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Abstract

Observations of the solar magnetic cycle showed that the amplitude of the cycle did not grow all the time in the
past. Thus, there must be a mechanism to halt the growth of the magnetic field in the Sun. We demonstrate a
recently proposed mechanism for this under the Babcock–Leighton dynamo framework, which is believed to be the
most promising paradigm for the generation of the solar magnetic field at present. This mechanism is based on the
observational fact that the stronger solar cycles produce bipolar magnetic regions (BMRs) at higher latitudes and
thus have higher mean latitudes than the weaker ones. We capture this effect in our three-dimensional Babcock–
Leighton solar dynamo model and show that when the toroidal magnetic field tries to grow, it produce BMRs at
higher latitudes. The BMRs at higher latitudes generate a less poloidal field, which consequently limits the overall
growth of the magnetic field in our model. Thus, our study suggests that the latitudinal variation of BMRs is a
potential mechanism for limiting the magnetic field growth in the Sun.

Unified Astronomy Thesaurus concepts: Solar dynamo (2001); Sunspot cycle (1650); Solar magnetic fields (1503)

The magnetic cycle in the Sun and other cool late-type stars
is believed to be caused by a dynamo process operating in the
outer convective layers. In this process, the toroidal component
of the magnetic field is largely produced from the poloidal
component through differential rotation, while the poloidal
field is recreated back from the toroidal one through helical
convection. Under certain conditions, this cyclic process
continues with an increasing magnetic field if there is no
mechanism to halt the amplification. Although the amplitude of
the solar magnetic cycle had cycle-to-cycle-variation in the
past, it did not grow all the time (Usoskin 2013). Thus there
must be a mechanism, the so-called dynamo quenching, to halt
the overall growth of the magnetic field in the Sun. The
obvious candidate for this is the Lorentz force of the magnetic
field on the flow. However, due to limited observations, the
exact mechanism of the dynamo saturation in the Sun is still
not completely known (Charbonneau 2010; Kitchatinov &
Olemskoy 2011a; Choudhuri 2014; Cameron et al. 2017). The
observations of solar differential rotation in the whole
convection zone (CZ) suggest only a tiny variation with the
solar cycle (Howe 2009). This variation in the differential
rotation alone is unlikely to halt the growth of the magnetic
field in the Sun. Thus the mechanism of the dynamo saturation
might be hidden somewhere in the toroidal  poloidal field
generation part.

Recent observations (Dasi-Espuig et al. 2010; Kitchatinov &
Olemskoy 2011b; Muñoz-Jaramillo et al. 2013; Priyal et al.
2014; Cameron & Schüssler 2015) suggest that the generation
of the poloidal field in the Sun is primarily through the decay
and dispersal of tilted bipolar magnetic regions (BMRs),
popularly known as the Babcock–Leighton process. Surface
flux transport (SFT) models that rely on this process
remarkably reproduce the magnetic field as observed on the
surface of the Sun (Baumann et al. 2004; Upton & Hath-
away 2014). The dynamo models based on this Babcock–
Leighton process are also successful in reproducing many basic
features of the solar magnetic field and cycle, including short-
and long-term variations (e.g., Dikpati & Charbonneau 1999;

Choudhuri et al. 2007; Karak 2010; Karak & Choudhuri 2011;
Choudhuri & Karak 2012; Olemskoy & Kitchatinov 2013;
Cameron & Schüssler 2017; Karak et al. 2018). However, all
these dynamo models are kinematic and thus we need to invoke
a mechanism to limit the magnetic field growth in these
models. The usual practice is to include an ad-hoc nonlinear
quenching factor: + B B1 1 0

2[ ( ) ] in the poloidal field source
(Charbonneau 2010). This quenching implies that when the
toroidal magnetic field B exceeds the so-called saturation field
B0, the poloidal field production is reduced. This type of
nonlinear quenching in the Babcock–Leighton source, although
it solves the purpose, has so far no strong physical justification
or observational support.
Recent sophisticated Babcock–Leighton dynamo models

with explicit BMR tilts find stable magnetic cycles again by
including this type of nonlinear quenching in the BMR tilt
(Karak & Miesch 2017, 2018; Lemerle & Charbonneau 2017).
Observations of BMRs for the last two solar cycles find some
indication of this tilt quenching (Jha et al. 2020); see also Dasi-
Espuig et al. (2010), who found a weak anti-correlation
between the cycle-averaged sunspot tilt and the cycle strength.
Thus, this tilt quenching may be a mechanism for the saturation
of the solar dynamo.
Another possible mechanism for limiting the growth of the

magnetic field in Sun, as highlighted by Jiang (2020), can be
the following. It is observed that the stronger cycles start
producing BMRs at higher latitudes and thus have higher mean
latitudes than the weaker ones (Waldmeier 1955; Solanki et al.
2008; Jiang et al. 2011; Mandal et al. 2017). The BMRs at
higher latitudes are far less efficient in producing a poloidal
field than those at lower latitudes (Jiang et al. 2014). On
computing the total axial dipole moment at the end of the cycle
in an SFT model, Jiang (2020) showed that this effect acts as a
quenching in the growth of the dipole moment and thus helps
to regulate the solar cycle amplitude. She calls this the
latitudinal quenching, and it helps to explain the Gnevyshev–
Ohl rule. Further, she showed that the observed tilt quenching,
when combined with the latitudinal quenching, leads to a
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saturation in the final dipole moment. However, when there is
only latitudinal quenching, with the increase of cycle strength,
the total dipole moment reduces only slightly from the linear
dependent. Hence, whether this slight reduction in the dipole
moment is sufficient to stabilize the dynamo growth is not
obvious at all.

We study this problem by performing extensive dynamo
simulations of the solar cycle. We capture this latitudinal
quenching in our novel 3D Babcock–Leighton type solar
dynamo model. We find that the BMRs at higher latitudes are
far less efficient in producing a poloidal field than those at
lower latitudes—in agreement with the result from SFT model.
Thus, when a strong cycle produces BMRs at higher latitudes,
it effectively gives less poloidal field. Consequently, the next
cycle becomes weak. This process, stabilize the growth of the
magnetic field in our dynamo model.

1. Model

We perform our study using a recent 3D dynamo model
Surface Transport And Babcock–LEighton (STABLE), which
aims to capture the Babcock–Leighton process realistically by
utilizing the available surface observations of BMRs and large-
scale flows such as differential rotation and meridional
circulation. STABLE was primarily developed by Mark
Miesch (Miesch & Dikpati 2014; Miesch & Teweldebir-
han 2016) and improved by Karak & Miesch (2017) to make a
close connection of the BMR eruption with observations. A
radial downward magnetic pumping of speed 20ms−1 is also
included in the top 10% of solar radius to mimic the
asymmetric convection. Cameron et al. (2012) showed that
this magnetic pumping is essential to make the Babcock–
Leighton dynamo models consistent with SFT models. The
pumping helps our model to produce the 11 yr magnetic cycle
even at a reasonably high turbulent diffusivity as inferred from
observations (a few times1012 cm2s−1 in the CZ; Cameron &
Schüssler 2016), which was not possible earlier (Karak &
Cameron 2016). It also helps the model to recover from grand
minima by reducing the loss of magnetic flux through the
surface (Karak & Miesch 2018).

As this model does not capture the full dynamics of
magnetohydrodynamics convection, the BMRs do not appear
automatically. We have a prescription for this. First, it
computes the strength of the azimuthal field near the base of
the CZ in a hemisphere

òq f q f= fB t h r B r t dr, , , , , , 1
r

r

a

bˆ ( ) ( ) ( ) ( )

where ra=0.7Re, rb=0.715Re, and
= - -h r h r r r ra b0( ) ( )( ) with h0 being a normalization

factor. The model places a BMR on the surface only when
certain conditions are satisfied. First, q fB t, ,ˆ ( ) must exceed a
critical field strength Bt(θ). This critical field depends on the
latitude, such that its value exponentially increases with the
latitude in the following way.
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where γ=5 and Bt0=2 kG. Thus, as latitude increases, the
magnetic field has to increase exponentially to satisfy the
condition for BMR eruption. This latitude-dependent threshold
plays a crucial role in capturing the latitudinal quenching in our

model. Another advantage of using a latitude-dependent
threshold is that we do not need to use any masking function
in the Babcock–Leighton α (the usual parameterization of the
Babcock–Leighton process in axisymmetric approximation),
which is needed in many previous 2D flux transport dynamo
models (Dikpati et al. 2004; Miesch & Dikpati 2014; Karak &
Cameron 2016). These masking functions produce very weak
variation in the cycle-averaged BMR latitude with the cycle
strength—which is in contradiction to observations. There are
some possible tachocline instabilities operating in the CZ
(Parfrey & Menou 2007; Dikpati et al. 2009) that destabilize
the toroidal field to prevent the BMR formation at high
latitudes in the Sun. Particularly, Kitchatinov (2020) showed
that the threshold field strength for the onset of the instability of
a large-scale toroidal field increases with the increase of the
latitude, and the growth rate of the instability decreases with
latitude. We note that the latitude-dependent Bt(θ), as given by
Equation (2), is considered only in Sets A and B, while in
SetA′, we simply take Bt(θ)=Bt0.
Our model produces the first BMR, when q f q>B B, t

ˆ ( ) ( ).
Then after a time dt from the previous BMR eruption, the
model produces the next BMR only when two conditions,

q f q>B B, t
ˆ ( ) ( ) and dt�Δ, are satisfied. Here Δ follows a
log-normal distribution that is obtained by fitting the time delay
between the observed sunspots:
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2

p. In SetsB
and B′, we take t = 0.8p days and t = 1.9s days, as derived
from the group sunspot data during solar maxima. However, in
SetsA and A′, we consider

t t=
+
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+t tB B B B

2.2 days

1
,

20 days

1
, 4

b
N

b
Np 2 s 2( ) ( )

( )

where Bb
N is the azimuthal-averaged toroidal magnetic field in a

thin layer from r=0.715Re to 0.73Re around 15° latitudes
and Bτ=400 G. Hence the delay distribution changes in
response to the toroidal field at the base of the CZ to allow less
frequent BMRs when the toroidal field is weak and vice versa.
We note that the whole process is done independently in each
hemisphere so that no hemispheric symmetry is imposed in the
flux emergence.
Once the timing of eruption is decided, other properties of

BMR on the surface are obtained from observations. The field
strength of BMR is set to 3kG, while the area is obtained by
using the observed distribution of BMR flux (Muñoz-Jaramillo
et al. 2015):
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with μΦ=51.2, and σΦ=0.77. The factor Φ0 regulates the
strength of the dynamo (or the dynamo number); see Table 1.
To emphasis our prescription, in SetsA and A′ it is the BMR

time delay part through which the toroidal field is linked to the
BMRs. The BMR spot flux is taken from Equation (5).
However, in SetsB and B′ the toroidal field is linked in a
different way. As mentioned above, in these sets the delay
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distribution is kept unchanged, but the (observed) BMR flux
distribution is scaled linearly with the toroidal field at the base
of the CZ. Thus, in these sets, the BMR spot flux

q fF = FB t B, ,s s s sat( ˆ ( ) ) , where (θs, fs) is the location of the
BMR, and Φ is obtained from Equation (5).

For the tilts of BMRs, we consider Joy’s law with a Gaussian
scatter around it with a given σδ inferred from observations
(Dasi-Espuig et al. 2010; Stenflo & Kosovichev 2012;
McClintock et al. 2014; Wang et al. 2015; Arlt et al. 2016; Jha
et al. 2020). For further details of the model, readers are
encouraged to go through Karak & Miesch (2017).

2. Results

In Table 1, we enlist some of the key parameters and results
of our primary simulations. In SetA, RunA0 is subcritical,
while all other Runs produce dynamo cycles. RunsA1–A4
produce a stable magnetic field. In Figure 1, we show the time
evolutions of various quantities for about 700 years from
RunA2. We observe that this simulation produces an overall
stable magnetic field even without including any explicit
nonlinear quenching. After continuing this simulation for
1545years, we find that the magnetic field overall remains
stable. Other than the stable magnetic field, the simulation
produces most of the basic features of the solar cycle, namely,

polarity reversals, dipole dominated field near minima,
amplitude variation, north–south asymmetry, and mixed-
polarity field. RunsA1–A4 show these features. The variation
in the magnetic field in these simulations is due to the scatter in
BMR tilt and the randomness in BMR emergence. We note that
in our modeled solar cycle, we do not observe the Gnevyshev–
Ohl rule even when we include the tilt quenching in addition to
the latitude quenching. Hence, the prediction of Jiang (2020)
based on the SFT model is not seen in our dynamo model.
Another feature that we observe in this simulation is that the

latitudinal extent of the BMRs in each cycle is not constant. As
seen in Figure 1(b), stronger cycles start producing BMRs at
higher latitudes, while weaker ones produce BMRs at lower
latitudes. This feature is nicely seen in Figure 2. It shows a
positive trend between the mean latitude of BMRs and the total
number of BMRs in each cycle, consistent with observations
(Waldmeier 1955; Solanki et al. 2008; Jiang et al. 2011;
Mandal et al. 2017). It is this feature of our model, which gives
rise to the latitudinal quenching and stabilizes the magnetic
field growth.
To demonstrate how this is happening in our model, we

make the following clean experiment. We perform four
simulations by depositing two identical BMRs at latitudes:
±1°, ±5°, ±10°, ±25°, and ±45°. We mean, at the beginning
of each simulation, we deposit one BMR at a given latitude in
the northern hemisphere and another identical BMR exactly at
the same latitude in the southern hemisphere. The tilt is
assigned by Joy’s law with no scatter around it. No other initial
magnetic field is given. The time evolutions of the surface
radial magnetic flux densities averaged over 55° to the pole
from these simulations are shown in Figure 3(a). We observe
that with the increase of BMR latitude, from 1° to 10°, the polar
flux increases (due to the increase of tilt). However, then with
the increase of latitude, the polar flux rapidly decreases (due to
less efficient cancellation of the opposite polarity flux at the
equator). The BMR pair at ±45° gives even little negative polar
flux. Thus in our dynamo simulation, the BMRs at higher
latitudes give rise to less polar flux, which is also true in the
SFT model (Jiang et al. 2014).
This behavior does not hold entirely if we do not include the

downward magnetic pumping in our model. As seen in
Figure 3(b), the polar field in the early phase from models
without pumping behaves similarly to that from models with
pumping. However, after a few years, the magnetic field decays
quickly; Hazra et al. (2017) also found a similar behavior. This
does not happen when there is pumping. It was already realized
in previous studies that a magnetic pumping is needed to make
the results of dynamo models consistent with SFT models and
the observations (Cameron et al. 2012; Karak & Miesch 2018).
Thus in our model, due to the inclusion of latitude-dependent

threshold for BMR eruption (Equation (2)), when the toroidal
magnetic field tries to grow in one cycle, the mean latitude of
BMRs increases. As seen above, the BMRs at higher latitudes
are far less efficient in generating poloidal field. This effect
halts the growth of the magnetic field in our dynamo model.
As expected, when we remove the latitude-dependent

threshold for BMR eruption in SetA′, the dynamo cannot
produce a stable magnetic field. This happened in RunsA′1–A′
2. However, RunA′2*, which is the same as RunA′2 except a
tilt quenching of the form q f+ B t B1 1 , , sat

2[ ( ˆ ( ) ) ] (where
the saturation field Bsat=1×105 G) is included, also fails to
produce a stable magnetic field.

Table 1
Summary of Main Runs

Run Duration Φ0 σδ Btor˜ Br˜ Period Magnetic
(yr) (kG) (kG) (yr) Cycle?

A0 300 1.5 15° L L L Decay
A1 400 2.0 15° 12.5 0.10 11.7 Stable
A2 1545 2.4 15° 19.2 0.18 10.3 Stable
A3 824 2.4 0° 18.5 0.17 10.1 Stable
A4 200 3.2 15° 39.3 0.46 7.9 Stable
A5 189 4.8 15° L L L Grow
A5* 185 4.8 15° L L L Grow

A′0 123 6 15° L L L Decay
A′1 228 8 15° L L L Grow
A′2 1017 10 15° L L L Grow
A′2* 180 10 15° L L L Grow

B0 100 16 15° L L L Decay
B1 404 20 15° 9.2 0.08 11.2 Stable
B2 710 24 15° 11.6 0.12 9.5 Stable
B3 710 48 15° 17.6 0.35 5.4 Stable
B4 231 48 0° 15.3 0.27 5.8 Stable
B5 100 64 15° L L L Grow
B5* 628 64 15° 24.5 0.66 3.8 Stable

B′0 100 30 15° L L L Decay
B′1 100 35 15° L L L Decay
B′2 100 40 15° L L L Grow
B′3 100 45 15° L L L Grow

Note. The second column shows the lengths of the simulations, σδ is the
standard deviation of the Gaussian tilt scatter around Joy’s law, Btor˜ and Br˜ ,
respectively, denote average values of the absolute toroidal and poloidal flux
densities over the entire computational domain. RunX#* is the same as
RunX#, except that a tilt quenching is included. Set A′ is the same as Set A,
except that the latitudinal quenching is removed. Set B′ is the same as Set B,
except pumping is put to zero and diffusivity is reduced. When the dynamo is
decaying or growing, the magnetic field and cycle period are dynamic, and thus
we do not print their values. All simulations are performed with spatial
resolutions of 200×256×512 in r, θ, and f.
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We have made several simulations by changing some
parameters in the model. Run A3 is the case in which we
have switched off the scatter in the BMR tilt around Joy’s law.
We again find a stable solution. However, when Φ0 is
sufficiently above the critical value needed for the dynamo
transition, the model fails to produce a stable magnetic field.
This is because of an opposing effect arose at large Φ0. When
Φ0 is large, the BMR flux distribution (Equation (5)) is moved
to a higher side. Thus the individual BMR gets more flux,
which consequently generates a large poloidal flux. When this
effect dominates over the reduction of poloidal flux by the
latitudinal quenching, the model fails to provide a stable
magnetic field. This happened in RunA5. Interestingly, in this
run when we include a tilt quenching, it also fails to produce a
stable magnetic field (Run A5* in Table 1). Thus, when the
dynamo is too much supercritical, both the latitudinal and tilt
quenchings, even operating together, fail to produce a stable
magnetic field in SetA.

We note that in SetsA and A′, when a model fails to limit
the magnetic field growth at large Φ0, the magnetic field cannot
grow indefinitely because of a numerical means. At large Φ0,
the strong magnetic field makes the delay distribution for BMR
eruptions narrow (Equations (3) and(4)). Therefore, Δ is less.
However, the actual Δ cannot be less than the time step of
numerical integration of our differential equations. Hence,
when the magnetic field is sufficiently high to make the delay
less than or equal to the numerical time step, the growth of the
magnetic field is artificially halted. However, this does not
happen when Φ0 is not too much larger than the critical value
for the dynamo transition. Thus, in RunsA1–A3 the delay
never became less than the numerical time step and the
magnetic field growth is limited by the latitudinal quenching
alone.
This issue is not there in SetB because in this case, the delay

distribution is kept at the observed value. Again in Runs B1–
B4, we find a stable solution without including any nonlinearly
in the model. Only the latitudinal effect of BMR eruption as
discussed above is responsible for the stability of the magnetic
field. Time evolutions of various quantities from RunB2 are
presented in Figure 4. Again we observe a stable magnetic field
and the basic features of the observed solar magnetic field.
However, when we make the dynamo too strong by increasing
Φ0 much above the critical value, we examine that the
latitudinal quenching is not able to halt the growth of the
magnetic field. This is seen in Run B5. Nevertheless, when we
include the tilt quenching, the model manages to halt the
magnetic field growth in this case; see RunB5*.
Based on the physics presented in Figure 3, it is expected

that if we exclude the magnetic pumping, the model fails to
produce a stable magnetic cycle through the latitudinal
quenching alone. To demonstrate this, we show a few
additional simulations RunsB′0–B′3. We note that when we
put pumping to zero, the dynamo model fails to produce
growing field unless we reduce the diffusivity in the CZ
considerably or increase Φ0 to a very high value. It is already
known that the flux transport dynamo cannot produce 11 yr
solar cycle at high diffusivity (∼1012 cm2s−1; Karak &

Figure 1. Temporal variations of (a) the azimuthal-averaged surface radial field, (b) latitudes of BMRs, and (c) the monthly numbers of BMRs from RunA2.

Figure 2. Scatter plot between the mean latitudes of BMRs and the total BMR
numbers both computed in each cycle. Red/black are obtained from northern/
southern hemispheric cycles.
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Choudhuri 2012). Thus we reduce the diffusivity in these runs
by taking hCZ=5×1010 cm2s−1, and h = ´1 10S

12

cm2s−1. Other than this change in the diffusivity, the B′ Set
is the same as SetB. From Table 1 we observe that when Φ0 is
above a certain value, the model produces growing field but no
stable magnetic cycle.

3. Summary and Conclusions

We have demonstrated the saturation of the magnetic field in
the kinematic Babcock–Leighton type flux transport dynamo
models through the latitudinal quenching as proposed by Jiang
(2020). It is based on the observed fact that the stronger cycles
produce sunspots and BMRs at higher latitudes than the weaker
ones. The BMRs at higher latitudes are less efficient in
producing the poloidal field. This effect alone halts the growth
of the magnetic field in our dynamo model. However, when the
dynamo is too supercritical (much above the dynamo
transition), the latitudinal quenching cannot limit the growth
of the magnetic field in our model. Incidentally, there are some
indications that the solar dynamo is not too supercritical
(Metcalfe et al. 2016; Kitchatinov & Nepomnyashchikh 2017).
Thus, we conclude that the latitudinal variation of BMR is a
potential candidate for the saturation of the solar dynamo.
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Figure 4. The same as in Figure 1 but obtained from RunB2.
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