenting in favour of its growthinducing impact, Barajas, Chami, Fullenkamp, Gapen, and Montie [14] using growth accounting framework posit that remittance directly finance increase in capital accumulation in recipient economies compared to what would have been the case if such economies resort only to domestic sources of finance for investment. Mishra [15], Parajuli [16], World Bank (WB) [17], Lucas [18], Connell and Conway [9], and Ziesemer [19] all argue that remittances impact positively on investment. Specifically, Paraiuli, Ziesemer, Connell and Conway add that remittance may promote investment in human and physical capital - education, housing and small business. WB argues that remittance raises investment and growth, especially in countries with highly skilled labour, strong institution and good policy environment.

However, Roberts [11] argue that by reducing the labour and saving efforts of recipient families, remittance impacts negatively on economic growth and development (moral hazard problem). Remittance may also hurt economic growth when the traded goods sector of recipient economy becomes the source of significant positive externalities that promote the productive capacity of other sectors. If this condition is satisfied, remittance may give rise to a Dutch disease effect to the extent that its inflow may cause the economy's real exchange rate to appreciate [20]. Finally, if remittance is disguised as capital flows (recipients investing on behalf of the migrant remitter) and the receiver is less skilled in investing, deficiency in investment is promoted to the extent that the unskilled investor may choose unprofitable investment and hence

hurt future investment decisions from the remitter.

On the other hand, if consumed, remittance may hurt or have no impact on growth, especially in an import demand economy. For instance, if remittance is perceived to be permanent, they will tend to be consumed in their entirety and therefore will not affect aggregate investment. Similarly, the consumption impact of remittance on labour productivity depends on the living standard of remitters' family. If the standard of living of recipient family was sufficiently high to the extent that its basic needs are adequately met prior to the receipt of remittance, then the labour productivity effect of remittance disappears for that family as additional receipts from remittance may simply be consumed.

Arguing in favour of this theory, Durand, Parrado and Massey [21] contend that remittance receipts lead to an excessive consumption, especially on imported goods or unproductive residential investment such as house, jewellery and land. Paine [22] hypothesize that remittance increase the propensity to import since remitters families' taste and preferences for foreign goods and living standards have increased, especially after the return of migrant worker to their home. Azad [23] consider remittance as a major source of foreign exchange used to pay import liabilities in labour exporting economies. Arguing further, Lipton [24] writes that about 90% or more of remittance receipts are spent on daily-needs related consumption like food, clothing, house rent, etc. Massey et al. [25] report that between 68(%) to 86% of remittance sent to Mexico are spend on consumption. Rempel and Lobdell [26] posit that remittance is mainly devoted to daily consumption requirements.

Remittance, if saved has the potential to reduce the credit constraints to recipient households and promote entrepreneurship (Woodruff and Zenteno, [27]; Funkhouser, [28]). Stressing on the relationship between remittance and saving, Roberts [11] and Adams [29] add that remittance improves the propensity to save by households which ultimately increases the loanable funds of deposit money banks and hence its ability to expand credit to the private sector, increase investment potentials and this is expected to promote growth.

The end use of remittances may also be determined by the policy environment and institutional arrangements of the recipient

country. By differentiating between countries with corruption level above median with those below median, Ratha [30] posit that corruption could have negative effect on the end use of remittance. Stark et al. [31] note that the income distribution policy of recipient country strongly determines the expected effects of remittances on her poverty and inequalities reduction.

Given the import content of consumption in Nigeria, and given that the country is a labour exporting economy, remittance receipt is expected to impact negatively on the country's balance of payment. If, however, a large chunk of remittance income was channeled to productive investment such that its effect neutralize or even outweigh the effect on the balance of payment, remittance may induce investment and growth. The end-use of remittance – whether consumed or invested has implications for a country's economic wellbeing.

1.1.1 Empirical studies for Nigeria

Many researchers have investigated the end use of remittance in Nigeria and gave varying conclusions. While majority of the studies examine the importance of remittance on economic growth, others acknowledge that remittance affect growth through its impact on savings and investment.

Omobitan [32] in analysing the determinants of international migrants' remittances flow into Nigeria for the period 1977-2010, and employing Engle Granger two stage long run relationship found that there exist significant co-integration relationship between remittances and gross domestic product. The author recommends that more remittance inflows can be improved through official channels with the maintenance of macroeconomic and financial stability.

Ukeje and Obiechinna [8] in their study on Workers' Remittances-Economic Growth nexus in Nigeria using an error correction model for the period 1970-2010 found significant and positive impacts of remittances on growth in the long run. The duo equally report that in the short run, the lagged value of workers' remittances is significant, appropriately signed and impacts positively on economic growth. The study recommend the provision of adequate infrastructure for attracting more remittance inflows into the economy through formal financial sector channel while adopting measures to encourage the recipients to channel such into

productive sector or through domestic savings that would boost investment and economic growth.

Agu [33] in his study on the relationship between remittance and the macro economy in Nigeria using a four-sector medium scale macro model found a weak link between remittances and the real sector and components of aggregate demand. He posited that the existence of leakages of remittance proceeds through consumption of imported goods could be responsible for the weak nexus.

Oduh and Urama [34] investigated whether the end-use of remittances will be poverty-reducing as well as growth-financing in an importdependent economy like Nigeria. Using macroeconometric model with six behavioural equations and six identities to estimate and simulate the effects of remittances inflow on aggregate demand in Nigeria, the simulation result shows that the much touted povertyreducing effect of remittances is non-growthfinancing for import-dependent country like Nigeria. The authors blamed the results on the negative impact of imports on the current account balance despite remittance positive effects on private consumption and investment.

Ogbonna, et al. [35] examined the linkages between remittance inflow and private domestic investment in Nigeria. Using a time series data from 1970-2012 and following Guiliano and Ruiz-Aranz [2] framework, OLS estimate was applied. The result indicates that remittance inflow is insignificantly negative in promoting domestic private investment, indicative that the quantum of remittance inflow into Nigeria has been hurting the country's domestic private investment in the long run. The authors recommend that Nigerian government should institute international and local initiatives and measures that would woo Nigerians in Diaspora to channel migrant transfers into investment at home to promote investment and hence economic growth.

Okodua [36] examines the private investment outcomes of workers' remittance flows to some selected Sub-Saharan African (SSA) countries using the system Generalized Method of Moments in a linear dynamic panel data model. A major finding is that remittance has a significant contemporaneous positive impact on private investment across the sampled countries over the study period. Okodua result suggests that remittance inflow to SSA occur as both financial and capital flows.

2. METHODOLOGY, MODEL AND DATA SOURCES

To evaluate the aggregate spending effects of remittance on domestic consumption, domestic investment, and the gross domestic product of the Nigerian economy, we reiterate the four uses of remittances as enunciated by Ratha, [29]. Ratha had posited that remittance receipts were spent for consumption, investment, health, and education. In this study, however, we collapse the four uses into two, mainly to suit the objectives of the study, and too, in line with NBS [37] data generating process which lumped non-food 'health' and 'education' into consumption. We consider simultaneous equation system as most appropriate to evaluate the impact of remittances on domestic investment, domestic consumption and aggregate expenditure in Nigeria economy in the period 1986-2013.

In line with the objective of the study which aims to explore whether remittance induces domestic investment, consumption and growth in Nigeria, the Keynesian dynamic macroeconomic framework is formulated to examine the aggregate spending effect of remittance on consumption, investment and national income. The three systems of behavioural equations are thus formulated:

Model 1

Theoretically, the positive determinants of consumption expenditure (CE) include, income (Y), and income in the previous year (Y_{t-1}) , while savings deposit rate (SVG) is a negative determinant. Private Consumption expenditure is made up of food, and non food (including services) items. Literature is replete with studies which posit that remittance receipts are spent on daily-needs related consumption like food, clothing, house rent, etc. Based on this, it is important to explore the relationship between remittance and private consumption expenditure in Nigeria. For our purpose and considering country-specific peculiarities, remittance (REM), and exchange rate (EXR) are also included. Hence, we model:

$$\begin{aligned} \mathsf{CE} &= f(\mathsf{Y}_{\mathsf{t}}, \mathsf{Y}_{\mathsf{t}\text{-}\mathsf{1}}, \mathsf{SVG}_{\mathsf{t}}, \mathsf{REM}_{\mathsf{t}}, \mathsf{EXR}_{\mathsf{t}}); \ f'(\mathsf{Y}_{\mathsf{t}}) > 0, \\ f'(\mathsf{Y}_{\mathsf{t}\text{-}\mathsf{1}}) > 0, \quad f'(\mathsf{SVG}_{\mathsf{t}}) < 0, \quad f'(\mathsf{REM}_{\mathsf{t}}) > 0, \\ f'(\mathsf{EXR}_{\mathsf{t}}) < 0 \end{aligned}$$

Model 2

In modeling the relationship between remittance and domestic investment, we recall that theoretically, domestic investment is positively determined by return on investment (profit) which itself is influenced by level of income and prime lending rate which is the cost of capital. Equivalently, current investment positively depends also on past investment which is also influenced by level of income. Hence, the relationship between remittance and gross domestic investment (INV_t) may be considered by establishing the relation among gross domestic product (Y_t) , its one year lag (Y_{t-1}) , remittance inflow (REM_t), and the prime lending rate of deposit money banks (INT_t). Symbolically:

$$\begin{aligned} \mathsf{INV}_t &= f(\mathsf{Y}_t, \mathsf{Y}_{t-1}, \mathsf{INT}_t, \mathsf{REM}_t, \mathsf{EXR}_t); f'(\mathsf{Y}_t) > 0, \\ f'(\mathsf{Y}_{t-1}) > 0, f'(\mathsf{INT}_t) < 0, f'(\mathsf{REM}_t) > 0, \\ f'(\mathsf{EXR}_t) < 0 \end{aligned}$$
(2)

Model 3

We now try to assess the degree of relation among remittance and gross domestic product in Nigeria. The traditional Keynesian aggregate demand function of a given economy assumes that consumption expenditure (CE_t), domestic investment (INV_t), government consumption (GE_t), export (XPT_t), and import (MPT_t), are responsible for the level of gross domestic product (Y_t).

For our purpose, we add remittances (REM_t) in the national income identity, so that:

$$Y_{t} = f(CE_{t}, INV_{t}, GE_{t}, XPT_{t}, MPT_{t}, REM_{t}); f'(CE_{t}) >0, f'(INV_{t})>0, f'(GE_{t})>0, f'(REM_{t})>0, f'(XPT_{t})>0, f'MPT_{t}<0$$
(3)

For estimation purpose, the functional form and expected signs of the coefficients for equations 1-3 are expressed econometrically, hence:

$$CE_{t} = b_{0}+b_{1}Y_{t}+b_{2}Y_{t-1}+$$

$$b_{3}SVG_{t}+b_{4}REM_{t}+b_{5}EXR_{t}+\varepsilon_{t}$$
(4)

$$INV_{t} = a_{0}+a_{1}Y_{t}+a_{2}Y_{t-1}+$$

$$a_{3}INT_{t}+a_{4}REM_{t}+a_{5}EXR_{t}+\mu_{t}$$
(5)

$$Y_{t} = \beta_{0} + \beta_{1}CE_{t} + \beta_{2}INV_{t} + \beta_{3}GE_{t} + \beta_{4}XPT_{t}, + \beta_{5}MPT_{t}, \beta_{6}REM_{t} + \gamma_{t}$$
(6)

 b_t , a_t , β_t are parameters to be estimated, while ϵ_t , μ_t , γ_t are stochastic error term for the respective equations.

Equations (7), (8), and (9) are with dynamic version of the long-run relationship (an error correction form) to allow for inclusion of long-run information:

$$\Delta CE_{t} = b_{0}+b_{1}\Delta Y_{t},+b_{2}\Delta Y_{t-1}+b_{3}\Delta SVG_{t}+$$

$$b_{4}\Delta REM_{t}+b_{5}\Delta EXR_{t}+\lambda ECM_{t-1}+\epsilon_{t}$$
(7)

$$\begin{split} \Delta \text{INV}_t &= a_0 + a_1 \Delta Y_t + a_2 \Delta Y_{t\text{-}1} + \\ & a_3 \Delta \text{INT}_t + a_4 \Delta \text{REM}_t, + a_5 \Delta \text{EXR}_t + \Psi \text{ECM}_{t\text{-}} \\ & 1 + \mu_t \end{split}$$

$$\Delta Y_{t} = \beta_{0} + \beta_{1} \Delta C E_{t} + \beta_{2} \Delta I N V_{t} + \beta_{3} \Delta G E_{t} + \beta_{4} \Delta X P T_{t},$$

+ \beta_{5} \Delta M P T_{t}, + \beta_{6} \Delta R E M_{t} + \beta E C M_{t-1} + \beta_{t} (9)

 Δ is the first difference operator, and λ , Ψ , ψ are the error correction coefficients, while the rest are as earlier defined.

2.1 Data Sources

Our data are from three main sources, namely World Development Indicators (WDI), National Bureau of Statistics (NBS), and the Central Bank of Nigeria (CBN).

Data used for estimation in the models spanned 1986Q1 – 2014Q4. All the data sets were used as reported by their respective institutions. However, because data from WDI are reported in US dollar, prevailing naira exchange rate for each year was used to multiply to get the naira equivalent. This is for data consistency and because of the importance attached to data attributes of the affected datasets.

The choice of quarterly series was predicated principally on two crucial reasons. First, sufficient degrees of freedom relating to number of observations was critical, especially when estimating over-parameterised models. Second, because we are interested in investigating the behaviour of these variables after deregulation, annual data series from 1986 which marked the deregulation period might have insufficient degrees of freedom. Generating high frequency (quarterly) datasets from low frequency (annual) series was performed on E-views strictly on the software's econometric strength. In the study, real data sets were used for estimation.

2.2 Estimation Techniques

The equations (4), (5) and (6) are not unrelated, estimating them separately using OLS means that the potential correlation among the equations is not taken into cognizance. Hence, it is assumed implicitly that the disturbance terms are not contemporaneously correlated. However, the consequence is that parameter estimates will be biased even in large samples [38]. One of major weakness of OLS in estimating the above equation is that it estimates the equation separately and by so doing ignores information provided by other equations. To correct for this and incorporate all the information in the three equations, the study adopted seemingly unrelated regression (SUR) technique developed by Zellener in 1962. Ellener [39] noted that SUR model produces estimator that are symptotically more efficient when applied to a system of equation compared to when OLS is applied, and that the efficiency increases when the correlation between the disturbance terms increases on one hand and when the correlation between the explanatory variables reduces on the other. Thus, to obtain efficient parameter estimates the study applied SUR techniques in estimating above equations.

To ascertain the quality of the variables in our model, we tested for the order of integration of each time series using the Augmented Dickey-Fuller (ADF). This approach is apt since the ADF model accounts for the autocorrelation of the first differences of the series in a parametric way by guessing the value of additional nuisance parameters [38]. Having achieved stationarity, cointegration tests were conducted to determine whether or not there exist long run relationships among the series. The error correction model (ECM) technique was carried out for the various stochastic equations in the model to incorporate long run information.

3. EMPIRICAL RESULTS AND DISCUSSION

3.1 Time Series Properties of the Variables

Unit root and co-integration tests were performed on all the variables using the Augmented.

Dickey-Fuller (ADF) and Johansen and Juselius co-integration technique respectively. For brevity, however, the results are not presented. For the unit root, all the variables are integrated (stationary) of order-one, that is I(1) except interest rate that is integrated at level form, that is I(0). In testing for co-integration employing both the Trace and Maximum Eigen-value statistics, the results indicate two co-integrating equations for trace and two for maximum eigen value for equations 4 and 5, and six cointegration for equation 6. Consequently, error correction models (ECM) are used for all the models. The ECM variables utilized in the equations are: ECM1 (consumption-remittance) referred to as equation 7, ECM2 (investmentremittance) referred to as equation 8, and ECM (national income-remittance) referred to as equation 9.

3.2 Empirical Results

Table 1 shows the determinants of consumption, investment, and national income.

3.2.1 Consumption expenditure-remittance model

The results reveal that the positive determinants of consumption include: GDP, lagged GDP, remittances and exchange rate; while savings deposit rate affects consumption negatively (Table 1a). Specifically, the results indicate that remittance significantly promote private consumption just as GDP, one quarter lagged GDP and exchange rate. Both GDP and its lagged coefficients met the a priori sign, that as national income (GDP) increases, private consumption rises expenditure ceteris paribus. This is in tandem with Keynesian theoretical formulation that income is a positive function of consumption. On its part, exchange rate coefficient is positive and significant indicative that for every 1 unit depreciation in exchange rate consumption increases by 1,299 units.

The results also indicate that as remittance increases by 1unit, private consumption expenditure which is made up of food and non items significantly increases food bv approximately 3 units. The finding is indicative that in Nigeria, remittance raises the purchasing power of household recipients on food and non food items during the last two decades. Available data on trade statistics show that without oil revenue, Nigeria consistently had unfavourable balance of payment since the 1980s, and that more than 43% of total import into Nigeria is consumer goods [40]. If remittance coefficient is significantly positive in determining private domestic consumption and given that more than 43% of total import is on consumer goods, a large chunk of remittance funds may have been channelled on imported consumer goods rather than investment goods, especially if they are perceived to be permanent.

<u>3.2.2 Investment</u> expenditure-remittance model

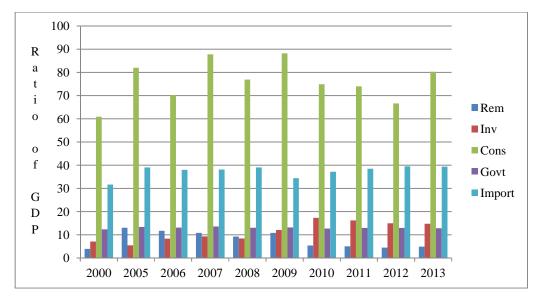
positive determinants domestic The of investment in Nigeria include: GDP and its one quarter lagged value, exchange rate and remittance, while interest rate is a negative determinant (Table 1b). Theoretically, higher GDP and its lagged value increase per capita income and hence savings and investment expenditure. Our empirical results is in tandem with this theoretical postulation, that is, a 1unit increase each in GDP and its lagged value significantly promote investment expenditure by 0.06 units and 11 units respectively in a guarter, ceteris paribus. On its part, remittance coefficient is positive and significant, thus providing sufficient evidence to support the theoretical thesis that remittance directly finance increase in capital accumulation in recipient economies Mishra [15], Parajuli [16]. Lucas [18]. Specifically, a 1unit increase in remittance receipt in a quarter promotes investment expenditure by 63 units in the long run. However, available data on investment indicate that despite tremendous increase in remittance inflow into Nigeria, investment rate and its GDP ratio have not exceeded 10% and 15% respectively since 1986 (Fig. 3).

The coefficient of prime lending rate (interest rate) is also in tandem with the theoretical thesis that the cost of capital is important in making a decision whether or not to invest. A higher cost of capital will ultimately scare investors and reduce investment decisions. Available data on prime lending rate shows that average rate since 1986 is above 22%. Hence, our result show that a percent increase in interest rate significantly hurt investment expenditure in Nigeria by 1508 units all things being equal.

3.2.3 National income-remittance model

The final estimated national income-remittance equation was specified as a function of consumption, investment, government expenditure, export and import proceeds, and remittance. The paper attempts to investigate the direct role of remittance on growth complimented by indirect contribution of other explanatory variables. Positive determinants of growth as reported in Table 1c include: Private and public consumption expenditures, investment, export, and remittance. Import is a negative determinant. All the coefficients met the a priori expectation.

The estimated results reveal that private and public consumption expenditures, investment, export, and remittance individually promote growth as relatively larger marginal propensities generated larger multiplier effect in the long run. Specifically, while remittance and export coefficients are significantly positive in the long run, the coefficients of private and public consumption expenditures and investment are insignificantly positive. Our findings reveal that as 1unit remittance receipt enters the Nigerian economy, output growth increases by 1012 units, thus corroborating the earlier results obtained in a related work by Ukeje and Objechinna [8]. Equivalently, when export rises by one unit, additional 3 units of output will be produced, thus corroborating the Keynesian theoretical thesis that export increase production activities thus motivating more production, employment and income, ceteris paribus.


Though the a priori sign of the coefficients of private and public consumption expenditure are positive and in tandem with theoretical postulation, their insignificance can be explained following Oyejide and Raheem in Bogunjoko, [41] that most public expenditures (investment) in Nigeria were doubtful in utility and viability and constituted a dead-weight loss in terms of net benefits to Nigeria's economy. The country's 136th position out of 175 countries ranked in 2014 in corruption index (perceived level of public sector corruption) further corroborated and reinforced Oyejide and Raheem assertion. Equally, being an import dependent-consumer nation, the import content of public and private consumption expenditure may have given rise to these insignificant coefficients. Thus, the failure of private and public consumption expenditure coefficients to impact significantly to output growth is not surprising given the import-content

Dependent varia	able: CE – consumpt	ion-remittance model	(A)	
Variable	Coefficient	STD. error	T-statistic	Prob.
С	150443.2	6465.353	23.26914	0.0000
Y	0.006570	0.002326	2.824688	0.0050
Y(-1)	0.010579	0.002887	3.664734	0.0003
SVG	-5.32E-07	3.44E-07	-1.547329	0.1228
EXR	2.957193	0.865103	3.418314	0.0007
REM	1299.213	92.98543	13.97222	0.0000
ECM1(-1)	-0.353201	0.027246	-2.296363	0.0118
Adjusted R ²	0.928459	Durbin-Watson Stat	0.221285	
	able: INV – Investme	nt-remittance model	(B)	
Variable	Coefficient	STD. error	T-statistic	Prob.
С	-39575.04	59600.22	-0.664008	0.5072
Υ	0.060246	0.021335	-2.823752	0.0050
Y(-1)	0.107835	0.025742	4.189098	0.0000
INT	-1507.570	2580.198	-0.584285	0.5594
REM	62.62413	8.074852	7.755451	0.0000
EXR	919.1839	847.7900	1.084212	0.2791
ECM2(-1)	-0.061505	0.029937	-2.205604	0.0172
Adjusted R ²	0.925253	Durbin-Watson Stat	0.220438	
Dependent varia	able: Y – National inc	come-remittance model	(C)	
Variable	Coefficient	STD. error	T-statistic	Prob.
С	-3666727.	2717660.	-1.349222	0.1782
CE	18.39931	13.02154	1.412990	0.1586
INV	3.753766	2.410177	1.557464	0.1204
GE	14.93478	37.53799	0.397858	0.6910
EXP	3.205043	1.018226	3.147675	0.0018
IMP	-7.500709	1.125966	-6.661579	0.0000
REM	1012.055	284.8425	3.553035	0.0004
ECM(-1)	-0.154638	0.058691	-2.634771	0.0088
Adjusted R ²	0.590947	Durbin-Watson Stat	0.228843	

Table 1. Regression results

Source: Researchers' regression results for macroeconomic model of

Workers' remittances inflow to Nigeria using E-Views version 6

Fig. 3. Remittance (Rem), Investment (Inv), Consumption (Cons), Government Expenditure (Govt), and Import (Imp) as ratio of GDP in the period 2000-2013

of household and government consumption expenditures in Nigeria. As ratio of GDP, Fig. 3 displays the rising trends of private, public and import consumption expenditures.

That import coefficient is negative and significant is expected in an import-dependent economy like Nigeria. Thus, the theoretical explanation of the depressing impact of import on national economies (including Nigeria) is upheld in this study.

The error correction (ecm_{t-1}) coefficient in models 4, 5, and 6 (Table 1a,b, and c) are -35, -15, -15 and significant, indicative of a long run convergence speed of 35%, 15% and 15% respectively. Hence, any disequilibrium in the long run relationship among consumption expenditure and its determinants, investment expenditure and its determinants, and national income and its explanatory variables, adjusted back automatically to long-run equilibrium at the above respective rates (speed) per quarter.

To test the explanatory power of the explanatory variables on the dependent variable using adjusted R^2 , the first and second models explain about 93 per cent each of the variations in private consumption and domestic investment, and the third explain about 59 per cent of variations in national income. Durbin-Watson (DW) autocorrelation coefficient at approximately 0.22,

0.22 and 0.23 signifies the presence of autocorrelation.

4. CONCLUSION

The question whether remittance is consumed or invested in Nigeria has been explored in this study. The use of seemingly unrelated regression (SUR) technique in an ECM framework has proved guite intuitive and useful. The empirical results reveal astoundingly that remittance income is significantly consumed and invested. Its deficit effect on the balance of payment derived from import content of consumption does not transmit depressing shock on domestic investment and economic growth in Nigeria. Hence, remittance, the much touted and acclaimed second largest source of external finance, is a positive function of consumption, investment and economic growth. Thus, the brain drain syndrome, heightened by the ever increasing number of migrants, but assumed to have been mitigated by remittance inflow is confirmed. Our result is therefore a proof that remittance receipts mitigate the assumed hurting effect of brain drain on investment and growth in Nigeria.

Our results also show that GDP, its one quarter lag, and exchange rate are positive determinants of consumption and investment, while deposit and prime lending rates are negative determinants respectively. The determinants of Nigeria's economic growth include investment, export, and private and public consumption, while import is a depressing factor.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Lin Hannah H. Determinants of remittances: Evidence from Tonga. International Monetary Fund, IMF Working Paper, WP/11/18; 2011.
- Giuliano P, Ruiz-Arranz M. Remittances, financial development and Growth. IMF Working Paper No. 05/234; 2005.
- Solimano A. Worker' remittances to the Andean Region: Mechanisms, costs and development impact. MIMCO ECLA; 2003.
- World Bank (WB). World Development Indicators (WDI); 2012. Available:<u>data.worldank.org/sites/default/fil</u> <u>es/wdi-2012-ebook.pdf</u> (Accessed September 2014)
- Balde Y. The impact of remittances and foreign aid on savings/investment in Sub-Saharan Africa (SSA). Laboratory of Economic Analysis and Prospective (LAPE), University of Limoges, France. 2010;1-24.
- Faini R. Migration and remittances: The Impact on the countries of origin (Unpublished; Rome: University of Rome); 2006.
 Available: http://www.eudpet.pet/dowpload/

Available:<u>http://www.eudnet.net/download/</u> Faini.pdf

- Abeng MO. Remittances, economic growth and poverty nexus: Evidence from Nigeria. Central Bank of Nigeria Economic and Financial Review. 2011;49(2):19-48.
- Ukeje EU, Obiechina ME. Workers' remittances-economic growth nexus; Evidence from Nigeria using an error correction methodology. International Journal of Humanities and Social Sciences. 2013;3(7):212-227.
- Connell J, Conway D. Migration and remittances in Island microstates: A comparative perspective on the South Pacific and the Caribbean. International Journal of Urban and Regional Research. 2000;24:52–78.
- 10. Roberts B. Remittances in Armenia: size impact and their contribution to development, USAID, Yerevan; 2004.

- Roberts D. The development impact of remittances on Caribbean economies: The case of Guyana. Central Bank of Guyana Publication; 2006. Available:<u>https://sta.uwi.edu/conferences/s</u> <u>alises/documents/Roberts%20D.pdf</u> (Accessed July 2015)
- 12. Burnside C, Dollar D. Aid, policies and growth: Revisiting the evidence. Policy Research Working Paper Series 3251, The World Bank, Washington, DC; 2002.
- Bjuggren P, Dzansi J, Shukur G. Remittances and investment. The Royal Institute of Technology. CESIS Electronic Working Paper Series, Paper No. 216; 2010.
- Barajas A, Chami R, Fullenkamp C, Gapen M, Montie P. Do Workers' Remittances Promote Economic Growth?" MF Working Paper 09/153 (Washington: International Monetary Fund); 2009.
- Mishra P. Microeconomic impact of remittances in the Caribbean. Unpublished paper, IMF, Washington DC; 2005.
- 16. Parajuli Resham BT. Consumed but not invested: An inquiry into 'remittancegrowth' nexus in Nepal. Journal on Nepal's National Interests; 2013.
- 17. World Bank (WB). Trends, determinants and macroeconomic effects of remittances. Global Economic Prospects, Washington, DC: WB; 2006.
- Ziesemer TH. The impact of the credit crisis on poor developing countries: Growth, worker remittances, accumulation and migration. Economic Modelling. 2010;27(5):1230-1245.
- Neupane NK. AN analysis of impact of remittance on Nepalese economy Submitted to the Central Department of Economics, M. Phil. Program, Faculty of Humanities and Social Sciences as a partial fulfilment of the requirements for the Degree of Master of Philosophy in Economics, Tribhuvan University; 2011.
- 20. Durand J, Parrado EA, Massey DS. Migradollars and development: A reconsideration of the Mexican case. International Migration Review. 1996;30:122-130.
- 21. Paine S. Exporting workers: The Turkish case. Cambridge University Press, London, England; 1974.
- 22. Azad AK. Migrant workers' remittances; a source of finance for micro-enterprise development in Bangladesh. Remittance;

Development impact and future Prospects, World Bank. 2005;103-118.

- 23. Lipton M. Migration from rural areas of poor countries: The impact on rural productivity and income distribution. World Development. 1980;8(1):1–24.
- Massey D, Alacon R, Durand J, Gonz´alez H. "Return to Aztl´an: The Social Process of International Migration from Western Mexico", Berkeley: University of California Press; 1987.
- Rempel H, Lobdell R. The role of urban to rural remittances in rural development. Journal of Development Studies. 1978; 14(3):324–341.
- Woodruff C, Zenteno R. Migration networks and microenterprises in Mexico. Journal of Development Economics. 2007;82:509-528.
- Funkhouser E. Remittances from international migration: A comparison of El Salvador and Nicaragua. The Review of economics and statistics. The MIT Press. 1995;77(1):137-146.
- 28. Adams RH Jr. International remittances and the household: Analysis and review of global evidence. World Bank Policy Research Working Paper: 4116; 2007.
- 29. Ratha D. Workers' remittances: An important and stable source of external development finance. Global Development Finance, Washington, World Bank. 2003; 157-175.
- Stark O, Taylor JE, Yitzhaki S. Migration, remittances and inequality: A sensitivity analysis using the extended Gini index. Journal of Development Economics. 1988; 28(3):309–322.
- 31. Omobitan OA. Reconciling international migrants' remittances flow determinants:

The case of Nigeria. European Scientific Journal. 2012;8(19):285-302.

- 32. Agu C. Remittances for growth: A two-fold analysis of feedback between remittances, financial flows and the real economy7 in Nigeria. A paper presented at the African Econometric Conference in Nigeria; 2009.
- Oduh MO, Urama NE. Does the end use of remittance matter? A macro simulation of the Nigerian economy. Developing Country Studies. 2012;2(10):48-59.
- Ogbonna IC, Agu SV, Chijioke G. Do remittances promote investment in developing countries? An inquiry into 'remittance-domestic private investment' relationship in Nigeria. Renaissance University Journal of Management and Social Sciences (RUJMASS). 2014; 1(1):40-51.
- 35. Okodua. Migrant workers' remittances and private investment in Sub-Saharan African countries. European Journal of Social Sciences. 2013;36(3):451-461.
- National Bureau of Statistics (NBS); 2012. Available:<u>nigeria.opendataforafrica.org/dat</u> <u>a</u>?...National%2BBureau%2Bof%2BStat
- 37. Gujarati DN, Porter DC. Basic econometrics. International Edition, McGraw Hill Education (Asian); 2009.
- Zellner A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American statistical Association. 1962;57(298):348-368.
- 39. Central Bank of Nigeria (CBN); 2011. Annual report and statement of account.
- 40. Bogunjoko JO. Private investment, economic growth and policy reforms in Nigeria: An empirical synthesis. Research Report 13. Development Policy Centre; 1998.

Null Hypothesis: D(Cl Exogenous: Constant		1001		
Lag Length: 4 (Autom			AG-12)	
Lag Lengin. 4 (Auton			AU-12)	
			t-Statistic	Prob.*
			I-Statistic	
Augmented Dickey-F	uller test stati	l stic	-3.289361	0.0178
Test critical values:	1% level		-3.493129	0.0170
	5% level		-2.888932	
	10% level		-2.581453	
	107010001		2.001400	
		1		
*MacKinnon (1996) o	ne-sided p-va	lues.	1	
Augmented Dickey-F	uller Test Eau	lation	1	
Dependent Variable:				
Method: Least Square				
Date: 10/20/15 Time				
Sample (adjusted): 19)4		
Included observations				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(CE(-1))	-0.329149	0.100065	-3.289361	0.0014
D(CE(-1),2)	0.163469	0.066758	2.448668	0.0161
D(CE(-2),2)	0.163272	0.066714	2.447341	0.0161
D(CE(-3),2)	0.163271	0.066714	2.447320	0.0161
D(CE(-4),2)	-0.719898	0.066697	-10.79348	0.0000
C	1138.927	629.1896	1.810149	0.0733
R-squared	0.801419	Mean deper	ndent var	51.61321
	0.791490	S.D. depend	dent var	12301.00
				20 4 5002
Adjusted R-squared	5616.985			20.15992
Adjusted R-squared S.E. of regression		Akaike info		20.15992
Adjusted R-squared S.E. of regression Sum squared resid	5616.985		terion	
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	5616.985 3.16E+09	Schwarz cri	terion inn criter.	20.31068
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	5616.985 3.16E+09 -1062.476	Schwarz cri Hannan-Qui	terion inn criter.	20.31068 20.22102

APPENDIX I: UNIT ROOT

Null Hypothesis: D(EXR)	has a unit root			
Exogenous: Constant				
Lag Length: 4 (Automatic	based on SIC.	. MAXLAG	=12)	
			t-Statistic	Prob.*
				1100.
Augmented Dickey-Fuller	r test statistic		-3.297980	0.0174
Test critical values:	1% level		-3.493129	
	5% level		-2.888932	
	10% level		-2.581453	
*MacKinnon (1996) one-s	sided n-values			
	sided p-values.			
Augmented Dickey-Fulle	r Test Equation		1	
Dependent Variable: D(E				
Method: Least Squares	,_/			
Date: 10/20/15 Time: 06	5.44			
Sample (adjusted): 1987				
Included observations: 10	Jo alter adjustri	nents	1	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EXR(-1))			-3.297980	
D(EXR(-1),2)			1.654890	
D(EXR(-2),2)	0.151519	0.091637	1.653467	0.1014
D(EXR(-3),2)	0.151512	0.091637	1.653392	0.1014
D(EXR(-4),2)	-0.398585	0.091708	-4.346253	0.0000
С	0.454464	0.232729	1.952760	0.0536
R-squared	0.371210	Mean dep	L endent var	0.002453
Adjusted R-squared	0.339770	S.D. depe		2.382961
S.E. of regression	1.936263	Akaike inf		4.214335
Sum squared resid	374.9115	Schwarz o		4.365096
Log likelihood	-217.3598		uinn criter.	
F-statistic	11.80712	Durbin-Wa		1.913626
			aison sial	1.313020
Prob(F-statistic)	0.000000			
		I	1	L

Null Hypothesis: D(REM	l) has a unit roo	t		
Exogenous: Constant				
Lag Length: 4 (Automati	c based on SIC	, MAXLAG	G=12)	
			t-Statistic	Prob.*
Augmented Dickey-Fulle	er test statistic		-2.994308	0.0386
Test critical values:	1% level		-3.493129	
	5% level		-2.888932	
	10% level		-2.581453	
*MacKinnon (1996) one-	-sided p-values	•	1	
Augmented Dickey-Fulle	er Test Equatior	า	1	
Dependent Variable: D(I	REM,2)			
Method: Least Squares				
Date: 10/20/15 Time: 0	6:45			
Sample (adjusted): 1987	7Q3 2013Q4			
Included observations: 1	06 after adjustr	ments	1	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(REM(-1))	-0.303333	0.101303	-2.994308	0.0035
D(REM(-1),2)	0.152078	0.086978	1.748462	0.0835
D(REM(-2),2)	0.152079	0.086978	1.748472	0.0835
D(REM(-3),2)	0.152077	0.086978	1.748449	0.0835
D(REM(-4),2)	-0.560977	0.095440	-5.877807	0.0000
C	78.23158	61.75711	1.266762	0.2082
R-squared	0.501215		endent var	
Adjusted R-squared	0.476276	S.D. depe		830.6456
S.E. of regression	601.1283	Akaike inf		15.69043
Sum squared resid	36135521	Schwarz o		15.84119
Log likelihood	-825.5929		uinn criter.	1
F-statistic	20.09743	Durbin-Wa	atson stat	1.882901
Prob(F-statistic)	0.000000	1		
	0.000000			
	0.000000			

Exogenous: Constan	<u>PT) has a uni</u> t, Linear Tren			
Lag Length: 4 (Autom			AG=4)	
			t-Statistic	Prob.*
Augmented Dickey-F	uller test stati	stic	-3.594515	0.0350
Test critical values:	1% level	1	-4.046925	
	5% level		-3.452764	
	10% level		-3.151911	
MacKinnon (1996) o	ne-sided p-va	alues.		
Augmented Dickey-F		uation		
Dependent Variable:				
Method: Least Squar	es			
Date: 10/20/15 Time	e: 11:24			
Sample (adjusted): 19	987Q3 2013C	Q4		
ncluded observation	s: 106 after a	djustments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Coefficient	Std. Error	t-Statistic	Prob.
	Coefficient	Std. Error 0.103214	t-Statistic	
D(XPT(-1))				0.0005
D(XPT(-1)) D(XPT(-1),2)	-0.371004 0.189462	0.103214 0.100063	-3.594515 1.893429	0.0005
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2)	-0.371004 0.189462 0.189479	0.103214 0.100063 0.100069	-3.594515 1.893429 1.893476	0.0005 0.0612 0.0612
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2)	-0.371004 0.189462 0.189479 0.189490	0.103214 0.100063 0.100069 0.100072	-3.594515 1.893429 1.893476 1.893543	0.0005 0.0612 0.0612 0.0612
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2)	-0.371004 0.189462 0.189479 0.189490 -0.242986	0.103214 0.100063 0.100069 0.100072 0.102177	-3.594515 1.893429 1.893476 1.893543 -2.378076	0.0005 0.0612 0.0612 0.0612 0.0612 0.0193
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2)	-0.371004 0.189462 0.189479 0.189490 -0.242986	0.103214 0.100063 0.100069 0.100072 0.102177	-3.594515 1.893429 1.893476 1.893543 -2.378076	0.0005 0.0612 0.0612 0.0612 0.0612 0.0193
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1)	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839 -614.396
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364 0.244173	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen S.D. dependent	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103 ndent var	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839 -614.396 202904.3
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364 0.287364 0.244173 176401.6	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen S.D. depend Akaike info	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103 ndent var dent var criterion	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839 -614.396 202904.3 27.06267
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364 0.287364 0.244173 176401.6 3.08E+12	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen S.D. depend Akaike info Schwarz cri	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103 1.338103 ndent var dent var criterion terion	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839 -614.396 202904.3 27.06267 27.23856
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364 0.244173 176401.6 3.08E+12 -1427.321	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103 -0.180250 1.338103 -0.180250 1.338103 -0.180250 1.338103 -0.180250 -0.180250 1.338103 -0.180250 -0.18020	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839 -614.396 202904.3 27.06267 27.23856 27.13396
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364 0.244173 176401.6 3.08E+12 -1427.321 6.653460	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen S.D. depend Akaike info Schwarz cri	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103 -0.180250 1.338103 -0.180250 1.338103 -0.180250 1.338103 -0.180250 -0.180250 1.338103 -0.180250 -0.18020	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573
D(XPT(-1)) D(XPT(-1),2) D(XPT(-2),2) D(XPT(-3),2) D(XPT(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.371004 0.189462 0.189479 0.189490 -0.242986 -6760.499 865.1614 0.287364 0.244173 176401.6 3.08E+12 -1427.321	0.103214 0.100063 0.100069 0.100072 0.102177 37506.29 646.5581 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-3.594515 1.893429 1.893476 1.893543 -2.378076 -0.180250 1.338103 -0.180250 1.338103 -0.180250 1.338103 -0.180250 1.338103 -0.180250 -0.180250 1.338103 -0.180250 -0.18020	0.0005 0.0612 0.0612 0.0612 0.0193 0.8573 0.1839 -614.396 202904.3 27.06267 27.23856 27.13396

Exogenous: Constant	IV) has a unit t, Linear Tren			
Lag Length: 4 (Autom			AG=4)	
<u> </u>		,		
			t-Statistic	Prob.*
Augmented Dickey-Fi	uller test stati	stic	-3.783671	0.0212
Test critical values:	1% level	1	-4.046925	
	5% level		-3.452764	
	10% level		-3.151911	
*MacKinnon (1996) o	ne-sided p-va	alues		
	1			
Augmented Dickey-Fi	uller Test Fou	lation		
Dependent Variable:				
Method: Least Square	- · · · ·			
Date: 10/20/15 Time				
		24		
Sample (adjusted): 19	30103 20130	24		
	106 offer of	divetmente		
Included observations	s: 106 after ad	djustments		
	s: 106 after ad	djustments		
Included observations			t Statiatia	Drob
	s: 106 after ac		t-Statistic	Prob.
Included observations			t-Statistic	Prob.
Included observations Variable	Coefficient	Std. Error		
Included observations Variable D(INV(-1))	Coefficient -0.428308	Std. Error 0.113199	-3.783671	0.0003
Included observations Variable D(INV(-1)) D(INV(-1),2)	Coefficient -0.428308 0.220192	Std. Error 0.113199 0.092313	-3.783671 2.385273	0.0003
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2)	Coefficient -0.428308 0.220192 0.220229	Std. Error 0.113199 0.092313 0.092320	-3.783671 2.385273 2.385485	0.0003 0.0190 0.0190
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2)	Coefficient -0.428308 0.220192 0.220229 0.220261	Std. Error 0.113199 0.092313 0.092320 0.092327	-3.783671 2.385273 2.385485 2.385671	0.0003 0.0190 0.0190 0.0190
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2)	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300	-3.783671 2.385273 2.385485 2.385671 -4.864493	0.0003 0.0190 0.0190 0.0190 0.0190 0.0000
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2) C	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287	0.0003 0.0190 0.0190 0.0190 0.0190 0.0000 0.7149
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2) C	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300	-3.783671 2.385273 2.385485 2.385671 -4.864493	0.0003 0.0190 0.0190 0.0190 0.0190 0.0000
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2) C	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287	0.0003 0.0190 0.0190 0.0190 0.0190 0.0000 0.7149
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2) C @TREND(1986Q1)	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-3),2) C @TREND(1986Q1) R-squared	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844
Normal State	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440 0.461679	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 ndent var dent var	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844
ncluded observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-3),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 ndent var dent var	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2) C @TREND(1986Q1)	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440 0.461679	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 ndent var dent var criterion	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-2),2) D(INV(-3),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440 0.492440 0.461679 68965.22	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen S.D. depend Akaike info	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 1.336779 ndent var dent var criterion terion	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844 -889.510 93996.02 25.18435 25.36024
ncluded observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-3),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression	Coefficient -0.428308 0.220192 0.220229 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440 0.492440 0.461679 68965.22 4.71E+11	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen S.D. depenen Akaike info Schwarz cri	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 1.336779 ndent var dent var criterion terion inn criter.	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844
ncluded observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-2),2) D(INV(-3),2) D(INV(-4),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	Coefficient -0.428308 0.220192 0.220229 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440 0.492440 0.461679 68965.22 4.71E+11 -1327.770	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 1.336779 ndent var dent var criterion terion inn criter.	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844 -889.510 93996.02 25.18435 25.36024 25.25564
Included observations Variable D(INV(-1)) D(INV(-1),2) D(INV(-2),2) D(INV(-3),2) D(INV(-3),2) C @TREND(1986Q1) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	Coefficient -0.428308 0.220192 0.220229 0.220261 -0.463588 -5342.874 316.7165 0.492440 0.492440 0.461679 68965.22 4.71E+11 -1327.770 16.00849	Std. Error 0.113199 0.092313 0.092320 0.092327 0.095300 14586.57 236.9251 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-3.783671 2.385273 2.385485 2.385671 -4.864493 -0.366287 1.336779 1.336779 ndent var dent var criterion terion inn criter.	0.0003 0.0190 0.0190 0.0190 0.0000 0.7149 0.1844 -889.510 93996.02 25.18435 25.36024 25.25564

Null Hypothesis: D(S				
Exogenous: Constan				
Lag Length: 4 (Auton	natic based or	<u>n SIC, MAXL</u>	AG=12)	
			-	
			t-Statistic	Prob.*
Augmented Diekov F		otio	-3.231158	0.0574
Augmented Dickey-F				0.0571
Test critical values:	1% level 5% level	-	-4.046925	
		-	-3.452764	
	10% level		-3.151911	
*MacKinnon (1996) o	ne-sided p-va	alues.		
Augmented Dickey-F	uller Test Fau	lation		
Dependent Variable:				
Method: Least Squar				
Date: 10/20/15 Time				
Sample (adjusted): 1)4		
Included observation				
Verieble	O a affi ai a at	Std. Error	t Otatiatia	Drah
Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(SVG(-1))	-0.304007	0.103716	-2.931158	0.0042
D(SVG(-1),2)	0.169282	0.074760	2.264349	0.0257
D(SVG(-2),2)	0.148082	0.075234	1.968293	0.0518
D(SVG(-3),2)	0.159575	0.074927	2.129726	0.0357
D(SVG(-4),2)	-0.763226	0.079918	-9.550100	0.0000
С	-3.86E+08	3.70E+08	-1.041749	0.3001
@TREND(1986Q1)	12081851	6409801.	1.884903	0.0624
R-squared	0.729578	Mean depe	ndent var	-3622641
Adjusted R-squared	0.713189	S.D. depen		3.12E+09
S.E. of regression	1.67E+09	Akaike info	criterion	45.37289
Sum squared resid	2.76E+20	Schwarz cri	terion	45.54878
Log likelihood	-2397.763	Hannan-Qu		45.44418
F-statistic	44.51570	Durbin-Wat		1.871582
Prob(F-statistic)	0.000000			

Evenencius, Constant	PT) has a uni			
Exogenous: Constant				
Lag Length: 0 (Autom	latic based of	1 SIC, MAXL	AG=4)	
				D 1 *
			t-Statistic	Prob.*
Augmented Dickey-Fu	uller test stati	stic	-3.234618	0.0206
Test critical values:	1% level		-3.490772	0.0200
	5% level		-2.887909	
	10% level		-2.580908	
	1078 16761		-2.300300	
*Mackinnon (1006) a				
*MacKinnon (1996) oi		aiues.		
Augmented Diekey Fr	l	l		
Augmented Dickey-Fu		lation		
Dependent Variable:				
Method: Least Square	25			
Date: 10/20/15 Time	: 11:16			
Date: 10/20/15 Time Sample (adjusted): 19	e: 11:16 986Q3 2013C			
Date: 10/20/15 Time	e: 11:16 986Q3 2013C			
Date: 10/20/15 Time Sample (adjusted): 19	e: 11:16 986Q3 2013C			
Date: 10/20/15 Time Sample (adjusted): 19 Included observations	e: 11:16 986Q3 2013Q s: 110 after ac	djustments		
Date: 10/20/15 Time Sample (adjusted): 19 Included observations	e: 11:16 986Q3 2013C		t-Statistic	Prob.
Date: 10/20/15 Time Sample (adjusted): 19 Included observations	e: 11:16 986Q3 2013Q s: 110 after ac	djustments	t-Statistic	Prob.
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable	e: 11:16 986Q3 2013Q s: 110 after ad Coefficient	djustments		
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1))	e: 11:16 986Q3 2013Q s: 110 after ad Coefficient -0.182685	Std. Error 0.056478	-3.234618	0.0016
Date: 10/20/15 Time Sample (adjusted): 19 Included observations	e: 11:16 986Q3 2013Q s: 110 after ad Coefficient	djustments		
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1))	e: 11:16 986Q3 2013Q s: 110 after ad Coefficient -0.182685	Std. Error 0.056478	-3.234618	0.0016
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C	e: 11:16 986Q3 2013Q s: 110 after ac Coefficient -0.182685 14065.80	djustments Std. Error 0.056478 11343.65	-3.234618 1.239972	0.0016
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared	e: 11:16 986Q3 2013Q s: 110 after ac Coefficient -0.182685 14065.80 0.088321	Std. Error 0.056478 11343.65 Mean depen	-3.234618 1.239972	0.0016 0.2177 -1325.430
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared Adjusted R-squared	e: 11:16 986Q3 2013Q s: 110 after ac Coefficient -0.182685 14065.80 0.088321 0.079880	djustments Std. Error 0.056478 11343.65 Mean deper S.D. depende	-3.234618 1.239972 Indent var dent var	0.0016 0.2177 -1325.430 112590.8
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared Adjusted R-squared S.E. of regression	e: 11:16 986Q3 2013Q s: 110 after ac Coefficient -0.182685 14065.80 0.088321 0.079880 108000.4	djustments Std. Error 0.056478 11343.65 Mean depen S.D. depend Akaike info	-3.234618 1.239972 Indent var dent var criterion	0.0016 0.2177 -1325.430 112590.8 26.03567
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	e: 11:16 986Q3 2013Q 5: 110 after ac Coefficient -0.182685 14065.80 0.088321 0.079880 108000.4 1.26E+12	djustments Std. Error 0.056478 11343.65 Mean depen S.D. depend Akaike info Schwarz cri	-3.234618 1.239972 Indent var dent var dent var criterion terion	0.0016 0.2177 -1325.430 112590.8 26.03567 26.08477
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	e: 11:16 986Q3 2013Q 5: 110 after ac Coefficient Coefficient -0.182685 14065.80 0.088321 0.079880 108000.4 1.26E+12 -1429.962	djustments Std. Error 0.056478 11343.65 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-3.234618 1.239972 Indent var dent var dent var criterion terion inn criter.	0.0016 0.2177 -1325.430 112590.8 26.03567 26.08477 26.05559
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	e: 11:16 986Q3 2013Q 986Q3 2013Q 986Q3 2013Q 986Q3 2013Q 986Q3 2013Q 986Q3 2013Q 986Q3 2013Q 986Q3 2013Q 986Q5 14065.80 9 9 9 9 9 9 9 9 9 9 9 9 9	djustments Std. Error 0.056478 11343.65 Mean depen S.D. depend Akaike info Schwarz cri	-3.234618 1.239972 Indent var dent var dent var criterion terion inn criter.	0.0016 0.2177 -1325.430 112590.8 26.03567 26.08477
Date: 10/20/15 Time Sample (adjusted): 19 Included observations Variable D(MPT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	e: 11:16 986Q3 2013Q 5: 110 after ac Coefficient Coefficient -0.182685 14065.80 0.088321 0.079880 108000.4 1.26E+12 -1429.962	djustments Std. Error 0.056478 11343.65 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-3.234618 1.239972 Indent var dent var dent var criterion terion inn criter.	0.0016 0.2177 -1325.430 112590.8 26.03567 26.08477 26.05559

	has a unit roo	ot		
Exogenous: Constant	t			
Lag Length: 1 (Autom	natic based or	n SIC, MAXL	AG=12)	
			t-Statistic	Prob.*
-				
Augmented Dickey-F	uller test stati	stic	-4.599642	0.0002
Test critical values:	1% level	1	-3.490772	
	5% level		-2.887909	
	10% level		-2.580908	
*MacKinnon (1996) o	ne-sided p-va	alues	I	
Augmented Dickey-F	uller Test Fau	lation		
Dependent Variable:				
Method: Least Square				
Date: 10/20/15 Time				
Sample (adjusted): 19)4		
				-
Included observations	S. I IU allel a	JIUSHIJEHIS		
Variable	Coofficient		t Statiatia	Droh
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Coefficient		t-Statistic	Prob.
		Std. Error		
INT(-1)	-0.105778	Std. Error 0.022997	-4.599642	0.0000
INT(-1) D(INT(-1))	-0.105778 0.728689	Std. Error 0.022997 0.066002	-4.599642 11.04032	0.0000
NT(-1) D(INT(-1))	-0.105778	Std. Error 0.022997	-4.599642	0.0000
NT(-1) D(INT(-1))	-0.105778 0.728689	Std. Error 0.022997 0.066002	-4.599642 11.04032	0.0000
INT(-1) D(INT(-1)) C	-0.105778 0.728689 -0.094039	Std. Error 0.022997 0.066002 0.278048	-4.599642 11.04032 -0.338213	0.0000 0.0000 0.7359
INT(-1) D(INT(-1)) C R-squared	-0.105778 0.728689 -0.094039 0.547280	Std. Error 0.022997 0.066002 0.278048 Mean depen	-4.599642 11.04032 -0.338213	0.0000 0.0000 0.7359 -0.02318
NT(-1) D(INT(-1)) C R-squared Adjusted R-squared	-0.105778 0.728689 -0.094039 0.547280 0.538818	Std. Error 0.022997 0.066002 0.278048 Mean depen	-4.599642 11.04032 -0.338213 ndent var dent var	0.0000 0.0000 0.7359 -0.02318 4.286379
INT(-1)	-0.105778 0.728689 -0.094039 0.547280	Std. Error 0.022997 0.066002 0.278048 Mean depen	-4.599642 11.04032 -0.338213 ndent var dent var	0.0000 0.0000 0.7359 -0.02318 4.286379
NT(-1) D(INT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.105778 0.728689 -0.094039 0.547280 0.538818	Std. Error 0.022997 0.066002 0.278048 Mean depen S.D. depend Akaike info Schwarz cri	-4.599642 11.04032 -0.338213 ndent var dent var criterion terion	0.0000 0.0000 0.7359 -0.02318 4.286379 5.001694
NT(-1) D(INT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.105778 0.728689 -0.094039 0.547280 0.538818 2.910897	Std. Error 0.022997 0.066002 0.278048 Mean depen S.D. depend Akaike info	-4.599642 11.04032 -0.338213 ndent var dent var criterion terion	0.0000 0.0000 0.7359 -0.02318 4.286379 5.001694 5.075343
NT(-1) D(INT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.105778 0.728689 -0.094039 0.547280 0.538818 2.910897 906.6457	Std. Error 0.022997 0.066002 0.278048 Mean depen S.D. depend Akaike info Schwarz cri	-4.599642 11.04032 -0.338213 Indent var dent var criterion terion inn criter.	0.0000 0.0000 0.7359 -0.02318 4.286379 5.001694 5.075343 5.031566
NT(-1) D(INT(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	-0.105778 0.728689 -0.094039 0.547280 0.538818 2.910897 906.6457 -272.0932	Std. Error 0.022997 0.066002 0.278048 Mean depen S.D. depenen Akaike info Schwarz cri Hannan-Qu	-4.599642 11.04032 -0.338213 Indent var dent var criterion terion inn criter.	0.0000 0.0000 0.7359 -0.023182 4.286379 5.001694 5.075343 5.031566
INT(-1) D(INT(-1)) C R-squared Adjusted R-squared	-0.105778 0.728689 -0.094039 0.547280 0.538818 2.910897 906.6457 -272.0932 64.67453	Std. Error 0.022997 0.066002 0.278048 Mean depen S.D. depenen Akaike info Schwarz cri Hannan-Qu	-4.599642 11.04032 -0.338213 Indent var dent var criterion terion inn criter.	0.0000

Innocent et al.; BJEMT, 14(2): 1-35, 2016; Article no.BJEMT.25026

	E) has a unit	1001		
Exogenous: Constant				
Lag Length: 0 (Autom	hatic based or	<u>n SIC, MAXL</u>	AG=12)	-
				_
	_			
			t-Statistic	Prob.*
Augmented Dickey-F		stic	-4.815724	0.0001
Test critical values:	1% level		-3.490772	
	5% level		-2.887909	
	10% level		-2.580908	
*MacKinnon (1996) o	ne-sided p-va	alues.		_
				_
Augmented Dickey-F		uation	1	_
Dependent Variable:				
Method: Least Square	es			
Date: 10/20/15 Time): 11:14			
Sample (adjusted): 19	986Q3 2013C	24		
Included observations	s: 110 after ad	djustments		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Coefficient	Std. Error	t-Statistic	Prob.
Variable	Coefficient	Std. Error	t-Statistic	Prob.
	Coefficient -0.355224	Std. Error 0.073763	t-Statistic -4.815724	Prob.
Variable D(GE(-1)) C				
D(GE(-1))	-0.355224	0.073763	-4.815724	0.0000
D(GE(-1)) C	-0.355224 929.8676	0.073763 434.7430	-4.815724 2.138891	0.0000
D(GE(-1)) C R-squared	-0.355224 929.8676 0.176774	0.073763 434.7430 Mean depen	-4.815724 2.138891 Indent var	0.0000 0.0347 58.84064
D(GE(-1)) C R-squared Adjusted R-squared	-0.355224 929.8676 0.176774 0.169152	0.073763 434.7430 Mean deper S.D. depend	-4.815724 2.138891 Indent var dent var	0.0000 0.0347 58.84064 4548.800
D(GE(-1)) C R-squared Adjusted R-squared S.E. of regression	-0.355224 929.8676 0.176774 0.169152 4146.271	0.073763 434.7430 Mean depen S.D. depend Akaike info	-4.815724 2.138891 Indent var dent var criterion	0.0000 0.0347 58.84064 4548.800 19.51582
D(GE(-1)) C R-squared Adjusted R-squared	-0.355224 929.8676 0.176774 0.169152	0.073763 434.7430 Mean deper S.D. depend	-4.815724 2.138891 Indent var dent var criterion	0.0000 0.0347 58.84064 4548.800
D(GE(-1)) C R-squared Adjusted R-squared S.E. of regression	-0.355224 929.8676 0.176774 0.169152 4146.271	0.073763 434.7430 Mean depen S.D. depend Akaike info	-4.815724 2.138891 Indent var dent var criterion terion	0.0000 0.0347 58.84064 4548.800 19.51582
D(GE(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.355224 929.8676 0.176774 0.169152 4146.271 1.86E+09	0.073763 434.7430 Mean deper S.D. depend Akaike info Schwarz cri	-4.815724 2.138891 andent var dent var criterion terion inn criter.	0.0000 0.0347 58.84064 4548.800 19.51582 19.56492
D(GE(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.355224 929.8676 0.176774 0.169152 4146.271 1.86E+09 -1071.370	0.073763 434.7430 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-4.815724 2.138891 andent var dent var criterion terion inn criter.	0.0000 0.0347 58.84064 4548.800 19.51582 19.56492 19.53574
D(GE(-1)) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	-0.355224 929.8676 0.176774 0.169152 4146.271 1.86E+09 -1071.370 23.19120	0.073763 434.7430 Mean depen S.D. depend Akaike info Schwarz cri Hannan-Qu	-4.815724 2.138891 andent var dent var criterion terion inn criter.	0.0000 0.0347 58.84064 4548.800 19.51582 19.56492 19.53574

APPENDIX II: CO-INTEGRATION TEST

Date: 10/20/1	5 Time: 14:41				
Sample (adjus	sted): 1987Q2 2	013Q4			
	ervations: 107 af				
	otion: Linear det				
	SVG REM EXR				
	(in first differenc	es): 1 to 4			
Lago intorvar					
Unrestricted (Cointegration Ra	nk Test (Trace)			
Onestricted					
Llypotheoized		Trace	0.05		
Hypothesized No. of CE(s)		Statistic	Critical Value	Prob.**	
NO. OF $CE(S)$	Eigenvalue	Statistic		PIOD.	
Nama *	0.005007	000 004 0	CO 04000	0.0000	
None *	0.695397	220.9319	69.81889	0.0000	
At most 1 *	0.513587	93.73602	47.85613	0.0000	
At most 2	0.090269	16.62146	29.79707	0.6678	
At most 3	0.035524	6.498524	15.49471	0.6366	
At most 4	0.024264	2.628299	3.841466	0.1050	
L					
	icates 2 cointeg				
	ection of the hype		05 level		
**MacKinnon-	Haug-Michelis (1999) p-values			
Unrestricted C	Cointegration Ra	nk Test (Maxim	um Eigenvalue)		
Hypothesized		Max-Eigen	0.05		
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**	
	J				
None *	0.695397	127.1959	33.87687	0.0000	
At most 1 *	0.513587	77.11456	27.58434	0.0000	
At most 2	0.090269	10.12293	21.13162	0.7330	
At most 3	0.035524	3.870225	14.26460	0.8728	
At most 3	0.024264	2.628299	3.841466	0.1050	
AL MOST 4	0.024204	2.020299	5.041400	0.1050	
	to the state of the state				
			eqn(s) at the 0.0	s ievei	
	ction of the hype		U5 level	1	
I**MacKinnon-	Hour Micholie (1999) p-values			
macr(mn011-	inaug-iviluitelis (
		efficients (norm	alized by b'*S11*	b=l):	
		efficients (norm	alized by b'*S11*	b=l):	
Unrestricted C	Cointegrating Co				
		SVG	REM	b=l): EXR	
Unrestricted C	Cointegrating Co				
Unrestricted C	Cointegrating Co	SVG	REM	EXR	
Unrestricted C CE 9.83E-06 3.69E-05	Cointegrating Co Y -5.57E-07 -5.20E-07	SVG 9.39E-12 1.30E-10	REM 0.000412 0.000163	EXR 0.001664 -0.008462	
Unrestricted C CE 9.83E-06 3.69E-05 -1.56E-05	Cointegrating Co Y -5.57E-07 -5.20E-07 -5.95E-07	SVG 9.39E-12 1.30E-10 3.65E-10	REM 0.000412 0.000163 4.87E-05	EXR 0.001664 -0.008462 0.048359	
Unrestricted C CE 9.83E-06 3.69E-05	Cointegrating Co Y -5.57E-07 -5.20E-07	SVG 9.39E-12 1.30E-10	REM 0.000412 0.000163	EXR 0.001664 -0.008462	

Inrestricted Ac	ljustment Coeff	icients (alnha):			
Jilesincled Ac					
D(CE)	4411.361	2686.408	512.0840	-332.8093	-383.4964
	-508334.8	164889.6	13558.58	-68836.28	-17033.29
D(SVG)	-8.37E+08	-7.65E+08	4654185.	2.08E+08	-2336697.
D(REM)	-68.50409	260.2652	-1.761778	93.93294	24.71833
D(EXR)	0.335490	0.207424	-0.470193	-0.017089	-0.166859
1 Cointegrating	Equation(c):	Log likelihood	-6058.727		
	Equation(s).	LOG IIKelinood	-0030.727		
Normalized coi	ntegrating coeff	ficients (standard	l error in paren	theses)	
CE	Y	SVG	REM	EXR	
1.000000	-0.056634	9.56E-07	41.96598	169.3302	
	(0.00667)	(3.1E-06)	(4.05954)	(360.964)	
			× ,		
		ard error in parer	ntheses)		
D(CE)	0.043350				
	(0.00628)				
D(Y)	-4.995352				
	(0.59680)				
D(SVG)	-8228.412				
	(1741.64)				
D(REM)	-0.000673				
	(0.00068)				
D(EXR)	3.30E-06				
	(2.1E-06)				
-					
2 Cointegrating	Equation(s):	Log likelihood	-6020.169		
Normalized asi	ntograting apoff	icients (standard	l orror in noron	(thoose)	
CE		SVG		EXR	
1.000000	Y 0.000000	4.39E-06	REM -8.035628	-361.6062	
1.000000	0.000000	4.39E-06 (1.0E-06)	(2.11177)	(166.948)	
0.000000	1.000000	6.06E-05	-882.8909	-9374.877	
3.000000	1.000000	(4.2E-05)	(86.2772)	(6820.74)	
		(1.22 00)	(00.2112)		
Adjustment coe	fficients (stand	ard error in parer	ntheses)		
D(CE)	0.142465	-0.003853	,		
	(0.02169)	(0.00043)			
D(Y)	1.088264	0.197082			1
	(2.21598)	(0.04423)			
D(SVG)	-36469.16	864.4155			
	(5978.56)	(119.317)			
D(REM)	0.008929	-9.73E-05			
	(0.00241)	(4.8E-05)			
D(EXR)	1.09E-05	-2.95E-07			

	(8.0E-06)	(1.6E-07)			
3 Cointegrati	ng Equation(s):	Log likelihood	-6015.108		
	U	0			
Normalized c	ointegrating coef	ficients (standard	error in parer	theses)	
CE	Y	SVG	REM	EXR	
1.000000	0.000000	0.000000	-2.409377	-708.3222	
			(1.02168)	(157.095)	
0.000000	1.000000	0.000000	-805.1853	-14163.46	
			(38.7277)	(5954.86)	
0.000000	0.000000	1.000000	-1282210.	79015796	
0.000000	0.000000		(187733.)	(2.9E+07)	
			(10//00.)	(2.50107)	
Adjustment c	oefficients (stand	ard error in pare	ntheses)		
D(CE)	0.134454	-0.004158	5.79E-07		
	(0.02333)	(0.00055)	(2.2E-07)		
D(Y)	0.876141	0.189013	2.17E-05		1
	(2.39403)	(0.05610)	(2.2E-05)		
D(SVG)	-36541.97	861.6459	-0.105939		
()	(6460.96)	(151.389)	(0.06072)		
D(REM)	0.008957	-9.63E-05	3.26E-08		
_ ()	(0.00261)	(6.1E-05)	(2.5E-08)		
D(EXR)	1.83E-05	-1.49E-08	-1.41E-10		
	(8.3E-06)	(2.0E-07)	(7.8E-11)		
			(1.02 11)		
4 Cointegrati	ng Equation(s):	Log likelihood	-6013.173		
	ointegrating coef			· · · · · · · · · · · · · · · · · · ·	
CE	Y	SVG	REM	EXR	
1.000000	0.000000	0.000000	0.000000	-1087.115	
				(283.146)	
0.000000	1.000000	0.000000	0.000000	-140751.4	
L				(81285.4)	
0.000000	0.000000	1.000000	0.000000	-1.23E+08	
				(1.3E+08)	
0.000000	0.000000	0.000000	1.000000	(1.3E+08) -157.2159	
0.000000	0.000000	0.000000	1.000000	· · · · ·	
				-157.2159	
	0.000000			-157.2159	
				-157.2159	
Adjustment c D(CE)	oefficients (stand	ard error in pare	ntheses) 5.87E-07 (2.2E-07)	-157.2159 (100.560)	
Adjustment c	oefficients (stand 0.137967	ard error in parer -0.004245	ntheses) 5.87E-07	-157.2159 (100.560) 2.396820	
Adjustment c D(CE)	oefficients (stand 0.137967 (0.02404)	ard error in pare -0.004245 (0.00057)	ntheses) 5.87E-07 (2.2E-07)	-157.2159 (100.560) 2.396820 (0.31803)	
Adjustment c D(CE) D(Y)	oefficients (stand 0.137967 (0.02404) 1.602775	ard error in pare -0.004245 (0.00057) 0.170997	10000000000000000000000000000000000000	-157.2159 (100.560) 2.396820 (0.31803) -158.3854	
Adjustment c D(CE) D(Y)	0.137967 (0.02404) 1.602775 (2.45058) -38740.95	ard error in paren -0.004245 (0.00057) 0.170997 (0.05763) 916.1683	ntheses) 5.87E-07 (2.2E-07) 2.34E-05 (2.2E-05) -0.111180	-157.2159 (100.560) 2.396820 (0.31803) -158.3854 (32.4247) -541630.0	
Adjustment c D(CE) D(Y)	coefficients (stand 0.137967 (0.02404) 1.602775 (2.45058) -38740.95 (6599.23)	ard error in paren -0.004245 (0.00057) 0.170997 (0.05763) 916.1683 (155.197)	ntheses) 5.87E-07 (2.2E-07) 2.34E-05 (2.2E-05) -0.111180 (0.06021)	-157.2159 (100.560) 2.396820 (0.31803) -158.3854 (32.4247)	
Adjustment c D(CE) D(Y) D(SVG)	0.137967 (0.02404) 1.602775 (2.45058) -38740.95 (6599.23) 0.007965	ard error in paren -0.004245 (0.00057) 0.170997 (0.05763) 916.1683 (155.197) -7.17E-05	ntheses) 5.87E-07 (2.2E-07) 2.34E-05 (2.2E-05) -0.111180 (0.06021) 3.03E-08	-157.2159 (100.560) 2.396820 (0.31803) -158.3854 (32.4247) -541630.0 (87317.3) -0.018237	
Adjustment c D(CE) D(Y) D(SVG)	coefficients (stand 0.137967 (0.02404) 1.602775 (2.45058) -38740.95 (6599.23)	ard error in paren -0.004245 (0.00057) 0.170997 (0.05763) 916.1683 (155.197)	ntheses) 5.87E-07 (2.2E-07) 2.34E-05 (2.2E-05) -0.111180 (0.06021)	-157.2159 (100.560) 2.396820 (0.31803) -158.3854 (32.4247) -541630.0 (87317.3)	

Data: 10/20/1	E Times 14:44				
	5 Time: 14:44	04204			
	sted): 1987Q2 2				
	ervations: 107 at				
	ption: Linear det	erministic trend			
	INT REM EXR				
Lags Interval	(in first differenc	es): 1 to 4			
l lara atriata d (Cointegration De	nul Teet (Trees)			
Unrestricted	Cointegration Ra	ank rest (frace)			
			0.05		
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**	
100.01 CE(5)	Eigenvalue	Statistic		FIUD.	
None *	0.899494	334.3316	69.81889	0.0001	
At most 1 *	0.471635	88.49513	47.85613	0.0000	
At most 1	0.133260	20.23263	29.79707	0.4072	
At most 2 At most 3	0.038860	4.929851	15.49471	0.8162	
At most 3	0.006418	0.688901	3.841466	0.8162	
	0.000410	0.000901	5.041400	0.4003	
Trace test ind	licates 2 cointeg	rating eqn(s) at		1	
	ection of the hyp				
	Haug-Michelis (
INIACIAITITION-		(1999) p-values			
Uprestricted (Cointegration Ra	ank Test (Maxim	um Eigenvalue)		
Onrestricted					
Hypothesized	1	Max-Eigen	0.05		
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**	
	Ligenvalue	Otatistic		1100.	
None *	0.899494	245.8365	33.87687	0.0001	
At most 1 *	0.471635	68.26250	27.58434	0.0000	
At most 2	0.133260	15.30278	21.13162	0.2682	
At most 2	0.038860	4.240950	14.26460	0.8331	
At most 4	0.006418	0.688901	3.841466	0.4065	
/ ((1103) +	0.000+10	0.000001	0.041400	0.4000	
Max-eigenval	ue test indicates	2 cointegrating	eqn(s) at the 0.0	5 10/01	
	ection of the hyp			5 16 461	
	Haug-Michelis (
I Intestricted (Cointegrating Co	efficients (norm	alized by b'*S11*	h–l):	
Childented				<u>~-ij.</u>	
INV	Y	INT	REM	EXR	
1.29E-06	-4.25E-07	0.002432	0.000212	0.005796	
-5.03E-07	2.61E-07	0.006501	-0.000391	-0.022988	
-7.64E-07	9.14E-08	-0.130935	-2.88E-05	0.018703	
-2.41E-06	1.65E-07	-0.033351	0.000239	-0.024489	
6.23E-06	-4.72E-07	-0.037886	-7.80E-05	0.001904	
0.202-00	T.IZE-01	0.007000	1.000-00	0.001004	
L					

Innocent et al.; BJEMT, 14(2): 1-35,	2016; Article no.BJEMT.25026
--------------------------------------	------------------------------

Inrestricted Ad	ljustment Coeff	icients (alpha):			
D(INV)	-7923.140	-48732.59	274.6592	1002.645	443.6070
D(Y)	-883957.7	171321.4	33968.82	-16616.34	3196.916
D(INT)	0.352720	-0.001077	0.857150	0.231895	-0.041556
D(REM)	-17.68404	-285.4046	48.66230	-70.86634	-11.40419
D(EXR)	0.188241	0.041758	0.089328	-0.068509	0.157622
	0.100241	0.041700	0.000020	0.000000	0.107022
1 Cointegrating	Equation(s):	Log likelihood	-4137.384		
	ntegrating coef	ficients (standarc		ntheses)	
NV	Y	INT	REM	EXR	
1.000000	-0.329425	1882.788	164.4397	4487.864	
	(0.01097)	(3937.77)	(14.1692)	(1048.22)	
		1			
		ard error in pare	ntheses)		
D(INV)	-0.010232				
- ()	(0.01000)				
D(Y)	-1.141583				
	(0.05723)				
D(INT)	4.56E-07				
	(3.8E-07)				
D(REM)	-2.28E-05				
	(8.2E-05)				
D(EXR)	2.43E-07				
	(2.8E-07)				
2 Cointegrating	Equation(s):	Log likelihood	-4103.252		
				(h)	
	0 0	ficients (standard		- /	
NV	Υ	INT	REM	EXR	
1.000000	0.000000	27757.70	-904.5752	-67520.69	
000000	1.000000	(56839.0)	(107.478)	(14198.1)	
0.000000	1.000000	78545.63	-3245.091	-218588.5	
		(170677.)	(322.735)	(42634.1)	
Adjustment coo	fficients (stand	ard error in pare	ntheses)		
Adjustment coe D(INV)	0.014299	-0.009332			
	(0.00785)	(0.00282)			
D(Y)	-1.227825	0.420723			
D(INT)	(0.05576)	(0.02007) -1.50E-07			
(דאוו)	4.56E-07				
	(4.0E-07)	(1.5E-07)			
D(REM)	0.000121	-6.69E-05			
	(7.6E-05)	(2.8E-05)			
D(EXR)	2.22E-07	-6.92E-08			
	(3.0E-07)	(1.1E-07)			

		[T		
3 Cointegrating	Equation(s):	Log likelihood	-4095.601		
	ntegrating coef	ficients (standarc	l error in parer	ntheses)	
INV	Y	INT	REM	EXR	
1.000000	0.000000	0.000000	-1005.025	-70581.26	
			(118.303)	(14789.7)	
0.000000	1.000000	0.000000	-3529.332	-227248.9	
			(352.586)	(44078.7)	
0.000000	0.000000	1.000000	0.003619	0.110260	
			(0.00075)	(0.09411)	
			× /	, ,	
Adiustment coe	fficients (stand	ard error in pare	ntheses)		
D(INV)	0.014090	-0.009307	-372.0318		
	(0.00896)	(0.00287)	(742.342)		
D(Y)	-1.253769	0.423827	-5483.330		
2(1)	(0.06339)	(0.02032)	(5252.32)		
D(INT)	-1.99E-07	-7.20E-08	-0.111380		
	(4.4E-07)	(1.4E-07)	(0.03611)		
	· · · ·	-6.24E-05	-8.269976		
D(REM)	8.37E-05				
	(8.7E-05)	(2.8E-05)	(7.19842)		
D(EXR)	1.54E-07	-6.10E-08	-0.010967		
	(3.5E-07)	(1.1E-07)	(0.02862)		
4 Cointegrating	Equation(s):	Log likelihood	-4093.481		
Normalized coi	ntegrating coef	ficients (standarc	l error in parer	ntheses)	
INV	Y	INT	REM	EXR	
1.000000	0.000000	0.000000	0.000000	33631.44	
				(12007.6)	
0.000000	1.000000	0.000000	0.000000	138713.4	
				(44792.6)	
0.000000	0.000000	1.000000	0.000000	-0.264979	
				(0.08257)	
0.000000	0.000000	0.000000	1.000000	103.6917	
0.000000	0.000000	0.000000	1.000000	(20.7991)	
			1	(_0.1001)	
Adjustment coe	fficients (stand	ard error in pare	otheses)		
D(INV)	0.011675	-0.009141	-405.4714	17.57989	
	(0.01631)	(0.00302)	(765.839)	(2.86120)	
D(Y)	-1.213762	0.421087	-4929.152	-259.5713	
	(0.11530)	(0.02134)	(5414.08)	(20.2272)	
	· /	· · · · ·	· /	. ,	
D(INT)	-7.57E-07	-3.38E-08	-0.119114	0.000106	
	(7.9E-07)	(1.5E-07)	(0.03710)	(0.00014)	
D(REM)	0.000254	-7.41E-05	-5.906486	0.089372	
	(0.00016)	(2.9E-05)	(7.35447)	(0.02748)	
D(EXR)	3.19E-07	-7.23E-08	-0.008682	4.73E-06	
	(6.3E-07)	(1.2E-07)	(0.02951)	(0.00011)	

Date: 10/20/15	5 Time: 14:46			
	ted): 1987Q2 2	01304		
Included obser				
		erministic trend		
	NV GE XPT MI			
	in first difference			
Lago intervar (
Investricted C	ointegration Ra	ank Test (Trace)		
onication				
Hypothesized		Trace	0.05	
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**
	Ligenvalue	Oldlistic	Ontioal Value	1100.
None *	0.946451	801.9371	125.6154	0.0001
At most 1 *	0.890588	488.7320	95.75366	0.0001
At most 2 *	0.685656	251.9798	69.81889	0.0000
At most 3 *	0.510543	128.1521	47.85613	0.0000
At most 4 *	0.249042	51.70511	29.79707	0.0000
At most 5 *	0.175635	21.05978	15.49471	0.0065
At most 6	0.003672	0.393639	3.841466	0.5304
	0.000072	0.000000	0.0+1+00	0.000+
Traco tost indi		rating eqn(s) at	the 0.05 level	
made lest mun				
	otion of the hun	othopic of the ()		
* denotes rejeo			05 level	
* denotes rejea		othesis at the 0. (1999) p-values	05 level	
* denotes reject **MacKinnon-H	Haug-Michelis ((1999) p-values		
* denotes reject **MacKinnon-H	Haug-Michelis (
* denotes reject **MacKinnon-H	Haug-Michelis ((1999) p-values		
* denotes rejec **MacKinnon-F Unrestricted C	Haug-Michelis ((1999) p-values ank Test (Maxim	um Eigenvalue)	
* denotes rejec **MacKinnon-I Unrestricted C Hypothesized	Haug-Michelis (ointegration Ra	(1999) p-values ank Test (Maxim Max-Eigen	um Eigenvalue)	Drob **
* denotes rejec **MacKinnon-F Unrestricted C	Haug-Michelis ((1999) p-values ank Test (Maxim	um Eigenvalue)	Prob.**
* denotes rejec **MacKinnon-I Unrestricted C Hypothesized	Haug-Michelis (ointegration Ra	(1999) p-values ank Test (Maxim Max-Eigen	um Eigenvalue)	Prob.**
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s)	Haug-Michelis (ointegration Ra	(1999) p-values ank Test (Maxim Max-Eigen Statistic	um Eigenvalue) 0.05 Critical Value	
* denotes reject **MacKinnon-H Unrestricted C Hypothesized No. of CE(s) None *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050	um Eigenvalue) 0.05 Critical Value 46.23142	0.0000
* denotes rejec **MacKinnon-H Unrestricted C Hypothesized No. of CE(s) None * At most 1 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757	0.0000 0.0001
* denotes rejec **MacKinnon-H Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687	0.0000 0.0001 0.0000
* denotes rejec **MacKinnon-H Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434	0.0000 0.0001 0.0000 0.0000
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 4 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162	0.0000 0.0001 0.0000 0.0000 0.0017
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 1 * At most 2 * At most 3 * At most 4 * At most 5 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043
* denotes rejec **MacKinnon-H Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162	0.0000 0.0001 0.0000 0.0000 0.0017
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 1 * At most 2 * At most 3 * At most 4 * At most 5 *	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 6	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304
* denotes reject **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 5 * At most 5 * At most 6 Max-eigenvalu	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 Ie test indicates	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304
* denotes reject **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 5 * At most 6 Max-eigenvalut * denotes reject	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 ie test indicates ction of the hyp	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 56 cointegrating othesis at the 0.	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304
* denotes reject **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 5 * At most 6 Max-eigenvalut * denotes reject	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 ie test indicates ction of the hyp	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 6 Max-eigenvalu * denotes rejec	Haug-Michelis (ointegration Ra ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 He test indicates ction of the hyp Haug-Michelis ((1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 6 Max-eigenvalu * denotes rejec	Haug-Michelis (ointegration Ra ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 He test indicates ction of the hyp Haug-Michelis ((1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 6 Max-eigenvalu * denotes rejec	Haug-Michelis (ointegration Ra ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 He test indicates ction of the hyp Haug-Michelis ((1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 6 Max-eigenvalu * denotes rejec	Haug-Michelis (ointegration Ra ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 He test indicates ction of the hyp Haug-Michelis ((1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values pefficients (norm	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 6 Max-eigenvalu * denotes rejec	Haug-Michelis (ointegration Ra ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 He test indicates ction of the hyp Haug-Michelis ((1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 5 * At most 6 Max-eigenvalu * denotes reject **MacKinnon-F Unrestricted C	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 Le test indicates ction of the hyp Haug-Michelis (ointegrating Co	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values pefficients (norm	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level alized by b'*S11*	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 3 * At most 3 * At most 4 * At most 5 * At most 5 * At most 6 Max-eigenvalu * denotes reject **MacKinnon-F Unrestricted C	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 Le test indicates ction of the hyp Haug-Michelis (ointegrating Co CE	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values pefficients (norm	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level alized by b'*S11* GE	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level 5 level
* denotes rejec **MacKinnon-F Unrestricted C Hypothesized No. of CE(s) None * At most 1 * At most 2 * At most 2 * At most 3 * At most 4 * At most 5 * At most 5 * At most 6 Max-eigenvalu * denotes reject **MacKinnon-F Unrestricted C Y 5.86E-08	Haug-Michelis (ointegration Ra Eigenvalue 0.946451 0.890588 0.685656 0.510543 0.249042 0.175635 0.003672 Le test indicates ction of the hyp Haug-Michelis (ointegrating Co CE 6.22E-06	(1999) p-values ank Test (Maxim Max-Eigen Statistic 313.2050 236.7523 123.8276 76.44701 30.64533 20.66614 0.393639 5 6 cointegrating othesis at the 0. (1999) p-values pefficients (norm INV -1.09E-06	um Eigenvalue) 0.05 Critical Value 46.23142 40.07757 33.87687 27.58434 21.13162 14.26460 3.841466 eqn(s) at the 0.0 05 level alized by b'*S11* GE 3.41E-05	0.0000 0.0001 0.0000 0.0000 0.0017 0.0043 0.5304 5 level b=l): XPT 1.33E-06

Innocent et al.; BJEMT,	14(2): 1-35	2016; Article	no.BJEMT.25026
-------------------------	-------------	---------------	----------------

-9.57E-08	-4.55E-05	1.44E-05	-0.000170	2.94E-06
9.74E-07	1.25E-05	1.02E-05	-0.000145	-3.23E-06
-3.02E-06	8.49E-06	5.41E-06	-0.000145	-6.85E-07
-3.02L-00	0.492-00	5.412-00	-0.000110	-0.05L-07
Unrestricted A	djustment Coeff	icients (alpha):		
D(Y)	466888.8	-542558.4	101651.7	-163185.0
D(CE)	-657.0484	465.5000	-3929.224	-2471.872
D(INV)	35083.34	37846.88	-10824.13	1020.347
D(GE)	-230.1140	2653.476	633.3786	-482.2182
D(XPT)	-2644.377	-1559.445	17756.28	32077.59
D(MPT)	-10337.53	10201.31	4814.425	35604.31
D(REM)	244.6921	99.90900	-133.6810	17.26820
	211.0021	00.00000	100.0010	11.20020
1 Cointegrating	g Equation(s):	Log likelihood	-8220.016	
	into gratic crack	ficiente (standard		
Normalized CO		ficients (standard	GE	
Y 1 000000	CE			XPT
1.000000	106.2638	-18.63193	582.3397	22.72806
	(23.6620)	(9.06633)	(120.250)	(3.50773)
Adjustment co	efficients (stand	ard error in pare	ntheses)	
D(Y)	0.027346	1	, í	
	(0.00428)			
D(CE)	-3.85E-05			
- (/	(4.5E-05)			
D(INV)	0.002055			
D(1117)	(0.00031)			
D(GE)	-1.35E-05			
	(2.2E-05)			
D(XPT)	-0.000155			
	(0.00076)			
	-0.000605			
D(MPT)				
	(0.00044)			
D(REM)	1.43E-05	-		
	(1.9E-06)			
2 Cointegrating	g Equation(s):	Log likelihood	-8101.640	
Normalized co	integrating coef	ficients (standard	error in narer	ntheses)
V	CE	INV	GE	XPT
1.000000	0.000000	1.026049	-68.26822	-1.674791
1.000000	0.00000			
0.000000	1 000000	(1.31790)	(17.4875)	(0.47673)
0.000000	1.000000	-0.184992	6.122573	0.229644
		(0.08727)	(1.15800)	(0.03157)

Innocent et al.; BJEMT,	14(2): 1-35,	, 2016; Article no.BJEMT.25026
-------------------------	--------------	--------------------------------

Adjustment	oofficients (stand	lard error in pare	ntheses)	
D(Y)	-0.432059	-1.980049		
D(1)	(0.03316)			
	0.000356	(0.42772)		
D(CE)		0.000103		
	(0.00065)	(0.00842)		
D(INV)	0.034101	0.559176		
	(0.00258)	(0.03332)		
D(GE)	0.002233	0.022463		
	(0.00018)	(0.00230)		
D(XPT)	-0.001475	-0.030502		
	(0.01099)	(0.14179)		
D(MPT)	0.008032	0.027526		
	(0.00625)	(0.08059)		
D(REM)	9.89E-05	0.002423		
	(2.6E-05)	(0.00034)		
3 Cointegratir	ng Equation(s):	Log likelihood	-8039.726	
Normalized o		ficients (standard	error in parer	theses)
	CE	INV	GE	XPT
1.000000	0.000000	0.000000	-40.73204	-1.630558
1.000000	0.000000	0.000000		
	1.000000	0.00000	(4.97943)	(0.23217)
0.000000	1.000000	0.000000	1.157918	0.221669
			(0.50878)	(0.02372)
0.000000	0.000000	1.000000	-26.83710	-0.043110
			(4.40273)	(0.20528)
Adjustment	oofficients (stand	lard error in pare	nthosos)	
D(Y)	-0.076596	-2.599921	-0.435606	
- (-)	(0.13428)	(0.46759)	(0.14096)	
D(CE)	-0.013384	0.024063	0.014207	
	(0.00225)	(0.00784)	(0.00236)	
D(INV)	-0.003749	0.625182	-0.030271	
	(0.01001)	(0.03486)	(0.01051)	
D(GE)	0.004448	0.018601	-0.004098	
	(0.00071)	(0.00247)	(0.00074)	
D(XPT)	0.060616	-0.138779	-0.058508	
/	(0.04604)	(0.16031)	(0.04833)	
D(MPT)	0.024868	-0.001832	-0.013834	
/	(0.02642)	(0.09200)	(0.02773)	
D(REM)	-0.000369	0.003238	0.000125	
	(9.6E-05)	(0.00033)	(0.000123	
	(3.02-03)	(0.00033)	(0.00010)	
1 Cointogration			9001 500	
4 Contegratir	ng Equation(s):	Log likelihood	-8001.502	
Normalized c		ficients (standard		
N .	CE	INV	GE	XPT
ř				
1.000000	0.000000	0.000000	0.000000	-3.998637

Innocent et al.; BJEMT, 14(2): 1-35, 2016; Article no.BJEMT.25026

0.000000	1.000000	0.000000	0.000000	0.288988
				(0.03142)
0.000000	0.000000	1.000000	0.000000	-1.603365
				(0.16561)
0.000000	0.000000	0.000000	1.000000	-0.058138
				(0.01158)
				(0.0.1.0.0)
Adjustment co	efficients (stand	lard error in pare	ntheses)	
D(Y)	0.143333	-5.108897	-1.783879	14.20647
D(1)	(0.12431)	(0.64168)	(0.29391)	(2.14446)
D(CE)	-0.010053	-0.013942	-0.006217	0.228222
	(0.00215)	(0.01108)	(0.00507)	(0.03702)
D(INV)	-0.005125	0.640870	-0.021840	1.673957
	(0.01068)	(0.05514)	(0.02526)	(0.18427)
	0.005098	0.011187	-0.008083	-0.042546
D(GE)				
	(0.00073)	(0.00375)	(0.00172)	(0.01254)
D(XPT)	0.017384	0.354415	0.206524	-1.532597
	(0.04711)	(0.24317)	(0.11138)	(0.81266)
D(MPT)	-0.023117	0.545586	0.280337	-1.168862
	(0.02351)	(0.12136)	(0.05559)	(0.40558)
D(REM)	-0.000392	0.003503	0.000268	0.015154
	(0.00010)	(0.00053)	(0.00024)	(0.00176)
E Cointogratin	a Equation(a);	Log likelihood	7096 190	
5 Cointegratin	g Equation(s):	Log likelihood	-7986.180	
5 Cointegratin	g Equation(s):	Log likelihood	-7986.180	
				itheses)
	integrating coef	ficients (standard	error in parer	
Normalized cc	bintegrating coef	ficients (standarc	error in parer GE	XPT
	integrating coef	ficients (standard	error in parer	
Normalized cc Y 1.000000	integrating coef CE 0.000000	ficients (standarc	error in parer GE 0.000000	XPT 0.000000
Normalized cc	bintegrating coef	ficients (standarc	error in parer GE	XPT
Normalized cc Y 1.000000 0.000000	Dintegrating coef CE 0.000000 1.000000	ficients (standarc INV 0.000000 0.000000	GE 0.000000 0.000000	XPT 0.000000 0.000000
Normalized cc Y 1.000000	integrating coef CE 0.000000	ficients (standarc	error in parer GE 0.000000	XPT 0.000000
Normalized cc Y 1.000000 0.000000 0.000000	Dintegrating coef CE 0.000000 1.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000	d error in parer GE 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000
Normalized cc Y 1.000000 0.000000	Dintegrating coef CE 0.000000 1.000000	ficients (standarc INV 0.000000 0.000000	GE 0.000000 0.000000	XPT 0.000000 0.000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000	d error in parer GE 0.000000 0.000000 0.000000 0.000000 1.000000	XPT 0.000000 0.000000 0.000000 0.000000
Normalized cc Y 1.000000 0.000000 0.000000	Dintegrating coef CE 0.000000 1.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000	d error in parer GE 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000	d error in parer GE 0.000000 0.000000 0.000000 0.000000 1.000000	XPT 0.000000 0.000000 0.000000 0.000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000	d error in parer GE 0.000000 0.000000 0.000000 1.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000	GE 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000	Image: content of the second	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 lard error in paren -5.360386	GE 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 13.26554
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	Image: content of the second	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	GE 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 13.26554 (5.90409)
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	Dintegrating coef CE 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 lard error in pare -5.360386 (1.60418) 0.007482	d error in parer GE 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 13.26554 (5.90409) 0.308379
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.142804 (0.12433) -0.010008 (0.00214)	ficients (standard INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	GE 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 13.26554 (5.90409) 0.308379 (0.10146)
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	GE 0.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.00000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000	icients (standarc INV 0.000000 0.000000 1.000000 0.0000000 <tr< td=""><td>GE 0.000000 0.000000 0.000000 0.000000 0.000000</td><td>XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 13.26554 (5.90409) 0.308379 (0.10146) 2.967974 (0.48211)</td></tr<>	GE 0.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 13.26554 (5.90409) 0.308379 (0.10146) 2.967974 (0.48211)
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	Image Image Dintegrating coef CE 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0020000 0.000000 0.00214) 0.004396 (0.01015) 0.005054	ficients (standarc INV 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	d error in parer GE 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	icients (standarc INV 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.007482 (0.02757) 0.986733 (0.13099) -0.009693 (0.00902)	d error in parer GE 0.0000000 0.0000000 0.00000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.00000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	Image: control of the system Dintegrating coef CE 0.000000 1.000000 0.0010008 (0.00214) -0.004396 (0.01015) 0.005054 (0.00070) 0.015115	icients (standarc INV 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.007482 (0.02757) 0.986733 (0.13099) -0.009693 (0.00902) -0.723479	error in parer GE 0.000000 0.0013016 (0.00310) 0.548619	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	integrating coef CE 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000	icients (standarc INV 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.007482 (0.02757) 0.986733 (0.13099) -0.009693 (0.00902)	d error in parer GE 0.0000000 0.0000000 0.00000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.00000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	Image: control of the system Dintegrating coef CE 0.000000 1.000000 0.0010008 (0.00214) -0.004396 (0.01015) 0.005054 (0.00070) 0.015115	icients (standarc INV 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.007482 (0.02757) 0.986733 (0.13099) -0.009693 (0.00902) -0.723479	error in parer GE 0.000000 0.0013016 (0.00310) 0.548619	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.00000000
Normalized cc Y 1.000000 0.000000 0.000000 0.000000 0.000000	Image: contract of the second state of the	icients (standarc INV 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.007482 (0.02757) 0.986733 (0.13099) -0.009693 (0.00902) -0.723479 (0.59308)	GE 0.000000 0.000000 0.000000 0.000000 0.000000	XPT 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.00000000

Innocent et al.; BJEMT, 1	14(2): 1-35,	2016; Article no	BJEMT.25026
---------------------------	--------------	------------------	-------------

	(9.9E-05)	(0.00128)	(0.00044)	(0.00472)
6 Cointegrati	ng Equation(s):	Log likelihood	-7975.847	
Normalized c	cointegrating coef			
Y	CE	INV	GE	XPT
1.000000	0.000000	0.000000	0.000000	0.000000
0.000000	1.000000	0.000000	0.000000	0.000000
	0.00000	1.00000		
0.000000	0.000000	1.000000	0.000000	0.000000
0.00000	0.00000	0.00000	1 00000	0.00000
0.000000	0.000000	0.000000	1.000000	0.000000
0.000000	0.000000	0.000000	0.000000	1.000000
0.000000	0.000000	0.000000	0.000000	1.000000
0.000000	0.000000	0.000000	0.000000	0.000000
0.000000	0.000000	0.000000	0.000000	0.000000
Adjustment c	oefficients (stand	lard error in pare	ntheses)	
D(Y)	0.156869	-5.179487	-1.556219	11.17954
	(0.12809)	(1.65246)	(0.64248)	(7.52064)
D(CE)	-0.011185	-0.007661	-0.025392	0.482999
	(0.00214)	(0.02755)	(0.01071)	(0.12537)
D(INV)	-0.004449	0.986051	-0.132166	2.975842
	(0.01047)	(0.13511)	(0.05253)	(0.61490)
D(GE)	0.005369	-0.005648	0.001850	-0.167313
	(0.00071)	(0.00911)	(0.00354)	(0.04146)
D(XPT)	0.043231	-0.361883	0.844141	-9.735111
	(0.04559)	(0.58814)	(0.22867)	(2.67672)
D(MPT)	-0.025142	-0.084585	0.469859	-3.385566
	(0.02346)	(0.30266)	(0.11767)	(1.37746)
D(REM)	-0.000327	0.001881	0.001799	-0.004594
	(9.7E-05)	(0.00125)	(0.00049)	(0.00571)

APPENDIX III: REGRESSION RESULTS

Table 1a. Regression results

١							
	related Regre	ession					
	5						
Sample: 1986Q1 2013Q4							
	ations 334	I					
		ix					
Coefficient	Std. Error	t-Statistic	Prob.				
150443.2	6465.353	23.26914	0.0000				
0.006570			0.0050				
			0.0003				
			0.1228				
			0.0000				
2.957193			0.0007				
			0.5072				
			0.0050				
			0.0000				
		-0.584285	0.5594				
			0.0000				
			0.2791				
			0.1782				
			0.1586				
			0.1204				
			0.6910				
			0.0018				
-7.500709	1.125966	-6.661579	0.0000				
1012.055	284.8425	3.553035	0.0004				
l covariance	2.18E+33						
C(2)*Y+C(3)*	Y_1+C(4)*SV	G+C(5)*EXR-	+C(6)*REM				
0.931711	Mean deper	ndent var	305527.6				
0.928459 S.D. dependent var		dent var	130270.1				
34843.44	Sum squared resid		1.27E+11				
0.221285							
(9)*Y 1+C(1())*INT+C(11)*	*REM+C(12)*I	EXR				
(0) 1 - 1 - 0(10	.,						
0 928650	Mean deper	ndent var	897858.9				
- · · ·			001000.0				
		lent var	118870/				
0.925253 324991.3	S.D. depend Sum square		1188704. 1.11E+13				
	e: 03:01 13Q4 is: 112 anced) observ er one-step w Coefficient 150443.2 0.006570 0.010579 -5.32E-07 1299.213 2.957193 -39575.04 0.060246 0.107835 -1507.570 62.62413 919.1839 -3666727. 18.39931 3.753766 14.93478 3.205043 -7.500709 1012.055 C(2)*Y+C(3)* 0.931711 0.928459 34843.44 0.221285 	Seemingly Unrelated Regree: 03:01 13Q4 13Q4 13Q4 13Q4 1s: 112 anced) observations 334 er one-step weighting matr Coefficient Std. Error 150443.2 6465.353 0.006570 0.002326 0.010579 0.002887 -5.32E-07 3.44E-07 1299.213 92.98543 2.957193 0.865103 -39575.04 59600.22 0.060246 0.021335 0.107835 0.025742 -1507.570 2580.198 62.62413 8.074852 919.1839 847.7900 -3666727. 2717660. 18.39931 13.02154 3.753766 2.410177 14.93478 37.53799 3.205043 1.018226 -7.500709 1.125966 1012.055 284.8425 C 0.221285 0.221285	Seemingly Unrelated Regression e: 03:01 13Q4 is: 112 anced) observations 334 er one-step weighting matrix Coefficient Std. Error 150443.2 6465.353 23.26914 0.006570 0.002326 2.824688 0.010579 0.002887 3.664734 -5.32E-07 3.44E-07 -1.547329 1299.213 92.98543 13.97222 2.957193 0.865103 3.418314 -39575.04 59600.22 0.664008 0.060246 0.025742 4.189098 -1507.570 2580.198 -0.584285 62.62413 8.074852 7.755451 919.1839 847.7900 1.084212 -3666727. 2717660. -1.349222				

Equation: Y=C(13)+C	(14)*CE+C(1	1 5)*INV+C(16)*	GE+C(17)*XI	PT+C(18)	
*MPT+C(19)*REM					
Observations: 112					
R-squared	0.894677	Mean depend	lent var	11401101	
Adjusted R-squared	0.888659	S.D. depende	ent var	16021612	
S.E. of regression	5346068.	Sum squared	resid	3.00E+15	
Durbin-Watson stat	0.228843				

System: SHORT_RU							
Estimation Method: S	Seeminaly I In	related Reare	ssion				
Sample: 1986Q2 201			351011				
observations: 111							
Total system (unbala							
	Coefficient Std. Error t-Statistic						
				Prob.			
C(1)	5562.488	1096.105	5.074778	0.0000			
C(2)	-0.002677	0.000792	-3.381412	0.0008			
C(3)	0.000925	0.000902	1.026365	0.3055			
C(4)	-2.41E-06	2.54E-07	-9.490110	0.0000			
C(5)	379.3819	291.3704	1.302061	0.1939			
C(6)	0.630434	0.920087	0.685190	0.4937			
C(7)	-0.035321	0.027246	-1.296363	0.1958			
C(8)	15678.36	10019.39	1.564802	0.1187			
C(9)	-0.008941	0.007513	-1.190016	0.2350			
C(10)	-0.000867	0.008565	-0.101242	0.9194			
C(11)	748.4660	1959.282	0.382010	0.7027			
C(12)	69.49551	8.773727	7.920865	0.0000			
C(13)	3669.706	2718.043	1.350128	0.1780			
C(14)	-0.061505	0.029937	-0.205604	0.8372			
C(15)	1184056.	231890.5	5.106098	0.0000			
C(16)	-46.36539	14.82731	-3.127027	0.0019			
C(17)	-3.489639	2.546760	-1.370227	0.1716			
C(18)	-20.95859	41.98064	-0.499244	0.6180			
C(19)	0.419064	1.537500	0.272562	0.7854			
C(20)	-1.687421	2.333973	-0.722982	0.4702			
C(21)	-26.28547	284.9942	-0.092232	0.9266			
C(22)	-0.154638	0.058691	2.634771	0.0088			
Determinant residual	covariance	1.84E+30					
Equation:							
D(CE)=C(1)+C(2)*D(EXR)						
+C(6)*D(REM)+C(7)*ECM01_1							
Observations: 110	0.507944	Mean depen					
R-squared	2837.245						
Adjusted R-squared0.479280S.D. dependent varS.E. of regression9606.743Sum squared resid				13312.94			
S.E. of regression	9.51E+09						

Innocent et al.; BJEMT, 14(2): 1-35, 2016; Article no.BJEMT.25026

Durbin-Watson stat	0.382936						
	Equation: D(INV)=C(8)+C(9)*D(Y)+C(10)*D(Y_1)+C(11)*D(INT)+C(12)						
*D(REM)+C(13)*D(E	XR)+C(14)*EC	CM02_1					
Observations: 110							
R-squared	0.404398	Mean depend	lent var	27429.81			
Adjusted R-squared	0.369703	S.D. depende	ent var	113043.8			
S.E. of regression	89746.87	Sum squared resid		8.30E+11			
Durbin-Watson stat	0.526249						
Equation: D(Y)=C(15)+C(16)*D(CE)+C(17)*D(INV)+C(18)*D(GE)+C(19)							
*D(XPT)+C(20)*D(MPT)+C(21)*D(REM)+C(22)*ECM03_1							
Observations: 111							
R-squared	0.081025	Mean dependent var		764873.9			
Adjusted R-squared	0.018570	S.D. dependent var		2140564.			
S.E. of regression	2120595.			4.63E+14			
Durbin-Watson stat	0.275470						

© 2016 Innocent et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/15091